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Abstract: Accurate location or positioning of people and self-driven devices in
large indoor environments has become an important necessity The application
of increasingly automated self-operating moving transportation units, in large
indoor spaces demands a precise knowledge of their positions. Technologies
like WiFi and Bluetooth, despite their low-cost and availability, are sensitive
to signal noise and fading effects. For these reasons, a hybrid approach, which
uses two different signal sources, has proven to be more resilient and accurate
for the positioning determination in indoor environments. Hence, this paper
proposes an improved hybrid technique to implement a fingerprinting based
indoor positioning, using Received Signal Strength information from avail-
able Wireless Local Area Network access points, together with the Wireless
Sensor Networks technology. Six signals were recorded on a regular grid of
anchor points, covering the research space. An optimization was performed
by relative signal weighting, to minimize the average positioning error over
the research space. The optimization process was conducted using a standard
Quantum Particle Swarm Optimization, while the position error estimate for
all given sets of weighted signals was performed using a Multilayer Perceptron
(MLP) neural network. Compared to our previous research works, the MLP
architecture was improved to three hidden layers and its learning parameters
were finely tuned. These experimental results led to the 20% reduction of
the positioning error when a suitable set of signal weights was calculated in
the optimization process. Our final achieved value of 0.725 m of the location
incertitude shows a sensible improvement compared to our previous results.

Keywords: QPSO; indoor localization; fingerprinting; neural networks; WiFi;
WSN

1 Introduction

In recent years, the fast development of wireless technologies and their ubiquitous applications
[1–3] have drawn lots of attention for both outdoor and indoor localization tracking implementations
[4–8]. As far as outdoor applications are concerned, the most known and popular technology is the

https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.023824
mailto:edgarscavino@upm.edu.my


380 CMC, 2023, vol.74, no.1

satellite based Global Position System or GPS, which offers uncountable services in the domain of
tourism, navigation, military, etc [9]. However, because of the satellite origin of the GPS signals, this
technology does not perform well in urban canyons, near trees, tall walls and in case of bad weather, due
to the weakness of the received signals. GPS can become completely useless in indoor and underground
environments. Consequently, it becomes an unreliable and ineffective way in situations where precise
indoor localization is required [10].

In order to overcome these limitations, wireless technologies are being widely implemented for
indoor positioning purposes. These techniques include Radio Frequency IDentification (RFID),
[11,12], Wireless Local Area Networks (WLAN) [13–15], Bluetooth [16], Wireless Sensor Networks
(WSN) [17–19], which are widely available and inexpensive both in terms of access points and reception
devices. Thanks to the expansion of free WiFi networks and the diffusion of smartphones, location-
based services have been expanding with many benefits, primarily because no additional hardware is
needed for the reception of the already available signals. Hence, it is conceivable to utilize the existing
WLAN infrastructure for the purpose of indoor location tracking.

In order to determine the position of a mobile reception unit in an indoor environment, the
most common approach is based on the Received Signal Strength (RSS) and the pattern matching
of multiple WLAN sources [20]. Other methods, based on the angle-of-arrival and the time-of-arrival
depend on measurements which require additional hardware and consequently are less common and
not considered in this study [21,22].

Nevertheless, even indoor environments can provide challenging scenarios when using RSS based
techniques for localization purposes. The propagation of WLAN and WiFi signals is affected by
fading effects and noise [23,24], because of reflection by static structures, moving people and possibly
autonomous trolleys. Keeping in view these challenges, several hybrid indoor positioning systems have
been proposed [25–27] in order to achieve an improved positioning accuracy, by using the advantages
and abilities of multiple technologies. In this study, we collected and utilized the real signals of
existing WLAN and WSN access points. Our indoor localization approach adopted the fingerprinting
matching process from both WLAN and WSN signals as the basic scheme of location determination.

A pattern matching approach is classified as a deterministic algorithm [28], however the spatial
distributions of the signal intensities require the implementation of non-linear methods, such as
neural networks and heuristic optimization techniques. Though the signal strength could locally be
approximated as spatially linear, this behavior becomes untenable in the whole research area [29]. On
top of this, an Artificial Neural Network (ANN) approach guarantees robustness against noise and
interference, which are among major factors affecting the accuracy of indoor positioning systems.

In view of all these considerations, this paper contributions are listed as follows:

• To develop an optimization algorithm by investigating the relative importance of wireless signals
in the Multilayer Perceptron neural network.

• To introduce a heuristic approach for the determination of the weighting of the wireless
signals. With this fact in mind, a Quantum Particle Swarm Optimization (QPSO) algorithm
was integrated into the positioning neural network application.

