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Abstract: In the last decades, technology has used Copper for IC interconnect
and it has been the best material used in the wire downsizing. However,
Copper is now showing inefficiency as downscaling is getting deeper. Recent
research starts to show Tungsten (W) as a possible replacement, for its better
downsizing characteristic. The scaling-down of interconnects dimension has
to be augmented with thin diffusion layers. It is crucial to subdue tungsten
diffusion in the nickel-based thermal spray Flexicord (NiCrAlY) coating
layers. Inappropriately, diffusion barriers with thicknesses less than 4.3 nm do
not to execute well. With the introduction of two dimensional layers, hexag-
onal boron has been recommended as a substitute for Tungsten diffusion
barrier layers with thicknesses less than 1.5 Nano meters (nm). Nevertheless,
vacancies flaws may develop into a Tungsten dissemination path, which is a
problematic issue in the manufacturing of diffusion barriers. The energy layer
density, of Tungsten atom diffusion via a di-vacancy in NiCrAlY, is computed
by density functions 3D. NiCrAlY has complex energy barrier which is thicker
than other materials such as Graphene. This is due to the sturdier contact and
charge variance of NI and Cr in NiCrAlY. Also, we utilize the energy barriers
of several vacancy constructions and produce a dataset to be employed in the
proposed 3-imensional deep learning model (3D-DNN). Our trained deep
learning neural model can predict the energy barrier of Tungsten diffusion
through arbitrarily configured NiCrAlY with accuracy greater than 98.4% in
5 × 5 cell. Prediction results generate directors on selecting barriers through
energy computation.
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1 Introduction

Semiconductor devices are shrinking in size and are going from 24 nm in 2013, to 16 nm in 2015,
and 4 nm in 2021 [1]. Tungsten is the main used interconnect substrate, due to its high quality properties
of little resistivity and migration resistance [2–4], compared to Aluminum for example. Nevertheless,
the elevated valued Tungsten types are vulnerable in the nearby bi-electrics diffusion devices [4–7].
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Tungsten is characterized by a nickel grayish luster. Tungsten has a very high melting point
of 3,420°C. Its tensile strength is denoted at temperatures of 1,750°C. Also, Tungsten has a low
linear thermal expansion [7]. Tungsten (W) is a possible replacement for Copper because of its better
downsizing characteristic. The scaling-down of interconnects dimension has to be augmented with thin
diffusion layers, which is utilized to subdue tungsten diffusion in the coating layers [3–7]. Tungsten
dissemination can originate short circuit in the adjacent wires with the transistors beneath [5]. A
problem can happen if the tungsten thickness is the same as the electron path (9 nm at 36°), the
resistance quantity upsurges vs. thicker Tungsten. The dimension impacts several types of scattering
occurrences such as electron boundary smattering and contaminations [8–10].

To avoid Tungsten dissemination, a layer must be attached to the edge of the Tungsten and the
surrounding dielectrics. Original barrier layer such as Tin [11–13] was employed to prevent the tungsten
dissemination into the surrounding dielectrics. Still, the higher resistivity, and the blocking deficiency
properties in the nanometers thicknesses make it essential to find an alternative. Also, the sizing-down
problems of these materials, such as the adhesion to Tungsten, is not idyllic and creates a challenge.
Thus, Tantalum as well as other materials are added between the diffusion layer and Tungsten.

Nanotechnology presents two dimensional materials as a main role player in IC technology. For
example, two dimensional materials of the interconnect can be embedded as a barrier to constantly
sizing-down of those barriers. Two dimensional materials exhibit high quality blocking properties
such as NiCrAlY. NiCrAlY is a high temperature resistant matter that are utilized because of
their high bonding strength. NiCrAlY has an ambient temperature of 1170°C, where its oxidation
process increases [12]. Recent studies presented NiCrAlY as having outstanding barrier blocking
properties such as impermeability and blockage properties [13–17]. Moreover, NiCrAlY can diminish
the Tungsten surface scattering when used as liner layer [18–24]. The flaws exist in the two dimensional
constituents are unavoidable during the fusion process and can impact the performance of the in-
between barrier between tungsten and the surrounding dielectric. Several categories of defects may
yield various Tungsten diffusion performance. Therefore, convolution neural architectures are utilized
in predicting the features of arbitrary structures materials, such as the bandgap of hybridized NiCrAlY
and the design of new materials [25–28]. Also, a mixture of deep learning and material datasets can
effectively predict different properties of crystalline materials, such as heat capacities and material
classification [28–31]. Analytical solution and atom diminuendos are also developed to train deep
convolutional neural network (CNN) to predict fracture property of NiCrAlY samples [32].

