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Abstract: As the amount of data continues to grow rapidly, the variety of
data produced by applications is becoming more affluent than ever. Cloud
computing is the best technology evolving today to provide multi-services for
the mass and variety of data. The cloud computing features are capable of
processing, managing, and storing all sorts of data. Although data is stored
in many high-end nodes, either in the same data centers or across many data
centers in cloud, performance issues are still inevitable. The cloud replication
strategy is one of best solutions to address risk of performance degradation in
the cloud environment. The real challenge here is developing the right data
replication strategy with minimal data movement that guarantees efficient
network usage, low fault tolerance, and minimal replication frequency. The
key problem discussed in this research is inefficient network usage discovered
during selecting a suitable data center to store replica copies induced by
inadequate data center selection criteria. Hence, to mitigate the issue, we
proposed Replication Strategy with a comprehensive Data Center Selection
Method (RS-DCSM), which can determine the appropriate data center to
place replicas by considering three key factors: Popularity, space availability,
and centrality. The proposed RS-DCSM was simulated using CloudSim and
the results proved that data movement between data centers is significantly
reduced by 14% reduction in overall replication frequency and 20% decrement
in network usage, which outperformed the current replication strategy, known
as Dynamic Popularity aware Replication Strategy (DPRS) algorithm.

Keywords: Cloud computing; data replication; replica placement; data center
merits; replication algorithm

1 Introduction

The worldwide shared mass data consists of a broad range of ambiguities of data types from
various digital platforms [1–4]. As the data is high in volume, it demands high storage to keep all the
data safe. Therefore, cloud computing is the best choice in the current state of the art to facilitate mass
space to store bulk data [5,6]. Cloud providers are vibrant, resilient and the most favored for users
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across the globe, as they offer multiple services, including Platform as a Service (PaaS), Software as a
Service (SaaS), Quality as a Service (CaaS), and Infrastructure as a Service (IaaS) [7–11].

Cloud computing is not exempted from facing problems in providing consumers with a high
availability data service without data sensitivity disadvantages as a secure multiple service provider
[12–14]. As a result, a data management strategy is required to offer high data availability and efficient
access for every user. Dynamic data replication, which stores several replicas at different data centers
to improve system load balancing, is a promising solution for addressing this issue [15–18].

Data replication in the cloud environment is described as making multiple physical copies for
each logical data object and locating replica copies in different locations or storage nodes [18–20].
Depending on the cloud replication goals, there are many ways to implement data replication in a
cloud replication system environment. The respective goals have their disadvantages, which often
degrade performance [21,22]. Finding the best data center to keep safe replicas is crucial for the
replication process since it calculates essential variables when determining the best data center to
store replica copies. Several strategies devised by researchers have been established to ensure that
a good location for replica copies is determined. Hence, the most conversed issues among existing
research work as a tough challenge in cloud replication environment are not limited to ineffective
network usage, high replication frequency, high fault tolerance, extensive storage consumptions, and
many more. Therefore, to overcome such performance issues, an established and systematic replication
strategy must be created. Cloud providers will be able to provide enhanced performance to consumers
with more significant data availability, quicker response time, low fault tolerance, decreased storage
consumption and effective network usage with the requisite replication strategy [19,23,24]. The main
contributions of this research work are:

a. To study the current data center selection methods and identifies the research gaps for cloud
replication environments.

b. To propose Replication Strategy with Data Center Selection Method (RS-DCSM) to resolve
inefficient network usage and minimize replication frequencies while identifying suitable data
centers to replica copies.

The remainder of this paper has been structured as follows: Section 2 discusses the related works
on replication strategies and data center selections in the cloud environment. Section 3 presents a
detailed explanation of the proposed model, system architecture, parameters and configurations.
Section 4 offers results and discussions of the experiments. Finally, Section 5 concludes the work and
presents the future directions.

2 Related Works

Globally, data replication in the environment is evolving as an explicit data management technique
in the cloud environment [25]. In data replication environments, there are two (2) common mechanisms
for replication strategies. First of all, static replication is a predefined strategy for particular replica
environments and is very easy to implement, but this strategy typically does not adapt to every
environment [26,27]. The second mechanism is dynamic replication, known as agile replication
strategies, where the algorithm can efficiently create and remove any replicas depending on the access
trends of system users [19,28].
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2.1 Static Replication

The static replication mechanism is recognized as a simple structure, yet often unfavored and
not suitable to be adapted in complex cloud replication systems. However, despite the disadvantages
of static replication approaches, many researchers have still accomplished their works by adapting
static replication strategies [26]. The Multi-Objective Replication Management (MORM) algorithm
was proposed to achieve multiple research objectives such as latency, data availability, service time,
energy-saving for data centers and load balancing in [29] development work. The weakness discovered
in MORM is when files arrive in batch patterns to be placed in storages. The algorithm must calculate
and decide the needs of new replica placements based on previously allocated files, but the algorithm
capability was limited by the static replication mechanism implemented in the architecture. Therefore,
due to the static method limitations, this study has disadvantages of low data accessibility, high
execution time, high replication cost and low reliability because it does not dynamically assign replicas
based on current device needs.

