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Abstract: Metamaterial Antennas are a type of antenna that uses metamate-
rial to enhance performance. The bandwidth restriction associated with small
antennas can be solved using metamaterial antennas. Machine learning is
gaining popularity as a way to improve solutions in a range of fields. Machine
learning approaches are currently a big part of current research, and they’re
likely to be huge in the future. The model utilized determines the accuracy of
the prediction in large part. The goal of this paper is to develop an optimized
ensemble model for forecasting the metamaterial antenna’s bandwidth and
gain. The basic models employed in the developed ensemble are Support Vec-
tor Regression (SVR), K-Nearest Regression (KNR), Multi-Layer Perceptron
(MLP), Decision Trees (DT), and Random Forest (RF). The percentages of
contribution of these models in the ensemble model are weighted and opti-
mized using the dipper throated optimization (DTO) algorithm. To choose
the best features from the dataset, the binary (bDTO) algorithm is exploited.
The proposed ensemble model is compared to the base models and results
are recorded and analyzed statistically. In addition, two other ensembles are
incorporated in the conducted experiments for comparison. These ensembles
are average ensemble and K-nearest neighbors (KNN)-based ensemble. The
comparison is performed in terms of eleven evaluation criteria. The evaluation
results confirmed the superiority of the proposed model when compared with
the basic models and the other ensemble models.
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1 Introduction

In all sectors of science and engineering, machine learning (ML) has been widely used to automate
everyday tasks and provide breakthrough insights. Practitioners of machine learning have changed
the foundations of various industries and fields of study. One of the newest fields is the design and
optimization of metamaterial antennas. Given the current state of the world’s huge data, machine
learning (ML) has received a lot of attention. In the design and prediction of antenna behavior,
machine learning has a lot of promise since it allows for a lot of speed while maintaining high accuracy
[1–10].

Closed-form solutions are uncommon in metamaterial antennas due to their complex shapes.
The function of electromagnetic fields in the construction of antennas is described using Maxwell’s
equations in computational electromagnetics (CEM). To get a physical understanding of the antenna’s
design, a series of approximate solutions is usually used. Integral equations, for example, may be used
to solve linear antennas using sophisticated numerical methods. Maxwell’s equations were later solved
using differential and integral equation solvers as computer technology evolved [11–13]. The two most
frequent CEM approaches in the design of metamaterial antennas are numerical techniques and high-
frequency methods. Three approaches are often used in modeling and testing antenna parameters: the
method of moments (MoM), the finite element method (FEM), and the finite difference time domain
(FDTD). In addition, the radiation field of high-frequency reflector antennas may be calculated using
the physical optics approximation method. The majority of antenna simulation work involves using
computers to tackle problems with specified boundaries and partial differential equations [14–16].

Due to the inherent nonlinearities of antenna designs, machine learning (ML) has been extensively
investigated as a supplement to CEM in enhancing and creating a wide range of antenna designs.
Because statistics and data science are frequently referenced, ML is a subset of artificial intelligence
(AI) that focuses on extracting useful information from data. Researchers have been able to create
systems using machine learning’s data-driven methodology, bringing us closer to fully autonomous
systems that can match, compete with, and occasionally surpass human abilities and intuition.
Machine learning approaches, on the other hand, rely on data quality, quantity, and accessibility,
which might be difficult to come by in some cases [17–19].

For metamaterial antennas, such as those used in computer vision, there is no standardized dataset
available. From the aspect of antenna design, this dataset must be collected if it isn’t already accessible.
This may be done by simulating the intended antenna over a wide range of values using CEM
simulation software. Training, testing, and cross-validation may all be done with the same dataset.
These components are used to train and test the capacity of the machine learning model to generalize
to new inputs. At this point, it is up to the designer’s vision and talent to find out how to validate
the model and improve its generality. In this case, normal processes include plotting learning curves
and evaluating bias and variance values. In most cases, the designer’s intuition plays a big influence in
improving a model’s performance [20–24].

