
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.031958

Article

The Kemeny’s Constant and Spanning Trees of Hexagonal Ring Network

Shahid Zaman1, Ali N. A. Koam2, Ali Al Khabyah2 and Ali Ahmad3,*

1Department of Mathematics, University of Sialkot, Sialkot, 51310, Pakistan
2Department of Mathematics, College of Science, Jazan University, New Campus, Saudi Arabia

3College of Computer Sciences and Information Technology, Jazan University, Jazan, Saudi Arabia
*Corresponding Author: Ali Ahmad. Email: ahmadsms@gmail.com

Received: 01 May 2022; Accepted: 16 June 2022

Abstract: Spanning tree (τ ) has an enormous application in computer science
and chemistry to determine the geometric and dynamics analysis of compact
polymers. In the field of medicines, it is helpful to recognize the epidemiology
of hepatitis C virus (HCV) infection. On the other hand, Kemeny’s constant
(Ω) is a beneficial quantifier characterizing the universal average activities
of a Markov chain. This network invariant infers the expressions of the
expected number of time-steps required to trace a randomly selected terminus
state since a fixed beginning state si. Levene and Loizou determined that
the Kemeny’s constant can also be obtained through eigenvalues. Motivated
by Levene and Loizou, we deduced the Kemeny’s constant and the number
of spanning trees of hexagonal ring network by their normalized Laplacian
eigenvalues and the coefficients of the characteristic polynomial. Based on
the achieved results, entirely results are obtained for the Möbius hexagonal
ring network.
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1 Introduction

Obtaining the total number of spanning trees of any network is the central part of exploration
in network theory, as spanning trees of any network grow exponentially through a network size.
Earlier in the 1960s, researchers around the world explored numerous procedures of fluctuating
efficiency methods. It uses various fields of computer science such as image processing, networking,
and countless other usages of minimum spanning trees or entirely possible spanning trees of a network.

Another network invariant is entitled Kemeny’s constant (Ω). In [1], the Kemeny’s constant is
proposed by Kemeny and spell. It is motivating to perceive that this unique network invariant is
closely related to the analogous Spectrum of the normalized Laplacian (see Lemma 2.2 in the next
section). Kemeny’s constant is formally defined as the expected number of steps desirable for the
transition from a starting node to a terminus node. It is chosen randomly by a stationary distribution
of unbiased random walks on network N. In finite ergodic Markov chains, the Ω has an essential
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property independent of the initial state of the Markov chain [2]. The adjacency matrix A(N) of N is
a matrix whose (i, j)-entry is 1 if and only if ij ∈ EN and 0, otherwise. Define the Laplacian matrix
of N as L(N) = D(N) − A(N), where D(N) is the diagonal matrix whose main diagonal entries are
the degrees in N. In recent years, the method of using eigenvalues of normalized Laplacian, Γ(N),
consisting of the matrix in spectral geometry and random walks [3,4], attracted the researchers due to
its numerous applications.

1.1 Preliminaries

All the networks considered in this paper are finite, connected, simple, and undirected. Let N =
(UN, EN) be any network, where UN denote the node-set and EN denote the link set. We represent the
order of N as n = |UN| and its size as |EN|. The traditional notation and terminology not defined in
this paper are referred to [2,3].

The adjacency matrix A(N) of N is a matrix whose (i, j)-entry is 1 if and only if ij ∈ EN and 0,
otherwise. Define the Laplacian matrix of N as L(N) = D(N) − A(N), where D(N) is the diagonal
matrix whose main diagonal entries are the degrees in N. We assume that μ1 < μ2 � · · · � μn be the
eigenvalues of L(N). It is obvious that μ1 = 0 and μ2 > 0 if and only if N is a connected network.
Further, regarding the results on L(N), we recommend the recent work [4] and the references within.