Another research-adapted static replication mechanism is the MinCopySet algorithm. A fixed
number of replicas are determined to achieve their target for faster response time and high data
durability in this study. This strategy has practically improvised data resilience and reduced network
latency. The limitation found in this algorithm is the over-use of such replicas due to replica placement
in the same storage nodes, resulting in high energy consumption and poor data reliability [30].

Similarly, [31] employed a static approach to achieving load balancing between fixed replicas in
their proposed Google File System (GFS) algorithms. The researcher could minimize the response
time, but there were some drawbacks to the replica placement process in their approaches. By creating
specific replicas for all files and placed at appropriate locations, the researcher attained the study goals.
Subsequently, as the number of replicas for all files is pre-determined, regardless of the user access
pattern, the implications faced by this research work are increases in energy consumption and high
storage consumption.

2.2 Dynamic Replication

Many researchers and practitioners in different cloud environments such as; grid, cloud, edge and
fog computing environments have widely adopted the dynamic replication mechanism due to its ability
to handle data replication intelligently flexibly based on system users accessing patterns [32–34].

Relatively, [33] researchers have developed a popularity-aware multi-failure resilient and cost-
effective replication (PMCR) algorithm with an identical strategy as PRCR to store replica copies
into primary and backup tiers by splitting cloud storage. The goal is to increase data resilience in
cloud storage, allowing the PMCR algorithm to distinguish hot, warm and cold data based on its
popularity. The goal was accomplished in the study, yet the researcher has to accept process overheads
that indirectly affect the response time due to the algorithm’s multiple splitting activities.

Recently, researchers [24] proposed a dynamic replication algorithm, namely Hierarchical Data
Replication Strategy (HDRS). Based on the prediction of subsequent access statistics for data files in
the cloud, HDRS may detect popular files and replicate the replicas to the optimum location utilizing
network-level locality. HDRS triggers the placement approach; otherwise, the replacement technique
is used for storage clearance. According to the researchers, the HDRS successfully lowered response
time, bandwidth, and latency. However, one of the study’s flaws is the long replication time. The
placement strategy’s replication process overheads were influenced by a multi-hierarchy verification
process, which the researcher ignored.
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Researcher [35] focused their study on addressing the reliability issues of data storing by cloud
providers using the dynamic replication approach. This study proposed integrated Location-Aware
Storage Technique (LAST) into the open-source Hadoop Distributed File System (HDFS) called
LAST-HDFS algorithm. The algorithm works as a monitoring manager, detects illegal data transfers
in the cloud, and enables storage location of file moved during migration and replication process in a
cloud environment. The research was successfully attained high security and privacy on the placement
of migrated and replicated data in clouds. On the other hand, the disadvantages of this research lead
to increased costs due to sophisticated security features. Additionally, this study also suffers from high
network usage because the location monitoring and detection functions require data collection in real-
time based.

2.3 Data Replications with Data Center Selection Methods

Data replications consist of many sub-strategies, techniques, methods, and algorithms that are
coherently supported to establish comprehensive cloud replication strategies. Generally, there are 3
main phases under data replication: identifying popular data, determining the number of replicas, and
placing replica copies. Numerous researchers have done great work to establish various algorithms to
fulfil the requirement for respective data replication phases [36].

Researchers often incorporate data center selection approach into the data placement process
in almost every replication strategy. In fact, the method is a distinct and huge part of the replication
process, whereby critical factors are decided when selecting suitable data centers to store replica copies.
Usually, proposed factors or parameters directly affect performance enhancement, and most of them
focus on decreasing network usage and replication frequencies in cloud replication environments [37].

In 2016, Mansouri proposed Adaptive Data Replication Strategy (ADRS) in a cloud environment.
ADRS deployed a data center selection criteria method by considering five (5) significant parameters;
storage usage, load variance, latency, mean service time and failure probability. The cost function was
calculated using stated parameters to retrieve fitness values for every data center known as sites in this
research work. Reference [38] designed ADRS to choose the lowest cost function to be selected data
center to store newly generated replicas. ADRS improvised a few performances, which are hit ratio
and network usage. However, replication time is not considered in their measurement, impacted by
the tedious computation and replication process completions.