• To improve the accuracy of the localization system by investigating the importance of signal
weighting based on information of largest gradient of signal intensities variation. The achieved
relative importance of the signals RSSI values will be considered for a future extension of
this work.
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This study is organized in four parts. The first section gives a brief introduction of the research area
and related work. The second presents in more detail the approach and techniques which we used in this
research. Particular attention was given to the QPSO optimization process and to the improvement of
the MLP, which was used in our previously published works. The third part of this paper presents
the results of this study, with references to the optimization of the MLP and the performance of
our proposed QPSO algorithm. The final achievement of our optimization process is presented and
compared with previous results both from literature and from the authors’ own research. Finally, the
conclusions of this work are briefly discussed and projects and ideas for future research are introduced.

2 Related Work

WiFi technology has been one of most promising solutions for indoor positioning system.
However, a major drawback of utilizing single WiFi sources consists of the deviation of signals in the
spatial space because of human presence and infrastructures. To mitigate such issues, WiFi positioning
systems have been proposed to cooperate with other wireless technologies, such as magnetic field,
inertial measurement unit and WSN.

Chen et al. [30] proposed a hybrid inertial measurement and WiFi positioning system. The data
of acceleration and angular velocity from accelerometer sensor embedded in the smartphone are
to estimate user walking steps and heading direction. A multidimensional dynamic time warping–
weighted least square algorithm is used to fuse the WiFi spatial intensities based on fingerprint
measurement and the one from accelerometer to improve the positioning accuracy.

Li et al. [31] also utilize the Inertial Measurement Unit (IMU) measurement to combine with WiFi
technology. They proposed a robustly constrained Kalman filter algorithm to track the user location
to improved previous techniques based on traditional Kalman filter algorithm.

Chen et al. [32] integrates multiple sensors including, IMU, magnetometer and WLAN RSSI
indicator to improve the accuracy of the positioning system. Chen proposed a Euclidean matching
algorithm to estimate the location based on WiFi signal. A different version of Kalman filter algo-
rithm, namely the Robust Extended Kalman filter algorithm was used to estimate the location based
on IMU sensor. Additionally, enhanced dynamic time warping algorithm is used to match the magnetic
fingerprint location based on magnetometer measurement. Although multiple sensor systems improve
the accuracy of the positioning system, the computation requires user mobile processing power to
obtain the location information which might not be feasible for real-time localization.

Luo et al. [33] proposed a joint WSN-WiFi solution for improving indoor positioning estimation.
The work considers the communication of signals from one sensor node to another sensor node as
well as between the sensor nodes to the receiver to help locating the user. The detection algorithm
considers grid-based search in order to detect the location of the user. However, the computation cost
increases as the search location increase due to increment in the number of grids to be considered.
Khan et al. [29] also proposed WSN-WiFi technique based on grid search which considers the floor
tiles spacing. The technique estimates the location of the user to be within the respective boundaries
of the specific tile location, based on an appropriately trained neural network.

This work implements a hybrid approach by means of both WSN and WiFi technologies in order
to improve the accuracy of the positioning system. The application of WSN-WiFi does not require
computation on user’s mobiles and it is capable of a real-time location estimation process. We utilize
a new algorithm based on standard QPSO optimization and we integrate this with the MLP neural
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network in order to improve the accuracy of the localization system. The detailed method, which aims
to find a set of appropriate signal weighing, is introduced in the next section.

3 Research Methodology

Due to their widespread deployments and access points availability, WLAN-based and WSN-
based technologies are gaining interest in the domain of indoor localization and positioning services.
For these purposes, information data from WLAN and WSN sources are becoming more and more
relevant to refine and improve the accuracy in indoor environments [13,17], whereas GPS signals
become unreliable and non-existent. In this work, our goal consists of implementing a refinement
of previous research, again by using a hybrid indoor positioning system in which both signals from
available WLAN access points and WSN based technologies are considered.

Nevertheless, we tackled the possibility of further improvements and optimization of our pre-
viously published results [29,34]. WLAN or WSN technologies separately suffer a set of limitations,
mainly related to the fading, reflection and lack of stability of signals. Thus, for example, a WiFi-based
technology can provide sufficient stability with respect to WSN, while the latter become more relevant
as far as fading effects are taken into consideration [35]. Moreover, the short range of WSN signal may
locally constitute an advantage in positioning accuracy due to the steeper spatial gradient of the signal
intensity. By taking into account both signals, a hybrid approach becomes more effective in improving
the accuracy in the domain of indoor localization and positioning.