Let M be an m×n matrix. We assume that S ⊂ {1, 2, . . . , m} and T ⊂ {1, 2, . . . , n}. Denote M(S|T)

for the submatrix of M, which is obtained by deleting the rows of S and the columns of T . Notably,
we denote M(S|T) by M(i|j), where S = {i} and T = {j}.

In recent years, the method using eigenvalues of normalized Laplacian, �(N), which consists of
the matrix in spectral geometry and random walks [5,6], has attracted more and more researchers’
attention. Defining the normalized Laplacian of nonregular networks also attracted researchers.
Furthermore, the normalized Laplacian of any network is defined as:

Γ (N) = I − D− 1
2 (N) A (N) D− 1

2 (N) = D− 1
2 (N) L (N) D− 1

2 (N) .

Here, when a degree of the node wj in N is 0, then (dj)
− 1

2 = 0, see [5]. That is to say

(Γ (N))ij =

⎧⎪⎪⎨
⎪⎪⎩

1, if i = j;

− 1√
didj

, if i �= j and vi is adjacent to vj;

0, otherwise,
The notation (Γ(N))ij symbolizes the (i, j)-entry of Γ(N), and we assume that {λ1, λ2, . . . , λn}

denote the Spectrum of the normalized Laplacian of N. These eigenvalues are labeled as 0 = λ1 <

λ2 � · · · � λn, with the fact that N is connected if and only if λ2 > 0. In [7], Chen and Zhang
determined that the resistance distance can also be obtained from eigenvalues expressions and their
multiplicities in the sense of normalized Laplacian.

The hexagonal system plays an essential role in theoretical chemistry. Since the hexagonal systems
are natural network illustrations of benzenoid hydrocarbon [8]. Therefore, in various fields, hexagonal
systems have been widely studied. The perfect matching in random hexagonal chain network is
established by Kennedy et al. [9] in 1991. The hexagonal chain for Wiener index and Edge-Szeged
index is determined in [10] and [11], respectively. In [12], Lou and Huang gave complete descriptions
of the characteristic polynomial of a hexagonal system.

In this paper, motivated by [13–17] and from the normalized Laplacian decomposition theorem,
we obtained the explicit closed-form formulations for Ω and τ for �n as well as ∇′

n.
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1.2 Definition and Structures of the Two Hexagonal Ring Networks

We denote the linear hexagonal chain with n hexagons by Mn. The hexagonal ring network is
denoted by �n and computed from Mn by identifying the opposite boundary links in an ordered way.
The Möbius hexagonal ring network ∇′

n obtained by Mn by identifying the opposite boundary links in
a reversed way.

In this paper, we focus on two interesting molecular network types: the hexagonal ring network
(see Fig. 1) and the Möbius hexagonal ring network (see Fig. 2). The hexagonal ring network �n is the
network obtained from the linear hexagonal chain Mn by identifying node 1 with (2n + 1) the node 1′

with (2n + 1)′, respectively. Similarly, the Möbius hexagonal ring network ∇′
n is the network obtained

from the linear hexagonal chain Mn by identifying the node 1 with (2n + 1)′, the node 1′ with (2n + 1),
respectively.

Figure 1: The hexagonal ring network

Figure 2: Möbius hexagonal ring network

2 Normalized Laplacian Polynomial Decomposition and Important Lemmas

In this section, we discuss some vital block matrices, characteristic polynomial, and the auto-
morphisms of N, which will be used to prove our main results. We denote ϕ(B) = det(xI − B) for
the characteristic polynomial of a matrix B, where B is a square matrix and I is the corresponding
identity matrix. The automorphism of any network N is a permutation π of the nodes of N having
the property that uv is a link in the network N, whenever π(u)π(v) is a link in N. We suppose that
the network N is an automorphism in π . Therefore, we write it as a 1-cycle of disjoint product and
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its transpositions in the form π = (1)(2) · · · (m)(1, 1′)(2, 2′) · · · (k, k′). Thus, it is easy to compute that
|UN| = m + 2k, and assume that U0 = {1, 2, . . . , m}, U1 = {1, 2, . . . , k} and U2 = {1′, 2′, . . . , k′}. After
an appropriate organization of the nodes in N, the normalized Laplacian matrix Γ(N) can be arranged
in the following way

Γ (N) =

⎛
⎜⎜⎝

ΓU00
ΓU01

ΓU02

ΓU10
ΓU11

ΓU12

ΓU20
ΓU21

ΓU22

⎞
⎟⎟⎠ .