Dynamic Popularity aware Replication Strategy (DPRS) proposed by [39]. The frequency of file
requests, storage availability, and data center distances are used in their algorithm to pick the optimal
data center. The weightage idea is used to compute merit in data centers, where system administrator
interaction is required to define necessary weights based on system goals. With the parallel download
idea and the proposed data center selection method, DPRS achieved efficient network consumption
and reduced replication frequency. On the other hand, the researcher ignored fault tolerance, which
could have been caused by inaccessible sites due to the elevated traffic. The system will therefore suffer
from data loss as well as a long response time.

Researcher [15] achieved a similar aim through developing a systematic algorithm called Cost
Function based on the Analytical Hierarchy Method for Data Replication Strategy (CF-AHP). In
order to decide the best data center candidates to position newly created replicas, CF-AHP as multi-
criteria optimization model was adapted to reduces energy consumption in data centers. The data
center selection criterion consists of; mean service time, access rate, latency, load variance and storage
usage. Despite achieving its goals, the researcher is unaware of the effect on the central database that
during the replication process experiences a high update rate.
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Researchers [35] proposed DMDR in their research, which ingested data center selection criterion
to select the best data center in the cloud replication environment. This study enhanced storage
utilization through introducing two (2) criteria in data center selection method; most central and
number of accesses. This algorithm considers centrality to minimize data retrieval time, which will
pick the most central data center as the best data center. In DMDR, an accumulation using proximity
formulation was adapted (Newman, 2009), so the lowest value of distance summation will be selected
as the most centralized data center. Additionally, computation on a greater number of access is counted
to find a data center with the highest demand for a candidate file. Researchers sought to reduce the
use of the network during file retrieval by adding this data center criterion. Conversely, the proposed
criterion is not sufficiently faultless, resulting in system performance deterioration caused by high
replication time.

Unlike other researchers, [40] proposed different ideology to place replica in data centers. Rather
than using multiple data selection factors to determine the best data center, the researcher adapted
static data placement paradigm to fit user access frequency patterns in social media and identifies an
appropriate data center to place replica. The researcher emphasized that data placement as a dynamic
problem solution and suggest an approach in social networks such as Facebook to address optimized
data placement with tolerable latency and incurring minimal service costs. In the resolution, user access
data are collected according to friends’ connections and duration of communications. A replica access
table is generated to record the frequency and every data center according to connections occurrences.
The nearest data center for individual friends is identified to place the data to ensure latencies and
replica creations are reduced concurrently. Thus, the researcher attained optimized data placement and
reduced the monetary need to maintain the cloud’s replication environment. However, the drawbacks
yet found at high replication time to replicate data into storages due to data travels in long networks
to verify replica placement requirements.

Researcher [41] recently developed a dynamic replication technique for addressing massive data
movement around cloud data centers. The author suggested BDS+, a Bandwidth Dynamic Separa-
tion method for inter-data center data replication. The method attempts to improve data transfer
performance by adjusting dynamic bandwidth separation, ensuring bandwidth allocation for online
traffic by calculating traffic demand, and rescheduling bulk-data transfers for offline data services.
It employs centralized architecture and application-level multicast on the network, with the central
controller managing intermediate server data transmission. The study does not employ any specific
selection methods to find the optimal data center, but it does appoint a manager to shift replicas to
the proper storage using online and offline scheduling. The researcher successfully reduced bandwidth
use, however, he failed to account for the long replication time. The technique takes longer to sort the
traffic schedule than it does to start the replication process.

Recent research has introduced a bio-based Multi-Objective Particle Swarm Optimization (MO-
PSO) and Ant Colony Optimization (MO-ACO). The researcher developed a novel intelligent
approach for dynamic data replication in a cloud environment [27]. The first MO-PSO to select replica
depends on the most requested by users. At the same time, MO-ACO was used to decide the best data
center to store replica copies through comparing individual data centers based on shortest distance,
data center with high access, storage capacity, output, and data center with a large number of hosts
and virtual machines. The study achieved better replication costs by accelerating the response time
and replication time also succeeded in enhancing network usage efficiency. However, the drawbacks
overlooked by the researcher is the bio-based algorithms caused process time overheads and high
replication frequencies.
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The data center selection methods are holistically crucial to the cloud replication process. The
methods developed have similar objectives to determine the best data center before replicas are stored.
In order to ensure effective network usage and low replication frequency are achieved that eventually
increase overall replication, a precise method with essential factors should be considered, which
ultimately enhances overall replication performance in cloud replication environments. The detailed
summary for each study in this subsection is shared in Tab. 1.