The application of machine learning to antenna parameter optimization considerably accelerates
the design process. Traditional methods of getting ideal parameters for a particular antenna design, as
shown in Fig. 1, take far too long when utilizing present modeling tools. However, if machine learning
is employed to carry out the parameter optimization process, a near approximation of these parameters
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may be obtained quickly. As a result of this benefit, some academics have devoted their research to
implementing machine learning models into antenna design. This section covers the research and
outcomes in this field.

Figure 1: The process of optimizing metamaterial antenna bandwidth and gain

2 Literature Review

To apply machine learning into the antenna design challenge, follow the methods below in
general. A series of simulations is used to estimate an antenna’s electromagnetic characteristics. These
characteristics are subsequently kept in a database and fed into a machine learning algorithm. Finally,
according on the designer’s specifications, the algorithm selects the Antenna that gives the best results.

2.1 Machine Learning Techniques

Machine learning (ML) is a technology that uses algorithms to learn from data without having
to pre-program them. There are three forms of reinforcement learning: supervised, unsupervised, and
reinforcement. Extensive interconnections of neurons; which are fundamental processing cells, are
employed to achieve excellent performance in Artificial Neural Networks (ANN). When complex
functions with numerous features are identified, neural networks may be used to do machine learning.
An input layer, an output layer, and hidden layers between the input and output layers are all layers in
a neural network [25]. A different type of directed learning algorithm is the support vector machines
(SVM) approach. It is mostly utilized in classification and makes use of kernel approaches to deal
with a difficult issue involving non-linearly separable patterns. One of the most basic machine learning
approaches is the KNN. This algorithm uses the outputs of its closest neighbors in the training set to
estimate the result of each new input after remembering the training set.
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Machine learning algorithms have been employed in smart grid networks to predict dangerous
occurrences, wireless networks to forecast wireless users’ mobility patterns and content demands, and
voice recognition. Training a learning algorithm on data from previous simulations to enhance antenna
parameters is one way to use machine learning in antenna design.

Because they are intelligent and have past knowledge of random search, metaheuristic algorithms
tackle unanticipated problems. These algorithms are either versatile, straightforward, or capable
of avoiding local perfection. The aspects of population-based heuristic algorithms include explo-
ration and exploitation. Exploration and exploitation are chosen by the metaheuristic algorithm.
The approach extensively inspects the search space while exploring. Local search in the region is
currently being used. In recent decades, several natural-inspired global optimization algorithms have
been created. A number of scenarios can benefit from population-based metaheuristics, sometimes
known as general-purpose algorithms. Metaheuristics can be metaphor-based or non-metaphor-
based. Metaphors, on the other hand, use algorithms to reflect natural events or human behavior
in today’s society [26].

2.2 Selection of Significant Features

The process of feature selection and extraction are referred to as feature engineering. This process
is essential to all machine learning operations. Although extraction and selection of features are similar
in certain aspects, they are frequently used interchangeably. The feature selection approach aims to
find the most consistent, relevant, and nonredundant qualities. The search area for feature selection is
limited to two binary values: 0 and 1. Consequently, the binary version of the optimization algorithm
should be employed to fit the feature selection task. The main idea of the binary version is to employ
the sigmoid function to get the binary values from the continuous results of the optimizer.

3 The Proposed Methodology

When it comes to artificial intelligence problems, ensemble strategies are becoming more popular.
The average ensemble is one of the most fundamental ensemble algorithms for integrating and
computing the mean of base regressor outputs. This approach computes the mean value by combining
the results of several regressors. This type of ensembles is used in conjunction with KNN-based
ensemble to prove the effectiveness of the proposed weighted ensemble model. The proposed weighted
ensemble for bandwidth and gain prediction is based on three phases namely, preprocessing, selection
of relevant features, and optimization of the weighted outputs of five regression models, as illustrated
in Fig. 2. Instead of choosing one ideal version among the possibilities, the ensemble model mixes all
of the designs by giving each one a weight. The ensemble methodology has been proven to be one of the
most effective ways to improve the predictive capacity of traditional models. The outcome variable of
the best ensemble member is chosen in the first step to generate the final forecast in an ensemble model.
The mixed formula is used in the second step to blend the ensemble members’ output variables [27].