The submatrix ΓUij is formed by rows corresponding to nodes of the network N in Ui and
columns corresponding to those in Uj, where i = 0, 1, 2 and j = 0, 1, 2. We assume that T =⎛
⎜⎜⎜⎜⎜⎜⎝

Im 0 0

0
1√
2

Ik

1√
2

Ik

0
1√
2

Ik − 1√
2

Ik

⎞
⎟⎟⎟⎟⎟⎟⎠

is a block matrix in which the dimension of a block is the same as the corresponding blocks of
Γ(N). Note that the automorphism of N is denoted by π . Hence ΓU11

= ΓU22
. Considering the unitary

transformation TΓ(N)TT yields

TΓ (N) TT =
⎛
⎝ΓR (N) 0

0 ΓS (N)

⎞
⎠ . (1)

where ΓR(N) =
(

ΓU00

√
2ΓU01√

2ΓU10
ΓU11

+ ΓU12

)
, ΓS(N) = ΓU11

− ΓU12
.

In [15], the first author of this article mentioned the decomposition theorem of the Laplacian
polynomial. In the following lemma, it is easy to see that the decomposition theorem for normalized
Laplacian polynomial is also existed as:

Lemma 2.1: The matrices �(N), �R(N) and �S(N) as defined above are, satisfies that ϕ(�(N)) =
ϕ(�R(N))ϕ(�S(N)).

The following two lemmas are essential to obtain our main results.

Lemma 2.2: [18] The Kemeny’s constant of a simple connected network N with n nodes is denoted
by 	 and defined as 	(N) = ∑n

i=2
1
λi

.

Lemma 2.3: [5] The Spanning trees of a network N with order n and links m are denoted by τ(N)

and defined as τ(N) = 1
2m

∏n

i=1di

∏n

k=2λk.

3 Important Matrices and the Spectrum of �(�n)

According to Lemma 2.1, we firstly obtain the normalized Laplacian eigenvalues for �n. Then
we give the formula for the sum of the normalized Laplacian eigenvalues’ reciprocals and the product
of the normalized Laplacian eigenvalues, which motivate us to calculate the Ω and the number of
spanning trees of �n. We also deduce the corresponding results based on our achieved results. Bearing
in mind the labeled nodes of �n as shown in Fig. 1, one can see that π = (1, 1′)(2, 2′) · · · (2n, (2n)′)
is an automorphism of the network �n. That is to say, U0 = ∅, U1 = {1, 2, . . . , 2n} and U2 =
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{1′, 2′, . . . , (2n)′}. From the notation in (1), we may denote ΓR(�n) and ΓS(�n) as ΓR and �S respectively,
and we have

ΓR = ΓU11
+ ΓU12

, ΓS = ΓU11
− ΓU12

.

The matrices ΓU11
and ΓU12

are of order 2n × 2n as given below:

ΓU11
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 1√
6

0 0 · · · 0 − 1√
6

− 1√
6

1 − 1√
6

0 · · · 0 0

0 − 1√
6

1 − 1√
6

· · · 0 0

0 0 − 1√
6

1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1 − 1√
6

− 1√
6

0 0 0 · · · − 1√
6

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

ΓU12
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
3

0 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 −1
3

0 · · · 0 0

0 0 0 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · −1
3

0

0 0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence ΓR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3

− 1√
6

0 0 · · · 0 − 1√
6

− 1√
6

1 − 1√
6

0 · · · 0 0

0 − 1√
6

2
3

− 1√
6

· · · 0 0

0 0 − 1√
6

1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 2
3

− 1√
6

− 1√
6

0 0 0 · · · − 1√
6

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n
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and ΓS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

− 1√
6

0 0 · · · 0 − 1√
6

− 1√
6

1 − 1√
6

0 · · · 0 0

0 − 1√
6

4
3

− 1√
6

· · · 0 0

0 0 − 1√
6

1 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 4
3

− 1√
6

− 1√
6

0 0 0 · · · − 1√
6

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n

.