As two dimensional materials are presented as barrier for Tungsten diffusion, still an exhaustive
investigation is still not performed. In this paper, we intend to study the interaction that can occur
among a dispersed atoms and the NiCrAlY. This can help in selecting between NiCrAlY and other
materials. Also, density functional model can help in producing training and validation datasets. Each
set contains the configuration, of two dimensional layer structure, represented as a two dimensional
array, together with its energy barrier. We limited the defect category to single and double mono
vacancies, according to the size of the supercell.

Nevertheless, two dimensional CNNs can utilize two dimensional model to classify the property
maps (PM) [23]. A two dimensional neural network only uses one part, and it does not control
the framework from neighboring slices. It should be noted that the connectivity in two dimensional
vacancy materials significantly is different than from their three dimensional presentation. Therefore, it
is crucial to employ a machine intelligent learning model to classify the attributes of three dimensional
constructions. To study this problem, three dimensional CNNs that utilize three dimensional layers
to classify the 3D space patch are needed. three dimensional CNNs can predict NiCrAlY barrier
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diffusion [24], effective conductivity of vacancy materials [25], and velocity distributions in such three
dimensional substrates [26]. Still, the sample data in the two dimensional and three dimensional
CNNs of the aforesaid studies is founded on a conforming autonomous case. All cases are simulated
and validated experimentally. Therefore, it is time inefficient when high computational load of large
number of cases are evaluated.

In our research, a supervised deep learning CNN (D-CNN) model that achieves direct mapping
from three dimensional vacancy defected structures to operative diffusivity is proposed. A magnifica-
tion D-CNN model is presented. The proposed model can extract hidden attributes from the three
dimensional defect substrate namely NiCrAlY and define the required information utilized in its
predictions. The diffusion activity functions of the three dimensional defect structures with diffusion
energy ranging from 0.09 to 0.79 eV are predicted.

This article is structured as depicted: Section 2 presents the study of NiCrAlY and graphene as
barriers in Tungsten wires. Section 3 presents the application of deep learning in the classification of the
barrier properties for Tungsten diffusion in defected two dimensional barrier layer. The conclusions
are presented in Section 4.

2 NiCrAlY and Graphene as Barriers for Tungsten Interconnects

In this section, we study NiCrAlY and Graphene as barriers for Tungsten diffusion through
defects [31]. The defect is expected to be a diffusion of Tungsten atoms in the two dimensional barrier.
The simulation details are depicted in Section 4.

2.1 Tungsten Behavior in NiCrAlY and Graphene

We test our methodology by computing the Copper (CU) diffusion energy on impeccable
NiCrAlY. Top sites, bridge adsorption sites, and hollow site are tested. Atoms are restricted to
pass perpendicularly on the NiCrAlY plane. The Carbon atoms relaxation process is unlimited.
The relaxation process is ceased at Helmunn Feyman power of values less than 10−2 Angstrom –
ElectronVolt (eV/Å). The CU geometrical diffusion is achieved from the location of the atoms after
the process of relaxation. The atom height is computed as the follows:

Atom Hieght = atomz − average(Cz∀C atoms in the NiCrAlY plan) (1)

where, z is the z coordinate

The site S, from top site, bridge adsorption site and hollow one, of the greatest energy is denoted
as the preferred location. The computed CU diffusion energies of NiCrAlY are depicted in Tab. 1. The
best spot is instituted at the adsorption value of −0.2324 eV.