3.1 Dataset

Eleven Metamaterial Antenna properties are included in the dataset used in this investigation. The
collection of antenna designs is available on the Kaggle dataset which is employed in this research [28].
This collection contains 572 recordings. The distance between rings, The height and width of the split
ring resonator, antenna bandwidth, antenna gain, rings’ gap, rings’ width, the number of array cells in
split ring resonator, the distance between the antenna patch, and the distance between array cells in
split ring resonator are all included in each record about the metamaterial antenna. The correlation
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between these features is represented by the matrix shown in Fig. 3. Using machine learning techniques,
these properties are used to predict the gain and bandwidth of metamaterial antenna. The distributions
of gain and bandwidth features is depicted in Fig. 4.

Figure 2: The proposed approach based on three stages namely, data preprocessing, data collection,
and optimized ensemble

Figure 3: Metamaterial features correlation matrix
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Figure 4: The gain and bandwidth features distributions

3.2 Preprocessing

The preprocessing of the dataset is performed in terms of three steps. Firstly, data cleaning, in
which the null values are replaces with the average between the surrounding values for each feature.
Secondly, scaling the features values using the min-max scaler. Thirdly, the split of the dataset into
training and testing based on the 80% and 20% recommendation rule.

3.3 Dipper Throated Optimization Algorithm

This algorithm is proven to be an effective metaheuristic optimization algorithm based on the
hunting dipper throated bird’s quick bending motions [29]. The steps of this algorithm are represented
by the flowchart depicted in Fig. 5. The steps of presented in the flowchart are based on the following
equations, where X , Y , and h are the bird location, velocity, and fitness function, respectively.

X =

⎡⎢⎢⎢⎢⎣
X1,1 X1,2 X1,3 . . . X1,d

X2,1 X2,2 X2,3 . . . X2,d

X3,1 X3,2 X3,3 . . . X3,d

. . . . . . . . . . . . . . .

Xm,1 Xm,2 Xm,3 . . . Xm,d

⎤⎥⎥⎥⎥⎦ (1)

Y =

⎡⎢⎢⎢⎢⎣
Y1,1 Y1,2 Y1,3 . . . Y1,d

Y2,1 Y2,2 Y2,3 . . . Y2,d

Y3,1 Y3,2 Y3,3 . . . Y3,d

. . . . . . . . . . . . . . .

Ym,1 Ym,2 Ym,3 . . . Ym,d

⎤⎥⎥⎥⎥⎦ (2)

h =

⎡⎢⎢⎢⎢⎣
h1

(
X1,1, X1,2, X1,3, . . . , X1,d

)
h2

(
X2,1, X2,2, X2,3, . . . , X2,d

)
h3

(
X3,1, X3,2, X3,3, . . . , X3,d

)
. . .

hm

(
Xm,1, Xm,2, Xm,3, . . . , Xm,d

)

⎤⎥⎥⎥⎥⎦ (3)

X (i + 1) =
{

Xbest (i) − K1. |K2.Xbest (i) − X (i)| if R < 0.5
X (i) + Y(i + 1) otherwise

(4)
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Figure 5: Flowchart of the dipper throated optimization algorithm

Y (i + 1) = K3Y (i) + K4r1 (Xbest (i) − X (i)) + K5r2 (XGbest − X (i)) (5)

where the location and speed of the ith bird in the jth dimension are denoted by Xi,j and Yi,j for i ∈
1, 2, 3, . . . , m and j ∈ 1, 2, 3, . . . , d. For each bird, the values of the fitness functions h = h1, h2, h3, . . . , hn

are used to find the best values of locations and speed of each bird, which is used to find the best
solution.