For the sake of simplicity, we denote eigenvalues of ΓR and ΓS are respectively, as η1 � η2 � · · · �
η2n and ξ1 � ξ2 � · · · � ξ2n. Furthermore, the Spectrum of Γ(�n) is exactly {η1, η2, . . . , η2n , ξ1, ξ2, . . . ,
ξ2n}, due to Lemma 2.1. Obviously, η1 = 0, ηi > 0 (i = 2, . . . , 2n) and ξj > 0 (j = 1, . . . , 2n). It is easy
to calculate that |U�n | = |U∇′

n | = 4n and |E�n | = |E∇′
n | = 5n.

Further on, we introduce a matrix named Q, where Q is a matrix constructed from ΓR with the
(1, 2n)-entry and the (2n, 1)-entry by replacing 0. We consider the i-th order principal submatrix, Qi

(resp. Ci), formed by the first i rows and corresponding columns (resp. the last i rows and corresponding
columns) of Q. Put qi := det Qi and ci := det Ci. Put q0 = 1, c0 = 1 and it is straightforward that qi = ci

for all even i.

Lemma 3.1: For 0 � i � 2n, qi = 6− i
2 −1[3 + √

6 + (−1)i(3 − √
6)](i + 1).

Proof. Since it is easy to see that q1 = 2
3
, q2 = 1

2
, q3 = 2

9
. For 3 � i � 2n, expanding det Qi with

respect to its last row yields

qi =

⎧⎪⎨
⎪⎩

qi−1 − 1
6

qi−2, if i is even;

2
3

qi−1 − 1
6

qi−2, if i is odd.

Let di = q2i if 0 � i � n, let ei = q2i+1 if 0 � i � n − 1. Furthermore, c0 = 1, d0 = 2
3

and for i � 1,
then one has⎧⎪⎨
⎪⎩

di = ei−1 − 1
6

di−1,

ei = 2
3

di − 1
6
ei−1.

(2)

From the first equation in (2), one has ei−1 = di + 1
6
di−1. Hence, ei = di+1 + 1

6
di. Substituting ei−1

and ei into the second equation in (2) yields di+1 = 1
3
di − 1

36
di−1, i � 1. Keeping the same procedure, one

can obtain that ei+1 = 1
3
ei − 1

36
ei−1, i � 1, and qi satisfies the below recurrence relation

qi = 1
3

qi−2 − 1
36

qi−4, q0 = 1, q1 = 2
3

, q2 = 1
2

, q3 = 2
9

. (3)

Then, the characteristic equation of (3) is x4 = 1
3
x2 − 1

36
, the roots of which are x1 = x2 = 1√

6
and

x3 = x4 = − 1√
6
. The general solution of (3) is given by
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qi =
(

1√
6

)i

(y1 + iy2) +
(

− 1√
6

)i

(y3 + iy4) . (4)

Together with the initial conditions of (4), the system of equations yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 + y3 = 1,

1√
6

(y1 + y2) − 1√
6

(y3 + y4) = 2
3

,(
1√
6

)2

(y1 + 2y2) +
(

− 1√
6

)2

(y3 + 2y4) = 1
2

,(
1√
6

)3

(y1 + 3y2) +
(

− 1√
6

)3

(y3 + 3y4) = 2
9

.