Preliminary inspection of the collected data confirmed the lack of linearity of signal intensities
with respect to the relative positions inside the research area. This aspect reinforced the need to process
the data by means of a machine learning approach. On top of this aspect, experimental observations
on the data which was collected for this project showed that locally some signals presented spatial
irregularities, especially in the corners of the research space [29]. Among the possible reasons, some
considerations were discussed, like signal fading due to the distance from the opposite access points,
or the instability of some signals. For these reasons, and the shortcomings of each technology when
taken separately, we took the approach of weighting the available signals, with the aim of improving
the indoor positioning accuracy. With six signals and 96 anchor points available, the search space of
an optimal set of weights was impossible without heuristic computing. Such sort of high dimensional
optimization procedure was implemented by an approach based on a standard QPSO technique.

3.1 Signal Acquisition

In order to address the subject of an accurate indoor positioning system, the initial raw data
collection, as well as data analysis are significant for location fingerprinting. This study investigates a
collection of data which were measured as RSSI values based on an IEEE 802.11b/g wireless card. For
experimental RSS data collection, the main basement level of the Faculty of Engineering and Built
Environment at the Universiti Kebangsaan Malaysia (UKM), was used [35]. The RSS signals from
the available access points within the area were collected and recorded. While the research area was
regular in shape and did not present any obstacles, the boundaries were quite irregular, with presence of
research laboratories, furnished offices, lecture halls, structural pillars as well as of people occasionally
crossing the area.

The research area and the schedule of the data acquisition were purposely chosen in order to
reproduce normal conditions of a typical working day. This way, disturbances on the signals and their
stability, as they were received and measured, would be taken into account. A regular grid of anchor
points was selected in order to encompass the available free space in the building ground floor, and
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working hours were used, regardless of people and materials transiting the experimental area. A sketch
of the research area with boundary details and the position of the grid of anchor points are shown in
Fig. 1.

Figure 1: The sketch of the research area, with depiction of irregular boundaries, signal sources and
the grid of anchor points where signal intensities were recorded. Out of the four WSN access points,
only three could be used while one was faulty and did not provide meaningful data

For experimental RSS data collection, we selected a regular grid of 96 anchor points for the
creation of the fingerprinting database and its implementation, in an array of 6 × 16 points.
These numbers resulted from the chosen horizontal and vertical separation between anchor points,
respectively 1 and 1.5 m in the directions parallel to the main walls. The height of each anchor points
was strictly kept at the value of 1 m, in order to avoid variations of the locally measured signal
intensities and to remove the height as a possible sensitive variable. The effects of an altitude variation
were previously investigated and reported in [36].

A Lenovo G580 laptop computer with a core i5 processor and Windows 7 operating system
was used as a measurement setup. Furthermore, for the collection of RSS data samples, an Atheros
AR9285 on-board wireless adaptor, based on 802.11n) was added. For the collection and analysis
of RSS data samples, an “inSSIDer” open WiFi Scanner software was used. Some adaptations were
executed in the inSSIDer software, in order to create the log files of the measured RSS signals, with
respect to visible MAC address and the time stamp.

In each of the 96 anchor points, the signal intensities from three available WiFi and the four
installed WSN signal sources were recoded simultaneously 300 times for one minute, i.e., every 0.2 s.
However, only three signals from the WSN were considered for the database, as it was immediately clear
that one of the WSN access points was faulty and provided random, unreliable values. The average of
each set of 300 values was used to build the signal intensity database. The stability of all six available



384 CMC, 2023, vol.74, no.1

signals was checked through the standard deviation of each set, which was satisfactorily within the 5%
of the average value for all anchor points.

The acquired data were organized and saved in a matrix of 96 × 6 elements, in which the signals
intensities from each source would occupy a column of the matrix. In columns 1–3 the WiFi data were
recorded, while in columns 4–6 the WSN data would take place. For the consistency of this research
and its practical applications, it was fundamental to take note of the identification and position of each
source. While the philosophy of this work would not be affected, any practical implementation of the
proposed research would be rendered useless by any variation of the sources, as the signal intensities
at each anchor point would depend on the access points locations.

3.2 Data Analysis

The procedural scheme of the proposed optimization algorithm is based on a number of funda-
mental sections. First, data from hybrid sources were acquired and stored using fingerprinting and
RSS principles, without any particular preprocessing. Data were recorded on an as-is basis without
any analysis and without suggestions of further need of more anchor points.

The second step consisted of the creation of a mathematical model capable of reproducing the
behavior of the measured signal intensities along the 2D space of the experimental area. Due to the
features of the signal intensities, a Multilayer Perceptron (MLP) neural network was developed and
trained, in consideration of its capabilities to make models and to classify inherently non-linear data.
Through the MLP modelling of the 2D behavior of each signal, the reduction of positioning errors on
selected test points was supposedly achieved.