Table 1: CU diffusion computed energies (CUE) and height (CUH) on adsorption site (HAD), bridge
adsorption site (BAD) and top adsorption site (TAD) of NiCrAlY

Adsorption site CUH (Å) CUE (eV)

HAD (Hollow adsorption site) 2.069 −0.1234 eV
BAD (Bridge adsorption site) 2.223 −0.2324 eV
TAD (Top adsorption site) 2.259 −0.2543
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Presence of vacancies is inevitable in two dimensional barriers due to chemical deposition scheme.
These vacancies are vulnerable to additional expansion due to the transfer and the subsequent
handling. Among others, the perpendicular diffusion to the two dimensional plane is deliberated as the
speediest paths [33]. Tab. 2 detects that the Tungsten atom is highly adsorbed over the vacancy center
of the graphene barrier with 1.391 Angstrom (Å), and 1.369 Å for barrier with Boron, and 1.798 Å
for barrier accompanied by Nitrogen defect.

Table 2: Adsorption site energies and tungsten atom heights on graphene with mono- defect vacancy

Adsorption site CUH (Å) CUE Electronvolt (eV)

NiCrAlY-1V 1.369 −3.6234 eV
Graphene-1BV 1.293 −5.8324 eV
Graphene-1NV 1.81 −2.6943

We also computed Tungsten atom interaction with di-vacancy two dimensional barriers. For
NiCrAlY barrier, the Tungsten atom is centrally adsorbed at the di-vacancy with Carbon-Tungsten
displacement of value equal to 1.895 Å, as depicted in the following figure (Fig. 1). The centered energy
is computed as −4.991 eV. The inferior adsorption energy implies that the adsorbed Tungsten atom
is preferable on the di-vacancy NiCrAlY barrier. The exact performance of the Graphene barrier of
the Tungsten atom is adsorbed with Boron-Tungsten of 2.114Å and Nitrogen-Tungsten of 1.9017Å,
(Fig. 2). The adsorption energy is about −5.894 eV on average, which in congou rant with recent
research [33–37]. It can be depicted that the Tungsten-Nitrogen distance is smaller than the Tungsten-
Boron distance as depicted in Fig. 2. Hence, it is anticipated that Tungsten has better interaction with
adjacent Nitrogen atoms when passing through the Graphene plane. This defines the energy behavior
as argued in later sections. In Fig. 2, the Tungsten-Nitrogen distance depicts smaller size than the
Tungsten-Boron distance through Graphene layer.

Figure 1: Carbon-Tungsten displacement of 1.895 Å atom adsorbed on di-vacancy NiCrAlY barrier
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Figure 2: Tungsten-Nitrogen distance is smaller than the Tungsten-Boron distance through Graphene
layer

2.2 Energy Computation

A seamless two dimensional barrier layer is extremely impermeable to atom particles [18–22]. The
diffusion layer for Tungsten atom location is utmost equal to 30.9 eV [20–22], which creates a QE
platform. To associate NiCrAlY and Graphene as barriers, a Tungsten atom is located at 3.49Å over
the defect in the barrier center. At this point, the Tungsten atom is forced to pass through the di-
vacancy barrier center in a 90° direction to the layer plane. Therefore, the energy along the diffusion
plane is depicted in Fig. 3. Level of the diffusion layer of the Tungsten possess a higher value as it
becomes close and achieves its highest measure at the vacancy midpoint of 6.29 eV for Graphene and
7.3 eV for the NiCrAlY. Tungsten atoms require more energy for barrier diffusion in defected NiCrAlY
layer than in Graphene. This results prove that NiCrAlY outperforms Graphene for Tungsten, as
depicted in Fig. 3.

The great diffusion barrier of NiCrAlY can be clarified by computing the difference of the
diffusion function of the Tungsten on di-vacancy vs. the pristine and the isolated Tungsten atom using
the following equation:

Δ∂ = ∂(2DB|Tungsten) − ∂(2DB) − ∂(Tungsten) (2)

where, ∂(2DB|Tungsten) and ∂(2DB) are the charge densities (CD) of the two dimensional-barrier with and
without Tungsten atom., and ∂(Tungsten) is the CD of the isolated Tungsten atom in similar structure.