Table 1: Summary of related works

Article Algorithm Advantages Limitations

[15] Analytical Hierarchy Method for
Data Replication Strategy
(CF-AHP)

• Low energy consumption • High response time
• High update rate

[27] Multi-Objective Particle Swarm
Optimization (MO-PSO) and
Ant Colony Optimization
(MO-ACO)

• Efficient network usage
• Low response time
• Low replication time

• High replication
frequency
• High process time

[35] Data Mining-based Data
Replication (DMDR)

• Efficient network usage • High replication
frequency

[38] Adaptive Data Replication
Strategy (ADRS)

• High hit ratio
• Efficient network usage

• High replication
time
• Low data
availability

[39] Dynamic Popularity aware
Replication Strategy (DPRS)

• Efficient network usage
• Low replication frequency

• Low fault tolerance
• High traffic queue

[40] Cost-effective dynamic data
placement for efficient access of
social networks

• Low latency
• Low storage usage

• High network
usage

[41] Bandwidth Dynamic Separation
method for inter-data center data
replication (BDS+)

• Efficient network usage • High process time
• High replication
frequency

3 Replication Strategy with Data Center Selection Method (RS-DCSM)

A non-comprehensive replica positioning method would result in an access skew whereby some of
the data centers are heavily utilized, but some are idle. This scenario can lead to network congestions
and cloud storage inconsistencies, leading to other performance degradation. The contributing factors
for the high network consumptions in cloud environments are usually due to inefficient replication
strategy, which can be consequence explicitly by inadequate data center selection method to place
new replicas [24,39,42,43]. On the other hand, when replicas are successfully placed in appropriate
data centers, efficient network usage, high fault tolerance, high data availability, and low replication
frequency are achievable, ultimately providing better performance in a cloud replication environment.

Essential factors are crucial for determining and considering when new replicas are ready to
be saved in storage. Consequently, the best-defined data center and replica allocation will result in
minimal data movements. The reduced movements are because during replica copies are required for
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rapid file recovery, the data center selection method provides faster replica accessibility for downloads
in the most appropriate data center. Similarly, in the proposed RS-DCSM, we considered several
substantial factors before choosing the appropriate data center to place the replica copies in storage
nodes.

3.1 System Architecture

The overall system architecture was created the same way as the other work by [39]. We selected
[39] to compare the competence of our proposed RS-DCSM because it achieved various goals and
improved numerous performance measures in cloud replication, including reducing network usage
and minimize replication frequency. Technically, [39] used architecture as Fig. 1 where clusters, data
centers, Global Replica Manager (GRM), and a Local Replica Manager (LRM) are part of the system
architecture. The GRM is the broker of the system, located in the cloud’s center and connected to other
nodes by several routers and connections. The experiment architecture comprises multiple clusters
interconnected to individual storage by a few data centers.

Figure 1: System Architecture

The specification of every node in Fig. 1 is summarized in Tab. 2. The simulation environment in
this research work was configured using CloudSim and the parameters used to establish the simulation
environment presented as in Tab. 2.

Table 2: Parameters

Parameters Values

Total number of clusters 10
Total number of nodes 100
Numbers of nodes within the same clusters 10
Number of different files 200
Size of each file From 1 to 20 (GB)
Storage size for every cluster nodes 60 (GB)
Number of files accessed by a job 3–10

(Continued)
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Table 2: Continued
Parameters Values

Round length 100
Number of intermediate nodes between two nodes in the same
cluster

1

Number of intermediate nodes between two successive cluster 3
Inter-Router bandwidth 10 (Gbps)
Router–to-Site bandwidth 2.5 (Gbps)
User-to-Router bandwidth 100 (Gbps)
GRM-to-Router bandwidth 2.5 (Gbps)
LRM-to-Router bandwidth 1 (Gpbs)
The Duration of round (Td) 1000 (s)
W1, W2, W3 1/3

3.2 Data Center Selection

Every standard replication environment has a central manager to manage the entire replication
architecture. As for this research work, the manager is known as GRM, as in Fig. 1. In this research
work, we assume candidate files for replication are ready in a selection list and recognized as
Most Popular File, (MPFi ). Therefore, GRM is responsible for receiving the list of MPFi from LRM.