3.4 Feature Selection

Because the search space is confined to two binary values, 0 and 1, picking features presents
a unique problem. As a result, we employed the sigmoid function to transform the output of the
conventional optimizer into binary values. The following equation is used to convert the continuous
answer to binary in order to fit the feature selection task.
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S(i+1) =
{

0 if Sigmoid(SBest) < 0.5
1 otherwise

Sigmoid(SBest) = 1

1+e−10(SBest−0.5)

(6)

where the updated binary position at iteration i is denoted by S(i+1), and SBest is the best position
retrieved by the dipper throated optimization algorithm.

4 Experimental Results

These are the explanations behind the outcomes in this section. The findings are described
using support vector regression (SVR), k-nearest regressor (KNR), random forest (RF), decision
tree (DT), and multi-layer perceptron (MLP) regressors, as well as the suggested weighted average
ensemble model. After that, the outcomes of feature selection are used to offer the suggested model’s
performance.

4.1 Metrics of Evaluation

The evaluation metrics employed in this research are presented in Tab. 1. These metrics include:
average fitness size, average error, standard deviation, worst, best, and average fitness. These metrics are
used to evaluate the performance of feature selection methods. On the other hand, Tab. 1 includes other
metrics for performance assessment of the optimized models and ensembles. These metrics are the
root mean square error (RMSE), the mean absolute percentage error (MAPE), the relative root mean
square error (RRMSE), and Pearson’s correlation coefficient (r). In addition, the modified agreement
index (d) was employed to determine agreement (WI), where M is the number of observations in
the subset; Ŷm and Ym are the mth estimated and observed PV power values, and Ŷm and Ym are the
arithmetic means of the estimated and observed values.

Table 1: Evaluation metrics

Metrics Equation

Average error = 1
M

M∑
j=1

1
N

N∑
i=1

mse (Ci, Li)

Average fitness = 1
M

M∑
i=1

gi
∗

Average fitness size = 1
M

M∑
i=1

size
(
gi

∗
)

Best fitness = MinM
i=1g

i
∗

Worst fitness = MaxM
i=1g

i
∗

STD (Standard Deviation)
fitness

=
√

1
M − 1

∑(
gi

∗ − Mean
)2

(Continued)
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Table 1: Continued
Metrics Equation

RRMSE = RMSE

Ym

× 100

RMSE =
√√√√ 1

M

M∑
m=1

[
Ŷm − Ym

]2

MAPE = 1
M

M∑
m=1

∣∣∣∣ Ŷm − Ym

Ym

∣∣∣∣ × 100

r =
∑M

m=1

(
Ŷm − Ŷm

) (
Ym − Ym

)
√[∑M

m=1

(
Ŷm − Ŷm

)2
] [∑M

m=1

(
Ym − Ym

)2
]

WI = 1 −
∑M

m=1 |Ŷm − Ym|∑M

m=1 |Ym − Ym| + |Ŷm − Ŷm|

4.2 Metamaterial Gain Results

The first set of experiments was conducted to measure the performance of the feature selection
methods. Tab. 2 presents the assessment of the results achieved by the proposed bDTO and other
feature selection methods. As shown in the table, the proposed bDTO could achieve the minimum
error and the best fitness.

Table 2: Evaluation results of the proposed feature selection method and other methods for gain
prediction

Avg. error Avg. select size Avg. fitness Best fitness Worst fitness Std. fitness

bDTO 0.45048 0.40328 0.51368 0.41548 0.51398 0.33598
bGWO 0.46768 0.60328 0.52988 0.45018 0.51708 0.34068
bGWO_PSO 0.50698 0.73658 0.53818 0.49168 0.60168 0.35888
bPSO 0.50148 0.60328 0.52828 0.50858 0.57628 0.34008
bBA 0.51108 0.74268 0.55118 0.44088 0.54248 0.34998
bWAO 0.50128 0.76668 0.53608 0.50018 0.57628 0.34228
bBBO 0.46968 0.76708 0.53398 0.52368 0.61018 0.38498
bMVO 0.47818 0.69978 0.55798 0.48318 0.60118 0.39078
bSBO 0.50978 0.77358 0.56798 0.51108 0.59078 0.40098
bGWO_GA 0.48778 0.52608 0.53598 0.51378 0.58998 0.34128
bFA 0.49988 0.63778 0.58018 0.49888 0.59648 0.37688
bGA 0.48128 0.54568 0.54128 0.44458 0.55968 0.34228
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Once the significant features are selected, the optimized weighted ensemble model is employed to
predict the gain values of metamaterial antenna. The prediction results are analyzed and presented
in Tab. 3. The weighted ensemble is optimized using DTO and four other optimizers. The best
performance is achieved by the DTO optimization algorithm.