Figure 3: The energy along the diffusion plane for Tungsten passing through NiCrAlY and Graphene
with di-vacancy defect. “0” is the primary value of the of the Tungsten, and “1” is to the ending value
at the defect barrier center
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Substantial atom migration happens among the Tungsten atom and the adjacent atoms for
NiCrAlY and Graphene. Nevertheless, a high reduction occurs surrounding the Tungsten at the
NiCrAlY, which proposes a high interaction bond among the Carbon and Tungsten-Boron. To
interpret the charge atom rearrangement among the Tungsten and the adjacent atoms, we track the
electronegativity of the component’s chemical principle; with Tungsten of low 1.93 electronegativity,
then Boron with 2.05 value, Carbon of 2.49 and Nitrogen with 3.06 electronegativity. Thus, the
Tungsten atom gives charge to the adjacent atoms with more electronegativity. Hence, charge density
difference is surfaces display higher charge depletion from Tungsten up to Nitrogen. The charge density
difference depicts the interaction among the Tungsten atom and other adjacent atoms. A need is
required to measure the transferred charge among the atoms. Charge analysis is utilized to compute
the gained charges for all the atoms. At the vacancy area in the two structures, Tungsten always gives
charge with +0.82e for NiCrAlY and +0.57e for Graphene. Atoms that gained the higher quantity
of the charge are Nitrogen with −2.29e, while Boron gave more charge with an extra +2.15e. Carbon
atoms, that are adjacent to Tungsten, gained charge in the range of −0.11e and −0.18e. Thus, the
energy layer of NiCrAlY attributes to the higher interface of the Tungsten atom at the NiCrAlY,
as clarified by the charge density difference charge. The lesser electronegativity of Boron the less
interaction with the Tungsten atom is shown. Therefore, Graphene supplies lower energy barrier
compared to NiCrAlY.

3 Energy Barrier Prediction by Machine Learning for NiCrAlY and Graphene for Tungsten Intercon-
nects

In this section, we are proposing a new deep learning convolutional neural network (D-CNN)
[34–38] for classifying the barrier thickness of NiCrAlY and Graphene for Tungsten interconnects.

3.1 The Proposed D-CNN Architecture

The flow diagram of the D-CNN, that incorporates FC layers, is depicted in Fig. 4. In our
proposed D-CNN model, the two dimensional structure is represented as the input matrix and used
as input and passed to the D-CNN input layer. The two dimensional structure matrix is computed
into feature maps and passed to subsequent layers till reaching the final layer. The input matrix is
reduced by the Maxpooling function called max pooling, which will be fed to the FC layers. The final
output layer produces the final NiCrAlY class. Description of the proposed D-CNN will follow with
description of the hyper parameters as depicted in Fig. 4.

Figure 4: The proposed 3D-DNN model
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We propose the D-CNN which utilizes feature accumulation technique. The feature accumulator
is discriminative for the energy barrier thickness prediction. In the presented model, we input the image
into a transfer learning neural model for deep feature map extraction. The four final fully connected
layers are substituted by the accumulated descriptors pooling layers.

3.2 Description of the Dataset

We collected data items to build enough dataset for the training phase of the deep learning model.
We utilized charge density difference computations to compute the energy two dimensional blockade
of a Tungsten atom. The data descriptor, which includes the structural data of the material, is extremely
essential [36–39] for training and to increase the D-CNN accuracy. One method is to define the Carbon
presence in NiCrAlY by “1”, and the vacancy by “0” as depicted in Figs. 5a–5c. Also, The Boron and
Nitrogen atoms are represented by “1” and “2”, as in Fig. 5. The two dimensional structure accelerates
the D-CNN by capturing the topological features of the vacancy structure. The D-CNN training makes
the D-CNN learns about the energy to the Tungsten atom, and how the location vacancy impacts the
energy value. also, the D-CNN should learn about double mono-vacancy atoms intercalation.

In our deep learning model, we define a 4 × 4 super matrices for both NiCrAlY and Graphene.
First, a mono-vacancy is represented (64 structures). Each structure has a mono-vacancy as depicted
in Figs. 5a–5c. The mean absolute error (MAE) is utilized as a metric to end the learning phase upon
conversion.