Finally, an optimization algorithm was developed in order to address the main subject of this
research, i.e., to investigate the possibility that an improved positioning accuracy can be achieved
through the MLP by an appropriate weighting of the raw signal intensities. When taking in con-
sideration the number of signals and anchor points altogether, it is clear that a heuristic approach
to this optimization process is required. A QPSO algorithm was chosen, due to its features of rapid
convergence to global optimal solution and its relative ease of programming, when compared to other
available optimization algorithms [37]. The scheme of the overall procedure is shown in Fig. 2.

3.3 QPSO Optimization Algorithm

The role of the QPSO in the data analysis of this research consists in searching for an appropriate
set of weights for the raw signal intensities and to feed the weighted values to the MLP. Like any
machine learning based optimization algorithm, the determination of optimal values is heuristically
performed across a multidimensional search space. In this work there are six signal intensity values,
consequently the search space becomes hexadimensional.

The QPSO algorithm [38,39] is an evolution of the standard PSO optimization process [40], which
was introduced in 1995. In the PSO optimization process, a population of candidate solutions is first
created within a multidimensional search space. Every candidate solution −→xi , also named “individual”
or “particle”, is associated to a cost value f (

−→xi ), which is evaluated according to the particular
optimization task. Each particle follows an evolution in position linked to its own best value

−→
bi and to

the overall best value −→g , which is calculated through the whole population. Each particle has its own
velocity −→vi , which changes at every iteration by adding a vector pointing towards its individual best
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position, and a vector pointing to the global best position, with random coefficients. Consequently,
the position −→xi of each particle at the following generation is governed by the equations:
−→vi (n + 1) = w−→vi (n) + c1

[−→
bi (n) − −→xi (n)

]
+ c2

[−→gi (n) − −→xi (n)
]

(1)

−→xi (n + 1) = −→xi (n) + −→vi (n + 1) (2)

where w is a predefined inertia coefficient, while c1, c2 are uniformly distributed random values,
calculated at each iteration n.

Figure 2: The flow chart of the overall proposed algorithm of the research methodology

The QPSO algorithm, first introduced in 2004, is inspired by the Quantum Mechanics concept
that every particle is associated to a wave, and the fact that, in principle, the quantum waves cover
all the search space. The classical laws of motion in Eqs. (1) and (2) need to be modified under the
consideration that the candidate solutions −→xi do not have a defined trajectory any longer. Thus, in
the same spirit of Quantum Mechanics, the position of each particle relies heavily on the generation of
random numbers. The concept of velocity is excluded in the QPSO calculation, however two attractors
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are defined and used in order to evaluate the new positions. The first is obtained from the average value−→m of the individual best positions:

−→m = 1
N

∑N

i=1

−→
bi (3)

being N the size of the population. The second attractor −→pi takes into account both the individual and
the overall best values and it is defined as:
−→pi = (c1

−→
bi + c2

−→g )/(c1 + c2) (4)

where c1, c2 are again random values and
−→
b i,

−→g share the same definition as in the PSO algorithmThe
new position of each particle is finally computed as:
−→xi (n + 1) = −→pi + k

∣∣−→m − −→xi (i)
∣∣ (5)

The parameter k is defined through an expression containing a linearly decreasing parameter β0,
whose value traditionally starts at β0 = 1 at the first generation and reaches β0 = 0.1 at the end. The
expression for k is given by:

k (n) = β0 (n) · sign (c3 − 0.5) · ln(c4) (6)

where c3, c4 are uniformly distributed random values in the interval [0, 1].

The algorithm is usually repeated a pre-defined number of times. Considering its nature, in which
the positions are evaluated by linear combination of vectors, the applicability is naturally taken into
consideration when the search space is a subset of a multidimensional set of real numbers RD. In our
research, a set of six weights, applied to raw WiFi and WSN signals, constituted the individuals in a
hexadimensional space, with the aim of improving the positioning accuracy in indoor areas.

For each set of weights −→xi , the cost function was evaluated by means of a MLP network, as the
most accurate positioning achievable by an appropriate training of the neural network.

3.4 MLP Based Localization Error Determination

An Artificial Neural Network [41] approach is justified by the consideration that the signal
variations along the research area are strongly non-linear and basically unpredictable a-priori, due to
their complexity. Because of their learning and adaptative capabilities, ANN are widely employed in
the field of indoor positioning, especially in combination with fingerprinting techniques. A commonly
used ANN architecture is the simple feedforward-backpropagation MLP approach, which makes use
of non-linear filtering functions, followed by a momentum improved gradient-descent reduction of the
regression error.