Subsequently, the GRM, as a central unit in this system architecture, responsible for identifying
MPFi for individual clusters, Cj where j is cluster index j = {1, 2, . . . n}. GRM will proceed to verify
the existence of MPFi in the requesting cluster. After GRM verifies the MPFi is not existing in the
requesting Cluster

(
Cj

)
, GRM will send the replication file to the desired storage node.

Prior to that replication process, the RS-DCSM algorithm is initialized to select the most
appropriate data center to place replica copies in storage. Therefore, RS-DCSM starts to identify data
center merits ( ) which, is known as selection criteria for each data center (DCx)x is data center index
where x = {1, 2, . . . w} in Cj.

Three (3) factors must be computed to derive the primary equation for the RS-DCSM algorithm;
User Merit, Storage Merit, and Centrality Merit. The individual factors recognized as selections

criteria that acquire separate functions to calculate the merits values for every DCx in the requesting
Cj. The calculation is to ensure an accurate data center merit, is identified to select the best DCx to
place each MPFi replica. The best or appropriate data center is identified to have the highest value of .
The criteria of data center selection are, User Merit (μ), Storage Merit (σ ) and Centrality Merit (λ).
All three (3) criteria values are diverse in scale; hence, it is necessary to normalize their values into a
scale between 0–1. Eventually, the final values of the is attainable. In this research architecture, the
RS-DCSM algorithm resides in GRM, and the algorithm’s main process is handled between GRM
and LRM.

3.2.1 Selection Criteria

The discussion on the proposed criteria and the calculation for individual factors in merit values
are as follows:

a. Accumulation of User Merit, (μ)
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The μ is calculated based on a total file accessed (
∑

F̂) in each DCx regardless of file name
or Id. The greater number of files (Fi) accessed or requested in DCx resulting in a higher value for∑

F̂ which, is indicating the data center is popular. Therefore, chances of the same data center will
be accessed near future for MPFi downloads are highly possible. Authors of [24] and [44] stated the
cruciality of considering geographical locality in a replication environment whereby when a file was
accessed recently in a particular storage node, local nearby data centers have a high possibility of being
re-accessed. The researchers undoubtedly agreed that placing replica copies in the data center with a
high frequency of specific files (popular candidate file) is ineffective, instead, it is more recommended
to place popular files in the popular data center.

Therefore, knowing the advantage, we proposed placing a file, MPFi at the active data center with
high user access rate. Therefore, a cumulative calculation on file access time is necessary to identify the
best site with the highest value of User Merit, μ. Hence, in this research work, RS-DCSM is designed
to choose data center with the greatest number of

∑
F̂ as one of the criteria to place replica copies

using Eq. (1);

μ =
∑

F̂ in Data Center, DCx (1)

In Eq. (1), μ is the total file access
(∑

F̂
)

for individual DCx where x is data center index; x =
{1, 2, . . . w}. In order to retrieve accurate values, μ is calculated in a separated function for every

DCx, in Cj.

b. Accumulation of Storage Merit, (σ )

Availability of more space in storage gives higher opportunities for the data center to be chosen
as the best candidate for replica storage [45–51]. Consequently, Storage merit accumulation in this
research is to identify available storage space in each DCx. The available storage in individual data
centers, is computed using Eq. (2).

σ =
∑

AvailableSpace∑
Space

in DCx (2)
∑

AvailableSpace denotes total free storage space, divided by
∑

Space referring to the total
storage space allocated in every data center, DCx at cluster, Cj.

c. Accumulation of Centrality Merit, (λ)

Centrality Merit, (λ) is accumulated through the summation of another two (2) sub-criteria.

i. Closeness Centrality, (CC)

As the first sub-criteria, this RS-DCSM identifies data center which has the shortest average
distance from one data center, DCx to other data centers in the same requesting Cj. This criterion
is commonly used in choosing the best data center in almost every replication strategies known as CC
[52,53]. The CC is computed by RS-DCSM using Eq. (3.1)

CC(x) = 1
(∑

d(x, y)∑
dissj

)
(3.1)

∑
d (x, y) denotes the total distance from one data center (x), to another data center (y), divided

by
∑

dissj referring to total distances of all data center distances in the same Cj. In Eq. (3.1), the data
center centrality is obtained from the complement of summation of distance values.

ii. Degree of Centrality, (DCen)



424 CMC, 2023, vol.74, no.1

The second sub-criteria is DCen referring to a data center with a high number of connectivity or
alternative network path to other data centers in the same requesting Cj [54]. DCen is very practical
to be adopted in selecting appropriate storage node to place replica copies. It is because in order to
address any fault tolerance issues in the cluster environment DCen, capable to select another network
route to retrieve replica copies during having any traffic bottleneck or server interruption issues
in particular data center [54,55]. Adopting DCen provides greater advantage to access information
and the reliability even better compared to those data centers that have fewer connections [54,55].
Therefore, the DCen, in this research work is computed by the RS-DCSM algorithm using Eq. (3.2).