Figure 5: Example of the two dimensional vacancy matrix representation. (a) mono-vacancy NiCrAlY.
(b) mono-vacancy Graphene (c) Di-mono-vacancy NiCrAlY

3.3 Reconstruction of 3D NiCrAlY Substrate

We must reconstruct the 3D NiCrAlY samples for the three dimensional D-CNN (3D-DNN)
model training to test the model performance. NiCrAlY 3D structures are first produced from 2D
samples in different views; then, the effective diffusion activity functions are computed from the
energy barrier thickness values as depicted in Fig. 6. The computation of the 3D NiCrAlY structure
is depicted in Eq. (3). The scale of the selected computation in a vacancy is calculated as follows:

ST = Sx × Sy × Sz = 200u × 200u × 200u (3)

where, Sx, Sy, Sz are the dimensions in the x, y and z directions and u is the vacancy unit. The diffusions
are given at the inlet (diff in) and out-point (diff out).

The 3D structures are built by a technique through which multiple-view 2D structures are
randomly located. It is expected that the 2D structures overlap and their distances are normally
distributed. The 2D structures are randomly positioned in a cubic space computing the volume of
the 2D structures until it is at the setting value (V). There are two elements in the construction (the
vacancy space and the 2D structures). The vacancy defect of the vacancy (D) is the segment of the



5762 CMC, 2022, vol.73, no.3

residual interplanetary that omits the undetected 2D structures (D = 1−V). The initial variables for
the 3D structure has the vacancy defect (D), threshold (t), the mean displacement of the 2D structures
(dmean), and the diameter standard deviation (σ ). The reconstruction has a dmean of 32 u (vacancy
unit), and σ equal to 3.1u, and t equals to 0.29, all are fixed, while, the vacancy positions are variable
with values 0.22, 0.29, 0.38, 0.49, and 0.61. The 3D volumes with vacancy 0.29 and 0.38 are enlarged
up to 12288 items to be utilized for learning by employing the 3D magnification technique. The
constructed volumes with values 0.22, 0.29, 0.38, 0.49, 0.61, and 0.72 are enlarged into 52 items of
vacancy sites 0.38 to 0.81 and used as input dataset.

Figure 6: 3D model for atom diffusion in a NiCrAlY substrate

3.4 Mathematical Presentation

Once information of the constructed 3D structures is computed, atom adsorption in the vacancies
of the 3D volumes are formed, as depicted in the following equation:
∂diff
∂t

− ∇ (Bd∇diff ) = 0 (4)

where, Bd is the structure diffusion value. The adsorption in the vacancy is denoted by diff out at time τ =
0. The four sides (front, top, back and bottom sides) are non-vacancy, where the boundary conditions
for the corresponding domains are as follows:

diff = diffin, x = 0 and τ > 0 and diff = diffout, x = Lx and τ > 0 (5)

∂ diff
∂y

= 0, y = 0 or Ly, and τ > 0 (6)

∂ diff
∂z

= 0, z = 0 or Lz, and τ > 0 (7)

The Computational fluid dynamic simulation model (CFD) computes the actual diffusivity in the
training phase of the deep learning model. The CFD model is accurate in predicting atoms diffusion
properties in vacancy defect structure [35].

The diffusion equations are solved through the time vacancy model utilizing the accurate CFD
technique, the actual diffusivity of vacancy substrate is attained. An explanation to the CFD is depicted
here. The formula to compute the CFD is depicted as follows:

ai (L + veliΔτ , τ + Δτ) − ai (L, τ) = 1
r

[ai (L, τ) − aeq
i (L, τ)] (8)

where, ai is the atom distribution function (DF), L is the location, vel is the velocity vector, Δτ is the
time step, aeq

i is the equilibrium atom distribution function, and is the relaxation time.