The ultimate goal of any MLP training consists of reducing the error computed on the mismatch
between the MLP output and an expected target, in a supervised learning procedure. In order to
achieve this goal, input data are split into two sets, namely the training and testing data. Both sets
consist of a list of {input vector–expected target} pairs, but only the former is used for training, while
the latter is a form of control on the quality of the training, in terms of the verification of the network
generalization vs. memorization capabilities.

In this research work, the set of six relatively weighted RSS signals Sj, measured in 96 anchor
points, formed the training set for the MLP algorithm as part of the whole optimization process. In
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order to extract the meaningful variations of the signal intensities, for each of these the average value
was first calculated and then subtracted from the raw values:

S′
j = Sj − 1

N

∑N

i=1
Sji (7)

for j = 1 to 6 and N = 96. Unlike in our previously published research [34], several outlier signal
intensities were no longer removed from the training set. No further pre-processing of the input data
was deemed necessary. However, the training targets required a normalization process, in order to
adapt them to the standard MLP outputs which fall in the range [0,1], while the actual positions
range [0,5] m in the x direction and [0, 22.5] m in the y direction. The normalization of the targets−→
Tn = [xn, yn], n = 1 . . . 96 was thus achieved by using distances in meters and setting:
−→
T ′ = 0.1 + 0.8 · 1

22.5
−→
T (8)

where
−→
T ′ are the normalized values of the targets. This rescaling guarantees that the set of normalized

targets lies in the range [0.1, 0.9], thus optimizing the performance of the training process of the MLP.

The training data is used in the standard feedforward-backpropagation learning process with the
goal of finding an appropriate set of weight matrixes Wk which best model the neural network on the
experimental data. The testing data are also matched with their respective targets, but they do not
contribute to the calculation of the MLP error and to the network training. Out of the testing output,
the positioning error is calculated and its minimum value is recorded as the result of the overall MLP
training.

In this work, all 96 experimental points were retained as training data, each consisting of a set of
six signals and two spatial coordinates. The testing data were created as a list of 20 points of coordinates−→
X test, randomly selected within the experimental area. The testing signals were calculated by means
of a standard bilinear interpolation, using the actual measured values in the vertices of the rectangle
containing each of the testing points. Fig. 3 (left) shows a typical layout of the training and testing
points within the experimental area, while Fig. 3 (right) highlights the method of calculating a signal
for a test point.

The first step of the feedforward phase of the training algorithm consists in multiplying the vector
of signals and subsequently filtering the result, thus obtaining the first hidden layer h1:

h1 = f (X · W 1) (9)

In this expression f (·) is the activation function, which expresses the non-linearity features of the
neural network. For this work, we used the standard sigmoid f (x) = (1 + e−x)−1.

Depending on the number of hidden layers, the process is repeated iteratively for each hidden layer
hk till the output layer is calculated:

hk = f (hk−1 · Wk)

out = f (hk · Wk+1)
(10)

The backpropagation phase consists in the correction of each term of the weight matrixes, with

value proportional to the partial gradient of the training error err = 1
2

∑ ∑
(out−tar)2 with respect to
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each weight term, ∂err/∂W ijk. The backpropagation process can be achieved iteratively by calculating
the virtual corrections on the hidden layers:

Δhk = hk(1 − hk)Δhk+1Wk (11)

However, the hidden layers are not actually modified, but the calculation of these variations is
necessary to evaluate the correction on the weights, which is obtained by:

ΔWk = hk+1Δhk (12)

The correction values thus achieved are multiplied by a constant λ, the learning rate, then they
are summed to the weight matrixes and the feedforward-backpropagation algorithm is repeated until
some termination condition is reached. The correction to the weight matrixes Wk usually includes an
additional term, the momentum η, which takes into account the correction at the previous training
iterations. The weight updates for the iteration n become:

W (n+1)

k = W (n)

k + λΔW (n)

k + ηΔW (n−1)

k (13)

Figure 3: (left) The layout of the anchor points (blue circles) and the test points in random positions
(black dots) within the experimental area. (right) The bilinear interpolation procedure used to infer
test signal values. The 2D interpolated value is obtained by adding the multiplied RSS signal in each
corner with the opposite area fraction

In this work we applied a refinement of the standard backpropagation process, which includes the
so-called adaptative momentum technique, or “adam” [42,43]. This procedure alters the values of the
learning rate λ and the momentum rate η according to the partial gradient values of the error function,
thus sensibly expediting the learning process. Being based on the estimation of first and second order of
the gradients Wk, it adapts the speed of the MLP error reduction by changing the value of the training
parameters separately for each weight matrix. The adaptative momentum process has the maximum
effect at the beginning of training, then its effect decreases until it reaches unchanging values. Two
constants β1 and β2 are introduced, as well as a ‘first’ and a ‘second’ set of momentum matrixes, η and
μ respectively.
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The equations for the update of first and second momenta are:

η
(n+1)

k = β1η
(n)

k + (1 − β1)�Wk

μ
(n+1)

k = β2μ
(n)

k + (1 − β2) (�Wk)
2 (14)

and the weights are updated according to the expression:

W (n+1)

k = W (n)

k − λ
(1 − βn

2 )η
(n+1)

k

(1 − βn
1 )

√
μ

(n+1)

k

(15)

3.5 Positioning Algorithm

In this research work, the positioning algorithm was built with the purpose of matching a set of
RSS signal weights to the minimum error for indoor localization. The goal is to find an optimum set of
weights for which the average distances between the measured and the inferred positions of the testing
data are reduced. In order to achieve this goal, a standard QPSO algorithm was designed with the
parameters shown in Tab. 1. The algorithm for the proposed technique was developed in Matlab and
run on a Windows-based 2.6 GHz Core i7 laptop.

Table 1: QPSO design and architecture parameters for signal weighting

Design parameters Architecture parameters

Number of individuals 12 c1 1
Number of iterations 40 c2 1.5
Number of cost
calculations

492 Initial β0 1

Initial search range [0.5 1] randomized Final β0 0.1
Total search space R

6 > 0

The QPSO algorithm, like any other heuristic optimization process, is supposed to improve the
search results by increasing the size of the population and the number of generations. However, for this
work, each cost calculation took an average of 250 s; thus, the values reported in Tab. 1 were accepted
as a good compromise between computing time and quality of the QPSO optimization capabilities. In
this work, each QPSO individual consists of a vector of six signal weights −→x . The cost of each QPSO
individual was evaluated by feeding the weighted signals X = −→x · −→S′ to the MLP instead of the plain,
unweighted signals

−→
S , with the goal of finding the lowest positioning error corresponding to the given

signal weights.

The outcome of MLP is typically heavily depending on the initial random set of training weights
Wk, thus requiring an extensive amount of MLP training runs in order to identify suitable choices of
the initial weights in order to achieve meaningful results. Moreover, the effect of the random choice
of the test points was also investigated by preliminarily performing several runs in which the positions
of the test points were kept constant and only the training weights were randomly selected at the
beginning of each run. The results of these validation runs are shown in Fig. 4, in which the distribution
of the localization errors are shown for random and constant values of the positions of test points.

Both in these validation runs and in the actual QPSO optimization algorithm, the MLP was run
1000 times in order to achieve the best performances, i.e., to identify a suitable set of weights Wk for
which the positioning error of the test population was minimum. For each training run, the profiles
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of both the training and testing positioning errors vs. the learning iteration were recorded and the
absolute minimum of the testing error identified. As it proved difficult to correlate the position of the
minimum of the test positioning error with respect to the number of iterations, a stopping criterion was
not immediately defined. In order to limit the number of iterations, and consequently the computing
time, two criteria were set, namely a value for the MLP training error or a given number of iterations,
whichever came first. A typical learning error profile is shown in Fig. 5.

The cost value for each QPSO individual was finally evaluated as the average of the best 50 out of
the 1000 MLP runs, which would correspond to a fortunate initial random choice of the Wk values.

Figure 4: The results of 1000 MLP runs with random initial weights. The blue line was obtained with
the same set of 20 initial test points, while the red line was obtained by randomly selecting 20 test
points at the beginning of each run. No meaningful difference is observed

Figure 5: The profiles of the positioning error relative to the training and testing data in a typical MLP
run. The minimum value in the testing profile was identified and returned as the positioning error for
the run

4 Results and Discussion

After the definition of the optimization procedure, by means of a QPSO algorithm, and the
technique for the calculation of the localization error, by means of a standard MLP with an adaptative
backpropagation process, the next step of this research consisted in the determination of the most
suitable MLP architecture. In general, several parameters can be identified in order to achieve an
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effective process of optimization with the QPSO algorithm and a quick training process with the MLP.
For the QPSO part, it was decided to stay with the standard parameters found in literature, namely
those reported in Tab. 1.

Multilayer Perceptron neural networks are subject to several parameters which greatly affect the
training accuracy and the computing time. In order to fine-tune the MLP used in this research, several
dry runs were performed before launching the whole optimization process, which would include many
hundred million training iterations. The number of hidden layers plays an important role in terms of
the generalization capabilities of the MLP. Consequently, the described process of taking the best 50
out of 1000 runs and inspecting the final positioning error was applied for MLPs with up to five hidden
layers. In each case, the same number of twenty units in the layers was considered and the original,
unweighted set of signals for training was used in this stage. A few tests were performed with different
numbers of hidden units in each layer, looking again for the lowest averaged error on random sets of
test points. Settling for 18 hidden units in each layer. As shown in Fig. 6 and reported in Tab. 2, the
best starting configuration for the overall optimization algorithm was achieved with a MLP network
including three hidden layers. At the same time, a number of standard parameters for a satisfactory
MLP training were defined and reported in Tab. 2.