Table 3: Analysis of the performance of the proposed weighted ensemble model that is optimized using
DTO algorithm and four other optimizers for predicting gain values

DTO GWO PSO GA WOA

Num. values 14 14 14 14 14
Range 0.0001 0.002 0.002 0.002 0.00027
Minimum 0.002155 0.004547 0.005678 0.006785 0.009662
Median 0.002255 0.005547 0.006678 0.007846 0.009932
Maximum 0.002255 0.006547 0.007678 0.008785 0.009932
Mean 0.002248 0.005554 0.006685 0.007881 0.009891
25% Percentile 0.002255 0.005547 0.006678 0.007846 0.009907
75% Percentile 0.002255 0.005547 0.006678 0.007846 0.009932
Std. Error of Mean 7.14E-06 0.000105 0.000105 0.000114 2.34E-05
Std. Deviation 2.67E-05 0.000393 0.000393 0.000426 8.76E-05
Sum 0.03147 0.07776 0.09359 0.1103 0.1385

The null and alternative hypotheses are analyzed using a one-way analysis of variance (ANOVA)
test. For the null hypothesis H0 (i.e., DTO = GWO = PSO = GA = WOA), the algorithm’s mean
values are set equal. Under the alternative hypothesis, H1, the means of the algorithms are not similar.
The results of the ANOVA test are presented in Tab. 4.

Table 4: ANOVA test results of the achieved results on metamaterial gain

Criteria SS DF MS F (DFn, DFd) P value

Treatment 0.000454 4 0.000113 F (4, 65) = 1136 P < 0.0001
Residual 6.49E-06 65 9.99E-08
Total 0.00046 69

The statistical difference between each two algorithms is used to compute the p-values between
the optimization of the weighted ensemble using DTO and four other optimization techniques. This
study used Wilcoxon’s rank-sum test. The two basic hypotheses in this test are the null and alternative
hypotheses. For the null hypothesis given by H0, DTO = GWO, DTO = PSO, DTO = GA, DTO
= WOA Under the alternative hypothesis, H1, the algorithms’ means aren’t similar. The Wilcoxon
rank-sum test’s findings are shown in Tab. 5.
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Table 5: Wilcoxon test results of the achieved results on metamaterial gain

DTO GWO PSO GA WOA

Number of values 14 14 14 14 14
Actual median 0.002255 0.005547 0.006678 0.007846 0.009932
Theoretical median 0 0 0 0 0
Sum of positive ranks 105 105 105 105 105
Sum of signed ranks (W) 105 105 105 105 105
Exact or estimate? Exact Exact Exact Exact Exact
Significant (alpha=0.05)? Yes Yes Yes Yes Yes
Sum of negative ranks 0 0 0 0 0
Discrepancy 0.002255 0.005547 0.006678 0.007846 0.009932
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001

On the other hand, the prediction results of the metamaterial gain are recorded using five separate
machine learning regressors and two ensemble models in addition to the proposed weighted ensemble
model. These results are analysis using eight evaluation criteria and the results are presented in Tab. 6.
Moreover, Fig. 6 shows the prediction vs. the actual gain values using the proposed approach.