The unique solution of this system can be found to be y1 = 3 + √
6

6
, y2 = 3 + √

6
6

, y3 = 3 − √
6

6
,

y4 = 3 − √
6

6
. We get our desired result by substituting y1, y2, y3 and y4 in (4).

Considering the procedure as the proof of Lemma 3.1, it is easy to determine the following results.

Lemma 3.2: For 0 � i � 2n, ci = 1
4
· 6− i

2 [2 + √
6 + (−1)i(2 − √

6)](i + 1).

Based on Lemmas 3.1 and 3.2, we determine a2n−1 and a2n−2. For the sake of simplicity, we denote
the entries of ΓR by lij, i, j = 1, 2, . . . , 2n.

Lemma 3.3: −a2n−1 = 10n2

6n .

Proof. Since the number −a2n−1 (= (−1)2n−1a2n−1) is the sum of all those principal minors of ΓR

which have 2n − 1 rows and columns (see [19, P5]); we have

−a2n−1 =
2n∑

i=1

det�R (i|i) = q2n−1 + c2n−1 +
2n−1∑
i=2

det�R (i|i) .

For 2 � i � 2n − 1, one has

ΓR (i|i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

l11 − 1√
6

· · · 0 0 · · · 0 − 1√
6

− 1√
6

l22 · · · 0 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · li−1,i−1 0 · · · 0 0
0 0 · · · 0 li+1,i+1 · · · 0 0
...

...
. . .

...
...

. . .
...

...

0 0 · · · 0 0 · · · l2n−1,2n−1 − 1√
6

− 1√
6

0 · · · 0 0 · · · − 1√
6

l2n,2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2n−1)×(2n−1)

.

Let X =
⎛
⎝0 Ii−1

I2n−i 0

⎞
⎠ . It is evident that X TΓR(i|i)X =

{
Q2n−1, i is even;
C2n−1, i is odd.
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Thus we have det ΓR(i|i) =
{

q2n−1, i is even;
c2n−1, i is odd.

Therefore,

−a2n−1 = q2n−1 + c2n−1 +
2n−1∑
i=2

det�R (i|i) = nq2n−1 + nc2n−1 = n
(

4n
6n

+ n
6n−1

)
= 10n2

6n
.

This completes the proof of Lemma 3.3.

Lemma 3.4: a2n−2 = 25n4 − 7n2

3 · 6n

Proof. Since the number a2n−2 (= (−1)2n−2a2n−2) is the sum of all those principal minors of ΓR which
have 2n − 2 rows and columns (see [19, P5]), one has

a2n−2 =
∑

1�i<j�2n

det�R ({i, j} | {i, j}) .

We proceed further by considering the below subcases.

Subcase 1: i = 1, j ∈ {2, 3, . . . , 2n}. Let

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

l2,2 · · · 0 0
...

. . .
...

...

0 · · · lj−2,j−2 − 1√
6

0 · · · − 1√
6

lj−1,j−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Together with the convention that det Q = 1, whence j = 2. Then

ΓR ({1, j} | {1, j}) =
⎛
⎝Q 0

0 C2n−j

⎞
⎠ .

Hence,
2n∑

j=2

det �R ({1, j} | {1, j}) =
2n∑

j=2

det Q detC2n−j =
2n∑

j=2

cj−2c2n−j = 10n3 − 4n
6n

.

Subcase 2: j = 2n, i ∈ {2, 3, . . . , 2n − 1}. Let

Q′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

li+1,i+1 · · · 0 0
...

. . .
...

...

0 · · · l2n−2,2n−2 − 1√
6

0 · · · − 1√
6

l2n−1,2n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with the convention that det Q′ = 1 if i = 2n − 1. Then

�R ({i, 2n} | {i, 2n}) =
⎛
⎝Qi−1 0

0 Q′

⎞
⎠ .

Hence,
2n−1∑
i=2

det �R ({i, 2n} | {i, 2n}) =
2n−1∑
i=2

det Qi−1 det Q′ =
2n−1∑
i=2

qi−1q2n−1−i = 2
(
10n3 − 19n + 9

)
3 · 6n

.