Figure 6: The performance of the MLP training vs. the number of hidden layers. Three hidden layers
were chosen for the overall QPSO optimization algorithms as this architecture shows the best results
in terms of initial positioning accuracy

Table 2: MLP design and operational parameters

Architecture parameters Training parameters

Hidden layers 3 Learning rate η = 0.05
Hidden units 18 per layer Momenta adam values β1 = 0.9, β2 = 0.999
Activation function Logistic sigmoid Threshold train error 0.3
Training points 96 Max iterations number 3000
Test points 20 Computing time ∼26 h

The values of the learning rates and momentum coefficients, as well as the maximum number of
iterations and the threshold for the MLP training error were determined by performing many runs, by
visual inspection of profiles as in Fig. 5 and by measuring the computing time of sets of 1000 runs. The
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threshold training error err = 1
2

∑ ∑
(out − tar)2 = 0.3 and the number of 3000 cycles of feedforward-

backpropagation were chosen with the total computing time in mind, which amounted to a value
of ∼26 h, due to the sheer amount of QPSO cost evaluations, despite each training session of 3000
iterations took only 0.25 s to complete.

The QPSO optimization procedure was repeated for a total of 40 generations, each producing a
new population of 12 vectors of 6 signal weights. Thanks to the QPSO own nature, the global best
individual, i.e., the vector of signal weights producing the lowest positioning error, was recorded at
every stage of the algorithm. Each individual weights vector −→x was tested by repeating 1000 times
the MLP procedure, with the aim to estimate the positioning error. During each run out of the 1000
iterations, the actual positioning error was calculated in two steps, first by inverting Eq. (8) on the
output of the feedforward phase for the test population, during MLP training:

−→pos =
−→
out − 0.1

0.8
· 22.5 (16)

where the actual position values −→pos are expressed in meters. Next, the localization error was calculated
by taking into account the lowest 50 error values out of the 1000 repeated MLP training runs.
These error values Perr were obtained using the coordinates of the test points

−→
X test and evaluating

the Euclidean distance between the inferred test output and the actual test positions:

Perr =
〈∥∥∥−→pos − −→

X test

∥∥∥
〉

(17)

where the average was calculated across the 20 test points.

For each QPSO generation, the best vector of signal weights was recorded as an integral part of
the optimization algorithm. Among the 12 individuals, the global best was retained and recorded as
being the partial performance of the optimization procedure. The value of the resulting positioning
error as a function of the QPSO iteration number is shown in Fig. 7.

Figure 7: The overall performance of the QPSO algorithm in terms of the positioning error reduction.
The final value of 0.725 m was achieved by heuristically searching for appropriate values of the weights
of the experimental signals

The initial value of 0.81 m matches the positioning error found for three hidden layers in the tune-
up stage of this process, as shown in Fig. 6. The optimization algorithm immediately produced a sharp
decrease of the positioning error in the very few initial QPSO generations. The overall behavior of the
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positioning error, as reported in in Fig. 7, shows that, after a steep decrease, no further improvement
is achieved in the second half of the optimization process.

The set of six signal weights −→x best which corresponds to the lowest positioning error is then
obtained at the end of the QPSO procedure. The values are:
−→x best = [0.2706 0.3076 0.4223 0.5474 0.5317 1] (18)

These values were rescaled so that the highest weight was set to be equal to 1, for ease of
comparison. Several further rounds of 1000 iterations were performed in order to verify the consistency
of the achieved results, and each time the MLP provided a positioning error on the test data very close
to the QPSO final value. As expected, the rescaling of the signal weights would not alter the final MLP
output, as the first weight matrix of the MLP would adapt, during training, to the relative proportions
of the signals. The lowest value of the positioning error, achieved by considering the test population,
equals to 0.725 m. By inspecting the final values of the signal weights in Eq. (18), it is remarkable how
signal #6 is significantly more relevant with respect to the others, as its weight is higher by a factor of
two or more. The investigation of this discrepancy goes beyond the scope of this paper; however, the
precision of the proposed optimization process was evaluated by taking into consideration the signal
weights which corresponded to the 10 overall lowest positioning errors which were recorded after the
last QPSO generation. Each set of six weights was rescaled with respect to its highest value, which was
in all cases signal #6. The results are shown in Fig. 8.