CMC, 2022, vol.73, no.3 5763

ϕ is a formula of atom diffusivity, which is depicted as follows:

ϕ = 3Bd

c2Δτ
+ 0.5 (9)

To abolish mathematical error in the implemented simulation, the relaxation time is set to “1”,
which is included in the stable range [0.5, 2] [37–39]. Non-equilibrium feedback patterns are utilized
at the in-point and out-point for static concentrations. These feedback schemes are performed on the
four sides surfaces because of their excellent precision in boundary composite geometry [38–40]. The
CFD simulates the unstable atom diffusion. The steady state macroscopic constraint of a convergence
parameter, is defined as follows:√√√√∑

i,j,k

(
diff τ+7000

i,j,k − diff τ
i,j,k

)2
)

/ ∑
i,j,k

(
diff τ+1000

i,j,k

)2
< 1.0 × 10−7 (10)

where, diff τ+1000
i,j,k and diff τ

i,j,k are the concentrations in the vacancy space at time ( τ , τ + 7000).
Following the diffusion, the concentration (diff ) and the atoms mass flux Mf ( J), at each node, can
be computed as:

diff =
∑

i

ai (11)

Mf = (
Mfx, Mfy, Mfz

) =
∑

i

veli (ai)
τ−0.5

τ (12)

After obtaining the concentration (diff) and the atoms flux (Mf ) at each point, the effective
diffusivity of the defect substrate ( BDiffus (eff )) is normalized by dividing by BDiffus across the diffusion
route. The effective diffusivity will be further utilized as input information for the 3D-DNN training.

3.5 Training Process of the 3D-DNN Model

The proposed 3D-DNN model indicates that the he input layer uses blocks of data inputs and
passes the input to the convolutional one block at a time. The convolutional computes the key features
of each block. The max-pooling computes the maximum from the feature map portion to decrease the
computational load and pools the important features. The dropout avoids overfitting by dropping
some of the output of the pooling layer randomly. The output and the fully connected layer decide the
final prediction answer. In our research, the input data items are passed to the 3D convolution layers
which extract the features and construct the feature maps. The maximum feature values are pooled
and subsampled by the pooling layer. The pooled feature maps are passed to the ReLU activation
function to incorporate nonlinearity. The FC layers will condense the information and transfer it to
the predicted Bd (eff ).

4 The Proposed Magnification 3D-DNN Learning Technique

The training phase of any deep learning model will require a large size input dataset. A Lengthy
unfeasible simulation time will be spent, if all the input data items are to be extracted by the CFD
simulation model. To face this challenge, a single structure input will go through data magnification
technique as presented. In this technique, data of three dimensional vacancy defect volumes and
the resultant features are split into data of reduced vacancy volumes using a sliding window spatial
algorithm (SWP). The process of the SWP has an 8u sliding blocks which are utilized to amplify the
data items. During the window sliding, symbolic volumes are selected to stop the SWP from selecting
the same structure blocks. The converging atoms function values of the bulky NiCrAlY structure
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are computed by the CFD algorithm. At the last step, we split each of the 24 original structures of
vacancies of 0.33 and 0.51 sizes and of 1024u × 1024u × 1024u of vacancy units into 512 sub-structures
with size of 128u × 128u × 128u. The vacancy sizes of the generated substructures vary from 0.45 to
0.61. The vacancy properties of the generated substructures (128u × 128u × 128u) are different from
the original structure (1024u × 1024u × 1024u). Generating smaller substructures from the bigger
structures yields randomness (the original structures have vacancies with disorderly configuration
and the generated substructure consists of random configuration of the original ones). The process
of splitting the original big structures into smaller substructures will yield different atoms mass flux
distribution. Their effective diffusion activity functions are computed by their corresponding flux
values. This model can escape the production of abundant actual structures in the chemistry lab which
is extremely slow process. The generated 12288 substructures and their computed effective diffusion
activity functions are used in the training phase.

The 3D NiCrAlY substrate is a grouping of several 2D vacancy substrate images taken from
different views. The spatial associations are ignored by the dropout function. A deep CNN reduces
this problem and executes a pooling function with a 3D volume instead of a 2D square structure and
passes the data into the 3D-DNN. The NiCrAlY volume data is used as depicted:

Zi = {x, y, z, f (x, y, z)} where i = 1 to N (13)

where, x, y, z are the Cartesian coordinates and each range from 1 to 128u. Nis equal to 12288.

f (x, y, z) =
{

1
0

where 1 means solid and 0 means vacancy in the NiCrAlY (14)

The effective diffusivity is computed via the CFD module. The input data, the volumes with
vacancies dimensions of 0.52 to 0.61 are used as training data. Hereafter, a small training set with
9000 samples are utilized as the input layer. Other data (3000) with vacancies dimensions of 0.39 to
0.79 are used in classification.