Subcase 3: For 1 < i < j < 2n, we have

ΓR ({i, j} | {i, j}) =

⎛
⎜⎜⎝

Qi−1 0 Q1

0 Q2 0
QT

1 0 C2n−j

⎞
⎟⎟⎠ ,

where

Q1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · − 1√
6

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Q2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

li+1,i+1 − 1√
6

· · · 0

− 1√
6

li+2,i+2 · · · 0

...
...

. . .
...

0 0 · · · lj−1,j−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

together with the convention that det Q2 = 1, whence j = i + 1. Let Y =

⎛
⎜⎜⎝

0 Ii−1 0
0 0 Ij−i−1

I2n−j 0 0

⎞
⎟⎟⎠ , we can

see that

Y TΓR ({i, j} | {i, j}) Y =

⎛
⎜⎜⎝

C2n−j QT
1 0

Q1 Qi−1 0
0 0 Q2

⎞
⎟⎟⎠ .

Notice that for even j,

⎛
⎝C2n−j QT

1

Q1 Qi−1

⎞
⎠ = Q2n−1−j+i and det Q2 = qj−i−1 and thus

det ΓR({i, j}|{i, j}) = q2n−1−j+iqj−i−1.

Otherwise, it is evident that det

⎛
⎝C2n−j QT

1

Q1 Qi−1

⎞
⎠ = c2n−1−j+i and det Q2 = cj−i−1, and thus

det ΓR ({i, j} | {i, j}) = c2n−1−j+icj−i−1.
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Therefore,∑
1<i<j<2n

det �R ({i, j} | {i, j}) =
∑

1 < i < j < 2n,
jis even

q2n−1−j+iqj−i−1 +
∑

1 < i < j < 2n,
jis odd

c2n−1−j+icj−i−1

= 25n4 − 50n3 − 7n2 + 50n − 18
3 · 6n

.

Hence, a2n−2 = ∑
1�i<j�2n det �R({i, j}|{i, j}) = 25n4 − 7n2

3 · 6n
.

Thus, we complete proof of Lemma 3.4.

Hence, we introduce a matrix F , where F is a matrix obtained from ΓS with the (1, 2n)-entry
and the (2n, 1)-entry by replacing 0. We give the detail for i-th order of principal submatrix, Fi (resp.
Ui), obtain from the first i rows and corresponding columns (resp. the last i rows and corresponding
columns) of F . Put fi := det Fi, ui := det Ui and fixed f0 = 1, u0 = 1. Through the below observations,
we proceed further.

Observation 3.5: For 0 � i � 2n, fi = 1

12 · √
6

i [((3 + 2
√

3) + (−1)i(3 − 2
√

3))((
√

2 + 1)i+1 −
(
√

2 − 1)i+1)].

Proof of Observation 3.5: It is routine to check that f1 = 4
3

, f2 = 7
6

, f3 = 4
3

. For 3 � i � 2n,

expanding det Fi respect to its last row yields

fi =

⎧⎪⎨
⎪⎩

fi−1 − 1
6

fi−2, if i is even;
4
3

fi−1 − 1
6

fi−2, if i is odd.

Let si = f2i, if 0 � i � n and let ti = f2i+1, if 0 � i � n − 1. For i � 1, we set that s0 = 1 and t0 = 4
3
,

then one has⎧⎪⎨
⎪⎩

si = ti−1 − 1
6

si−1,

ti = 4
3

si − 1
6

ti−1.
(5)

From the first equation of (5), we have ti−1 = si + 1
6

si−1, replace i − 1 by i, we have ti = si+1 + 1
6

si.