Table 6: Evaluation of metamaterial gain prediction using five machine learning models and two
ensemble models in addition to the proposed weighted ensemble model

RMSE MSE MBE r R2 RRNSE NSE WI

MLP 0.102 0.016 −0.010 0.378 0.143 10.754 0.053 0.692
KNR 0.103 0.016 −0.009 0.316 0.100 10.842 0.038 0.689
DT 0.100 0.016 −0.009 0.481 0.232 10.540 0.091 0.704
SVR 0.106 0.042 0.018 0.000 0.000 11.217 −0.030 0.202
RF 0.099 0.017 −0.009 0.564 0.318 10.461 0.104 0.681
AVG Ensemble 0.089 0.021 −0.002 0.834 0.695 10.461 0.270 0.612
KNR Ensemble 0.060 0.036 0.002 0.823 0.677 6.339 0.671 0.316
Proposed 0.002 0.000 0.000 1.000 1.000 0.420 1.000 0.999
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Figure 6: The actual (red) and predicted (green) gain values using the proposed weighted ensemble

The histogram of the gain values using the proposed weighted ensemble model that is optimized
by DTO algorithm and four other optimizers and the RMSE of the predicted gain values using the
proposed weighted ensemble model that is optimized by DTO algorithm and four other optimizers
are presented in Figs. 7 and 8, respectively, to show the effectiveness of the proposed approach.

Figure 7: Histogram of the gain values using the proposed weighted ensemble model that is optimized
by DTO algorithm and four other optimizers

4.3 Metamaterial Bandwidth Results

To prove the generalization of the proposed approach, the bandwidth of the metamaterial antenna
is predicted using the proposed weighted ensemble model. The first step is to select the significant
features from the given dataset. The feature selection is performed using bDTO, and the evaluation
of the performance of features selection for this task is presented in Tab. 7, and the analysis of
the performance of the proposed ensemble model in predicting metamaterial antenna bandwidth is
presented in Tab. 8.
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Figure 8: RMSE of the predicted gain values using the proposed weighted ensemble model that is
optimized by DTO algorithm and four other optimizers

Table 7: Evaluation results of the proposed feature selection method and other methods for bandwidth
prediction

Avg. Error Avg. select size Avg. fitness Best fitness Worst fitness Std. fitness

bDTO 0.52708 0.47988 0.59028 0.49208 0.59058 0.41258
bGWO 0.54428 0.67988 0.60648 0.52678 0.59368 0.41728
bGWO_PSO 0.58358 0.81318 0.61478 0.56828 0.67828 0.43548
bPSO 0.57808 0.67988 0.60488 0.58518 0.65288 0.41668
bBA 0.58768 0.81928 0.62778 0.51748 0.61908 0.42658
bWAO 0.57788 0.84328 0.61268 0.57678 0.65288 0.41888
bBBO 0.54628 0.84368 0.61058 0.60028 0.68678 0.46158
bMVO 0.55478 0.77638 0.63458 0.55978 0.67778 0.46738
bSBO 0.58638 0.85018 0.64458 0.58768 0.66738 0.47758
bGWO_GA 0.56438 0.60268 0.61258 0.59038 0.66658 0.41788
bFA 0.57648 0.71438 0.65678 0.57548 0.67308 0.45348
bGA 0.55788 0.62228 0.61788 0.52118 0.63628 0.41888

Table 8: Analysis of the performance of the proposed weighted ensemble model that is optimized using
DTO algorithm and four other optimizers for predicting bandwidth values

DTO GWO PSO GA WOA

Num. values 14 14 14 14 14
Range 0 0.001896 0.003 0.00202 0.00198

(Continued)
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Table 8: Continued
DTO GWO PSO GA WOA

Minimum 0.002324 0.005544 0.005789 0.006679 0.007998
Median 0.002324 0.005744 0.006789 0.00787 0.009978
Maximum 0.002324 0.00744 0.008789 0.008699 0.009978
Mean 0.002324 0.005902 0.006853 0.007767 0.009737
25% Percentile 0.002324 0.005744 0.006789 0.00787 0.009753
75% Percentile 0.002324 0.005744 0.006789 0.00787 0.009978
Std. Error of Mean 0 0.00013 0.000165 0.000131 0.000148
Std. Deviation 0 0.000486 0.000617 0.000491 0.000552
Sum 0.03254 0.08263 0.09594 0.1087 0.1363

The ANOVA test and Wilcoxon test results are presented in Tabs. 9 and 10 to show the superiority
and stability of the proposed approach in predicting the bandwidth of metamaterial antenna.