DCen (x) =
∑

NumOfConnections (3.2)

In Eq. (3.2), degree of centrality for a data center (x), DCen (x) is directly obtained through
calculating the total number of connections,

∑
NumOfConnections available for every data center (x).

Considering all the benefits gained through integrating both sub-criteria, λ is calculated using
Eq. (4).

λ = CC (x) + DCen (x) (4)

Finally, three (3) main merits criteria were explained in previous paragraphs. The third cri-
teria, which consist of another two (2) sub-criteria, are described in detail. Therefore, eventually,
DataCenter Merit; is derived, and the RS-DCSM algorithm is obligated to this primary equation as
Eq. (5). obtained for respective data centers are normalized to scale between 0–1.

= μ + σ + λ (5)

3.2.2 Determination of Data Center

The replication process will proceed after RS-DCSM identifies merit values as in Eq. (5) for
individual data centers (x) in the cluster Cj. The obtained values are further sorted in descending
order by LRM subsequently stored as Setaj and the Setaj passed to GRM. The GRM will choose N
best data centers with the greatest values from Setaj and save them as Setbj. The number N refers to
the number of data centers that allow parallel downloads for MPFi. Subsequently, GRM will segment
one MPFi into N data centers using Eq. (6). File fragmentation is calculated using Eq. (6), determining
how much a file size can be chunked before delivering to N data centers.

A system administrator determines the N based on their system requirements. On a single MPFi a
higher number of N will result in more segments. The calculated values will be organized in descending
order and enlisted in Setbj for the selection of the best data centers. The Setbj is made up of elements
that will be used to admit segments from the MPFi file. The file fragmentation formula adopted from
[39] and calculated as Eq. (6).

Fragmentation, Ni [t] = Setb [t]
N∑

t=1

Setb [t]
(6)

where Ni [t] denotes list that includes the fragmentation percentages of MPFi to be distributed into
N data centers and t represents the item index in the Setbj. Therefore, respective fragmented file,
MPFi will be sent for replication process and stored in the appropriate data center to enable parallel
downloads.
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Instead of randomly examining fundamental factors in choosing an acceptable data center to
store the replica, the criteria in the RS-DCSM algorithm are meticulously calculated from multiple
significant perspectives. Despite this, the RS-DCSM algorithm is successful at reducing network
utilization while maintaining replication frequency. The improved replication performance is due to
its ability to dynamically locate replicas in the most strategic location without sacrificing the ability
to choose the best data center using the proposed RS-DCSM’s proposed multi-criteria. Therefore,
the proposed data center selection method (RS-DCSM) with all three (3) criteria; User Merit, (μ)
StorageMerit, (σ ) and CentralityMerit, (λ) is presented in Algorithm 1 and the RS-DCSM Flowchart
is shared in Fig. 2 for better understanding on the process.

Algorithm 1: RS-DCSM
1. //List that contains the File Access
2. Cj ∃

{
F̂DC1, F̂DC2, . . . F̂DCx

}
// F̂ = Total File Access in DCx

3. INPUT: Selected ClusterCj; //At GRM
4. For All Most Popular File, MPFi ; { //, MPFi is list of candidate file for replication
5. For every Data Center, DCx in Cluster, Cj Do; { //At LRM
6. Apply Data Center Selection Method (RS − DCSM);
7. //Function UserMerit, μ

8. f (μ) = Total File Access,
∑

F̂ , in DataCenter, DCx;
9. //Function StorageMerit, σ

10. f (σ ) =
∑

AvailableSpace∑
Space

in DataCenter, DCx;

11. //Function CentralityMerit, λ
12. f (λ) = ClosenessCentrality, CC (x) + DegreeCentrality, DCen (x) ;
13. //LRM Calculate DataCenter Merit, ;
14. DataCenter Merit, = μ + σ + λ;
15. Sort DataCenter Merit, in Descending Order;
16. Store sorted as Setaj; } //Setaj is return to GRM
17. Select N best DC from Setaj; //Best DC = Higher DC Merit value
18. Store N DCs as Setbj;

19. Replica Fragmentation, Ni [t] = Setb [t]∑N

t=1 Setb [t]
for Setbj;

20. // Fragmentized MPFi sent to N DCs for replication
21. // MPFi replication completed
22. End.}

4 Results and Discussions

The capability of RS-DCSM is proved through conducting few experiments to measure improve-
ments in cloud replication performances. Similar to the benchmark study by [39], this research work
selects two (2) best data centers; N is fixed to 2, where the selected data centers are listed in Setb. There
are two (2), performance metrics was measured to perceive the enhancements of proposed RS-DCSM
as below.
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Figure 2: RS-DCSM Flowchart

4.1 Effective Network Usage (ENU)

This study measures Effective Network Usage (ENU) to demonstrate the RS-DCSM algorithm’s
competence to provide further performance while using fewer network resources. The ENU formula
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has been adopted from [39] as Eq. (7).