Figure 8: The weights of the six signals corresponding to the lowest 10 values of the positioning errors of
the test population. In red, the overall best signal weights are highlighted. In this graph, the positioning
error range is [0.725–0.744]

It can be observed that the distribution of the values for each signal weight is fairly contained
within a limited range, rather than being spread all over the QPSO search space and beyond. In all
cases, signal #6 is by far the most relevant in the role of indoor positioning by RSS and fingerprinting
technique and consequently all values were rescaled with respect to this signal. In general, the weights
of signals 4–6, which are coming from the WSN sources, are proportionally higher with respect to the
signals 1–3 which are generated by the WiFi sources. The reason of this behavior might be linked to
the fact that WSN signals are shorter ranged than WiFi signals and consequently produce a larger
spatial intensity gradient. It is possible that this feature generates a higher positioning accuracy, and
it should be considered as a subject of further investigation.
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The Cumulative Distribution Function (CDF) is represented in Fig. 9, for three scenarios of
optimally trained neural networks. The graphs were obtained by including all the positioning errors
of the 20 test points separately for the 50 best MLP runs out of 1000. Each distribution includes the
positioning error of 1000 test points, showing occasional values around 20 cm or above 3 m. However,
the results reported in this work are evaluated on the averages of the 1000 experimental data. The
increase from one to three hidden layers for unweighted signals provided a marginal improvement,
which was anyway retained in building the architecture of the MLP for the QPSO optimization. On
the other hand, the effects of the signals weighting are outstanding when the optimal values, reported
in Eq. (18), are considered. An improvement of approximately 30% in the positioning accuracy, for
equivalent percentiles of the CDF, is observed on the weighted signals with respect to the raw ones,
with the same three-layer MLP architecture.

Figure 9: The CDF distribution for three different scenarios. A comparison is presented between the
results with unweighted signals with 1 hidden layer, three hidden layers and the final configuration
with three hidden layers and the best signal weights

A comparison of the results achieved in this research with a selection of relevant previously
published location average errors is presented in Tab. 3. Our previous work, based on the same raw
data, is included together with other benchmark results available in literature, showing a remarkable
reduction in the positioning incertitude.

Table 3: A comparison of our achieved results with previously published research

Reference Chosen approach and
implementation

Research area and
anchor points (AP)

Error

Ficco et al. [25] Source selection, WiFi +
Bluetooth

20 m × 21 m, 26 AP >4 m

Jiang [28] K-NN modelling, WiFi + RSS 15 m × 40 m, 100 AP 1.70 m
Xiong et al. [44] Particle filter, WiFi + RFID 25 m × 12 m, 80 AP 1.60 m
Chen et al. [30] Optimization, IMU + WLAN 90 m path, 113 AP 1.48 m
Farid et al. (same dataset) [34] MLP modelling, WiFi + WSN 6 m × 24 m, 96 AP 1.22 m
Khan et al. (same dataset) [29] Tessellation, WiFi + WSN 6 m × 24 m, 96 AP 1.01 m
This research Optimization, WiFi + WSN 6 m × 24 m, 96 AP 0.725 m
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5 Conclusions

This paper illustrates a QPSO optimization algorithm for an indoor positioning system based
on hybrid raw RSS signals. The proposed system is centered on the strength and intensity of the
received signals obtained from a set of locations used for experiments. The idea of achieving an
enhanced localization accuracy by successfully explored by implementing the concept of weighting
of the received signals. A Multilayer Perceptron neural network was developed in order to predict
a heuristically optimum positioning error for each QPSO individual. An accurate choice of MLP
parameters was preliminarily studied as a further improvement of the performance of the overall
algorithm. As a noteworthy particular, a three hidden layers MLP architecture was identified as an
optimal starting point with the positioning accuracy in mind. The QPSO optimization results of the
proposed system provided a final set of weights to be applied to the raw input signals in order to
minimize the positioning error of our algorithm. In particular, a comparison was drawn with our
previously published results on the same set of data. Our final achieved localization accuracy was
0.725 m, which constitutes an improvement of at least 20% with respect to our previous results on the
same dataset.

On top of these algorithmic achieved results, our hybrid indoor positioning approach provides
advantages in term of decreased cost, easy access to RSS signals and easy expandability to large areas,
in order to further test the performance and robustness of the overall procedure.

As future work, the positioning accuracy might be investigated by changing the size of the
experimental area as well as changing the distances between anchor points. Computing time being
a sensible limiting factor of this research, the QPSO approach in terms of total number of individuals
can be improved with the availability of more powerful hardware.

The relative importance of the RSS signals was established by the fairly compact distributions of
the weights of each signal. This observation will surely be considered as a starting point for further
investigation, as little analysis was performed on the spatial distribution of the signals.
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