On the other hand, the prediction results of the metamaterial bandwidth are recorded using
five separate machine learning regressors and two ensemble models in addition to the proposed
weighted ensemble model. These results are analysis using eight evaluation criteria and the results
are presented in Tab. 11. Moreover, Fig. 9 shows the prediction vs. the actual gain values using the
proposed approach.

Table 9: ANOVA test results of the achieved results on metamaterial bandwidth

Criteria SS DF MS F (DFn, DFd) P value

Treatment 0.00042 4 0.000105 F (4, 65) = 451.2 P < 0.0001
Residual 1.51E-05 65 2.33E-07
Total 0.000435 69

Table 10: Wilcoxon test results of the achieved results on metamaterial bandwidth

DTO GWO PSO GA WOA

Number of values 14 14 14 14 14
Actual median 0.002324 0.005744 0.006789 0.00787 0.009978
Theoretical median 0 0 0 0 0
Sum of positive ranks 105 105 105 105 105
Sum of signed ranks (W) 105 105 105 105 105
Significant (alpha=0.05)? Yes Yes Yes Yes Yes
Exact or estimate? Exact Exact Exact Exact Exact
Sum of negative ranks 0 0 0 0 0
Discrepancy 0.002324 0.005744 0.006789 0.00787 0.009978
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001
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Table 11: Evaluation of metamaterial bandwidth prediction using five machine learning models and
two ensemble models in addition to the proposed weighted ensemble model

RMSE MSE MBE r R2 RRNSE NSE WI

MLP 0.101 0.067 −0.022 0.758 0.575 11.009 0.542 0.616
KNR 0.105 0.029 −0.016 0.734 0.539 11.415 0.508 0.833
DT 0.060 0.017 −0.004 0.917 0.840 6.576 0.837 0.899
SVR 0.096 0.052 −0.007 0.863 0.746 10.436 0.589 0.698
RF 0.055 0.019 −0.007 0.953 0.908 5.925 0.867 0.889
AVG Ensemble 0.074 0.031 −0.011 0.927 0.860 5.925 0.757 0.820
KNR Ensemble 0.054 0.015 −0.006 0.946 0.894 5.879 0.869 0.913
Proposed 0.002 0.000 0.000 1.000 1.000 0.432 1.000 0.999

Figure 9: The actual (red) and predicted (green) bandwidth values using the proposed weighted
ensemble

The histogram of the gain values using the proposed weighted ensemble model that is optimized
by DTO algorithm and four other optimizers and the RMSE of the predicted bandwidth values using
the proposed weighted ensemble model that is optimized by DTO algorithm and four other optimizers
are presented in Figs. 10 and 11, respectively, to show the effectiveness of the proposed approach.
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Figure 10: Histogram of the bandwidth values using the proposed weighted ensemble model that is
optimized by DTO algorithm and four other optimizers

Figure 11: RMSE of the predicted bandwidth values using the proposed weighted ensemble model that
is optimized by DTO algorithm and four other optimizers

5 Conclusions

Machine learning approaches are currently a big part of current study, and they’re likely to be
huge in the future. The model utilized determines the accuracy of the forecast in large part. To choose
the best characteristics from the metamaterial antenna dataset, this research use the DTO method.
Metamaterial antennas are able to overcome the gain and bandwidth limitations of small antennas.
Machine learning is attracting a lot of attention for its potential to improve solutions in a range of
fields. For estimating the bandwidth and gain of the metamaterial antenna, the optimum ensemble
model produced satisfactory results. SVR, RF, KNR, DT, and MLP are the fundamental models
that have been examined. The best characteristics from the datasets were chosen using the DTO
method. Five regression models were tested against the suggested technique. According to the data,
the proposed method is better to others in terms of properly predicting antenna bandwidth and gain.
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