ENU = Nrfa + Nfa

Nlfa

(7)

Nrfa in Eq. (7) indicates the number of access times that site reads a file from a remote site (N is
number, r is remote, f is file and a is access) which the obtained value is added to the total number
of file replication operation referred as Nfa (N is number, f is file and a is access) and divided by Nlfa

denoted as a number of times that site reads a file locally (N is number, l is local, f is file, and a is
access). The ENU calculation is normalized to a scale between 0 and 1.

4.2 Replication Frequency (RF)

The number of replications for each data access in a replication environment is measured by
Replication Frequency (RF). The lower the value, the more efficient the methods for allocating replicas
in storage nodes. The ratio of replication to the frequency of data access is measured by adopting
formula from author [39] as Eq. (8) below:

RF = Frequency of Replication : Frequency of Data Access (8)

The Frequency of Replication in Eq. (8) denotes the number of replications accomplished in the
entire simulation, and Frequency of Data Access is referring to the number of data access in the
replication system. This parameter is used to determine how many replications are necessary for each
data access. As a result, the lower the replication frequency, the better the method introduced, which
can reduce heavy network demand and demonstrate appropriate replicas available locally.

Few job iterations were used in the experiments: 100, 300, 500, 700, 900, and 1100 jobs per round.
Results for efficient network utilization (ENU) acquired from tests conceived of random file sizes on
a scale of 100 Mb to 10,000 Mb are presented in Fig. 3a in this section.
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Figure 3: (a) and (b): Network Usage vs. File Sizes

Fig. 3a presents a bar chart for both RS-DCSM and DPRS algorithm results. Eq. (7) is applied to
measure network usage in this experiment. As observed in the bar chart, an average of 20% decrement
in network usage was obtained by RS-DCSM than the DPRS algorithm which shows better efficient of
the network usage. Specifically, DPRS got 0.44 network usage while RS-DCSM used a lower network
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with only 0.35. The findings provide strong support for the proposed RS-DCSM, which aims to reduce
network load by directing created replicas to the most appropriate sites. As a result, RS-DCSM has
the lower ENU result due to its capability to obtain relevant data files locally rather than regularly
acquiring replicas from remote sites. DPRS, on the other hand, used more bandwidth since it ignored
some of the essential criteria, such as temporal locality. DPRS says that their technique assigns replicas
among all sites, but they failed to consider the repercussions of resource waste. The waste is because
some data centers have high data access and can request popular files rather than allocating the replica
to the data center with the high request for single files, which is not particularly popular among users.
As a result, the DPRS algorithm’s choice of the data center for replica placement will not be the most
popular, resulting in a waste of resources.

In a similar simulation scenario, multiple constant file sizes are induced to observe the method
accuracy further. As a result, Fig. 3b shows the ENU findings for various constant file sizes, including
100, 1000, 5000, 10,000, and 15,000 Mb.

Based on Fig. 3b, RS-DCSM was observed to deliver efficient network usage with 4%, 3%, 15%,
5%, and 4% enhancements for 100, 1000, 5000 10,000, and 15,000 Mb file sizes, respectively outreached
DPRS by 6% in total average improvement. It means that the RS-DCSM algorithm used less network
bandwidth than the DPRS algorithm during the experiment. Despite the method’s extensive multi-
factors, RS-DCSM also focuses on a common but essential aspect in allocating the mass size of
replicas: providing adequate storage in data center selection criteria. The results obtained even with
bigger file sizes do not influence RS-DCSM’s ability to reduce network utilization. Furthermore, due
to the degree of centrality element, RS-DCSM produced better outcomes than DPRS. Allocating
segmented data in multiple data centers has a significant risk of access delay when the network is
overloaded, as this research suggests segmentation of data files. Therefore, despite the fact that RS-
DCSM addresses fault tolerance through introducing the degree of centrality, at the same time, it
allows for different ways to speed up replica retrieval. As a result of evaluating the degree of centrality
in data center selection, system users benefit from having various paths to get data without waiting in
a queue. According to [26,56], and [13], the degree of centrality that addresses fault tolerance improves
performance by allowing faster data access and downloads, even if replicas are not accessible locally
due to network path failure for unknown causes.