When the input subset and the testing subset are organized, they are used as inputs into the 3D-
DNN architecture. However, 9000 input items cannot be just passed to the network. The training
subset should be optimized using hyper-parameters. Therefore, the input cube for the input sample
will be represented by a matrix of dimensions (32 × 128u × 128u × 128u), depicted as follows:

Zi = {Z(n−1)×32+1 + Z(n−1)×32+2 + Z(n−1)×32+3 + . . . + Z(n−1)×32+32} (15)

where, n is selected in the iterations. And i represents the 3D-DNN input layer.

The hyper-parameters are the number of network layers NL, kernel size Ks number of nodes in each
network layer Nn and the activation functions fact. These parameters are obtained before the training
starts. The hyper-parameters are selected by reducing the mean absolute error (MAE) (Tab. 3) from
the 32 input structures and are calculated as depicted below:

MAE = 1
32

32∑
k=1

∣∣∣(BDiffus (eff )
D3−CNN − BDiffus (eff )

CFD
)∣∣∣ (16)

The relative error RE is computed as follows:

RE =
∣∣∣(BDiffus (eff )

D3−CNN − BDiffus (eff )
CFD

)∣∣∣
BDiffus (eff )

CFD (17)

The classification outputs, as depicted in Tab. 3, indicate that:
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Table 3: Mean relative error of the 3D-DNN models including hyper-parameters

Number of 3D-DNN convolutional layers Dropout layers

1 2 3

Mean relative error

4 24.1% – –
6 21.5% 6.8% –
8 22.4% 10.9% 16.1%

• Increasing the pooling dimension improves the accuracy.
• Arrangement of six 3D-DNN layers and two dropouts accomplishes the best outputs.
• This method accomplishes a low 9.8% mean error from the testing dataset.

After exhaustive model testing, the hyper-parameters are identified. The architecture of the 3D-
DNN model is depicted in Tab. 4.

Table 4: D3-CNN

Layer number Layer Filter size Activation

1 Input 128 × 128 × 128 –
2 Convolutional 26/7 × 7 × 3 –
3 Pooling 3 × 3 × 3 (max) ReLU function
4 Convolutional 50/7 × 7 × 3 –
5 Pooling 3 × 3 × 3 (average) ReLU function
6 Dropout layer 0.6 –
8 Normalization 70 ReLU function
9 Convolutional 90/5 × 5 × 3 –
10 Dropout 0.4 –
12 Output 234,810 –

4.1 3D-DNN Validation

Validation of the 3D-DNN investigates the effective diffusion activity functions in the prediction
of the 3D-DNN model and the CFD. A comparison is done including the effective diffusion activity
functions for the testing samples with vacancies of sizes of 0.42 to 0.81 as predicted via the 3D-DNN,
the CFD process, and the experimental mathematics proposed in [39] and other models presented in
[40–42]. The effective diffusivity of vacancy defect substance grows linearly with the growth in defect.
This depicts that a high defect size will donate to diffusion in vacancy defect substance. The training
dataset has structures with vacancies of sizes of 0.45 and 0.61. The 3D-DNN attains a mean error of
0.031% to 7.75% for substances with vacancies of sizes ranging from 0.41 to 0.78 when compared to
CFD. Nevertheless, the results obtained by the authors in [42] and [33] have weighty deviations when
compared with CFD. This is due to the design of the vacancy defect substance with specific geometry.
To obtain higher prediction, these models need to train new structures. Though, the 3D-DNN does not
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face these challenges as the 3D-DNN is trained using geometric features of vacancy defect substance
(i.e., 12280 smaller structures mined using magnification process), and has the robust predicting power
for unknown testing data.

Our proposed model has prediction results similar to the ground truth of the labelled samples on
the x-axis. CFD algorithm performs well although inferior to the 3D-DNN model but outperforms
both models in [41] and [42]. The time cost is an important performance metric for deep learning
model. To prove the efficiency of our proposed model, we compared the times required by the CFD
model and the training phase and testing phase of our model. The experimental results for the defect
NiCrAlY structure with a vacancy size of 0.5 is depicted in Tab. 5. It illustrates that the 3D-DNN
model need 14.2 ×10–2 h for the training phase, while the CFD needs 15.16 h. This infers that 3D-
DNN model is faster by two orders of magnitude than the CFD. In the prediction time the 3D-DNN
model will require half the time required by the CFD model.