An additional experiment was undertaken to ensure that RS-DCSM has no limitations in other
aspects of replication performance to verify its competency further. Hence, replication frequency is
evaluated to support this assertion. Subsequently, replication frequency for random and constant file
sizes are measured in the same experiment context. The algorithm has established the capacity to
allocate replica copies at the best local storages the lower the replication frequency evidence. Thus,
analytical graphs are presented as in Fig. 4a for random file sizes and Fig. 4b for constant file sizes.

As in Fig. 4a, DPRS obtained 0.11 replication frequency per data access. Hence, approximately
10 replicas were created for DPRS when 100 data are accessed in a replication environment. Instead,
RS-DCSM shows 0.09 replication frequency, which resulting about 9 replicas are generated for 100
data access. The overview shows, both algorithms have close results, yet, RS-DCSM achieved 14%
reduced replication frequency on average. The percentage appears to prove it has better capability
to reduce the requirement for additional replica placement than DPRS. In conclusion, compared to
DPRS, the RS-DCSM algorithm evidenced an adequate number of copies created and accessible at
local data centers; conversely, the DPRS imposing a higher number of replica creation to meet local
requirements.
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Figure 4: (a) and (b): Replication Frequency vs. File Sizes

Additional experiments were conducted with constant file size measurements, and the findings
were compared accordingly. Fig. 4b proves that the RS-DCSM algorithm has a minimal replication
process compared to DPRS. Results show that RS-DCSM has outreached the DPRS algorithm to a
certain extent of file sizes. At file sizes of 100 and 1000 Mb, the replication frequency for both DPRS
and RS-DCSM tolerates similar outcomes, which are fewer than 0.15 replication frequency required
per data access, i.e., at least 10 replicas are made per 100 data access. Meanwhile, when analyzing
the peak of 5000 Mb file size, RS-DCSM was shown to have created fewer replicas than DPRS, with
RS-DCSM preserving nearly the same volume of replica creation with 0.1 replicates per data access.
Conversely, DPRS, on the other hand, requires the creation of approximately 20 replicas for every 100
data points examined. RS-DCSM lowered the replica frequency by 55% when larger than 5000 MB
files were sent in the simulation scenario.

RS-DCSM, on the other hand, appears to maintain a comparable low replication frequency. At
large file sizes of 10,000 and 15,000 Mb, RS-DCSM lowered huge new replica creation requirements by
75% and 76%, respectively. The significant contribution has influenced the improvement exclusively
due to the factors absorbed in the RS-DCSM algorithm in determining the best data center to allocate
replicas. As an outcome, users require fewer replica copies because the data is always available locally,
reducing the requirement to retrieve files remotely and eliminate extra duplicate creations. The high
number of replication frequencies for DPRS, on the other hand, derives from the need for additional
replication to accommodate for the lack of data available in local data centers. These additional
replications are required in DPRS due to drawbacks in the DPRS algorithm’s data center selection
method. As a consequence, replica copies are not efficiently distributed in local data centers. A large
proportion of remote replica access eventually causes the DPRS algorithm to increase the number of
new replicas created, contributing to the high replication frequency.

In conclusion, the graphs illustrate that the RS-DCSM algorithm’s capacity to establish effective
network usage does not result in any additional disadvantages in the cloud replication environments.
On the contrary, efficient network usage is achieved while replication frequency is maintained by using
this adaptive RS-DCSM.
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5 Conclusion and Future Works

In a nutshell, this research met its goals while also improving cloud replication performance. The
proposed RS-DCSM algorithms outperformed the DPRS algorithm [39], proven by presented experi-
ment findings. Furthermore, the simulation results presented and analyzed in detail demonstrated that
the cloud provider and users will both profit from the suggested RS-DCSM algorithm and will be able
to reach their desired goals equally.

This adaptive algorithm will always choose the appropriate data center based on comprehensive
selection criteria to ensure replicas are placed locally, storage is balanced, and achieve efficient network
usage without increasing the execution time. The simulation findings show that data movement
between data centers is significantly reduced, resulting in a 14% reduction in overall replication
frequency for RS-DCSM and a 20% increase in network usage efficiency over the DPRS algorithm.

As for this research work extension, future researchers are suggested to include replacement
techniques in the research scope. Specifically, data replacement during storage is insufficient was not
considered in this scope; however, it is one of the substantial areas that can contribute to performance
improvement in cloud replication environments.
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