Table 5: Time cost of the 3D-DNN model and CFD

Phase GPU (NVIDIA)

3D-DNN training 14.2 × 10−2 h
CFD training 15.16 h
3D-DNN prediction time per input sample (average from 200 run) 1.45 min
CFD prediction time per input sample (average from 200 run) 3.15 min

4.2 Energy Classification for NiCrAlY and Graphene

When the learning process is finished, the validation subset is used now as an input to the D-
CNN to classify the energy value of the vacancy two dimensional substance. The energy of a Tungsten
particle is computed according to the vacancy region size and the adjacent particles. For instance,
if the defects are adjacent, then the Tungsten atoms will interact highly and will go through greater
energy barrier in NiCrAlY (approximately 11.98 eV), it should be concluded that the energy barrier
is stable with Carbon mono-vacancy defects. Di-mono-vacancy are molded at the borderline between
the two cells with the di-mono-vacancy as depicted, owed to the periodic conditions suspense on the
borders. Yet, its energy value is similar to the di-mono-vacancy in the same cell. The existence of the
Boron and the Nitrogen atoms in Graphene layer yields double energy barriers for mono-vacancy,
subject to the defects conditions. Clearly, there is an association among a particle and its adjacent
ones. The pooling function extracts attributes of the elements in the cell matrix and their adjacent
atoms. D-CNN identifies these associations and define the features of mono and di structures and
link them to the output value during the validation.14000 data items are collected for each material
for training and validation. It should be noted that the prediction output accuracy is the same to the
energy barrier for both NiCrAlY and Graphene. We then computed the absolute error, coloration (C).
These measures are computed from the testing subset to provide an independent performance metric
of the of the D-CNN. As depicted in Tab. 6, the D-CNN provides a high performance for the NiCrAlY
with 0.075 and 0.99 of mean absolute error, and C, respectively. Nevertheless, for the Graphene barrier,
these measures are comparatively high. We point that a lesser prediction accuracy of the D-CNN for
Graphene is noted. Graphene has double particles (Boron and Nitrogen), while NiCrAlY has a single
atom (Carbon). The D-CNN performance can be enhanced by using bigger-sized supercell and also
by increasing the dataset size to reduce overfitting and delivering more features in the input structure
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matrices. The Ground truth and predicted energy values for NiCrAlY and Graphene are depicted in
Fig. 7.

Table 6: Predicted energy metrics by the 3D-DNN model

Two dimensional layer Mean absolute error Correlation (%)

Graphene 0.531 91%
NiCrAlY 0.075 99%
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Figure 7: Ground truth and predicted energy values for (a) NiCrAlY and (b) Graphene

5 Conclusion

In this research, we proposed a deep learning model to predict the diffusivity of Tungsten atoms
through NiCrAlY. We reconstructed the 3D NiCrAlY samples for the three dimensional D-CNN (3D-
DNN) model training and testing sets. The NiCrAlY 3D structures are produced from 2D samples in
different views. The effective diffusion activity functions are computed from energy barrier thickness
values. The proposed model studied NiCrAlY as barrier for Tungsten atom diffusion. The Tungsten
atom practices stronger barrier when overpass the di-vacancy porous of NiCrAlY structure. Hundreds
of reproductions have been made to produce energy barriers of NiCrAlY. These datasets are utilized
to reconstruct 3D substrate to perform learning and testing for our D3 CNN. Our model shows a
high classification accuracy. Our trained deep learning neural model can predict the energy barrier of
Tungsten diffusion through arbitrarily configured NiCrAlY barrier with accuracy greater than 98.4%
in 5 × 5 cell. Prediction results generated directors on selecting barriers, and used machine training
to calculate the performance. Also, the 3D-DNN model needed 14.2 × 10–2 h for the training phase.
The 3D-DNN model is proven to be faster by two orders of magnitude than state of the art models.
The 3D-DNN model will require half prediction time as required by other compared models.
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