Putting the values of ti−1 and ti into the second equation in (5) gives si+1 = si − 1
36

si−1, i � 1. By

keeping the same procedure, we have ti+1 = ti − 1
36

ti−1, i � 1. Therefore, fi satisfies the below recurrence

relation

fi = fi−2 − 1
36

fi−4, f0 = 1, f1 = 4
3

, f2 = 7
6

, f3 = 4
3

. (6)
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Then in (6) the characteristic equation is x4 = x2 − 1
36

and its roots are x1 = 1 + √
2√

6
, x2 =

−1 + √
2√

6
, x3 =

√
2 − 1√

6
and x4 = −

√
2 − 1√

6
. The general solution of (6) is given by

fi =
(

1 + √
2√

6

)i

y1 +
(

−1 + √
2√

6

)i

y2 +
(√

2 − 1√
6

)i

y3 +
(

−
√

2 − 1√
6

)i

y4. (7)

Together with the initial conditions in (6) gives the following system of equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 + y2 + y3 + y4 = 1,

1 + √
2√

6
(y1 − y2) +

√
2 − 1√

6
(y3 − y4) = 4

3
,(

1 + √
2√

6

)2

(y1 + y2) +
(√

2 − 1√
6

)2

(y3 + y4) = 7
6

,(
1 + √

2√
6

)3

(y1 − y2) +
(√

2 − 1√
6

)3

(y3 − y4) = 4
3

.

The unique solution of this system of equations is y1 = (1 + √
2)(3 + 2

√
3)

12
, y2 = (1 + √

2)(3 − 2
√

3)

12
,

y3 = (1 − √
2)(3 + 2

√
3)

12
and y4 = (1 − √

2)(3 − 2
√

3)

12
. By putting the values of y1, y2, y3 and y4 in

(7), it is easy to get the desired result.

We give the below observation with the same procedure as in the proof of Observation 3.5.

Observation 3.6: For 0 � i � 2n, ui = 1

8·√6i [((2 +√
3)+ (−1)i(2 −√

3))((
√

2 + 1)i+1 − (
√

2 − 1)i+1)].

By using the expansion to determine det ΓS with regards to its last row, one has

det ΓS = det F2n−1 + 1√
6

[(
− 1√

6

)2n−1

− 1√
6

det U2n−2

]
+ 1√

6

[(
− 1√

6

)2n−1

− 1√
6

det F2n−2

]

= f2n−1 − 1
6

(f2n−2 + u2n−2) − 2
6n

.

Together with Observations 3.5 and 3.6, we obtain the following observation.

Observation 3.7: det�S = [(
√

2 + 1)n − (
√

2 − 1)n]2

6n
.

Now, we are ready to determine h2n−1. For the sake of simplicity, we denote the entries of ΓS with
kij, i, j = 1, 2, . . . , 2n.

Observation 3.8: h2n−1 = −7
√

2n[(
√

2 + 1)2n − (
√

2 − 1)2n]
4 · 6n

.
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Proof of Observation 3.8: Since −h2n−1 (= (−1)2n−1h2n−1) is the sum of all those principal minors of
ΓS which have 2n − 1 rows and columns (see also in [19, P5]), one has −h2n−1 = ∑2n

i=1 det �S(i|i). For
2 � i � 2n − 1, one has

ΓS (i|i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k11 − 1√
6

· · · 0 0 · · · 0 − 1√
6

− 1√
6

k22 · · · 0 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · ki−1,i−1 0 · · · 0 0
0 0 · · · 0 ki+1,i+1 · · · 0 0
...

...
. . .

...
...

. . .
...

...

0 0 · · · 0 0 · · · k2n−1,2n−1 − 1√
6

− 1√
6

0 · · · 0 0 · · · − 1√
6

k2n,2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2n−1)×(2n−1)

.

By the same procedure as in the detail of det ΓR(i|i)(2 � i � 2n − 1) in Lemma 3.3, we have

−h2n−1 = f2n−1 + u2n−1 +
2n−1∑
i=2

det �S (i|i) = nf2n−1 + nu2n−1 =
7
√

2n
[(√

2 + 1
)2n

−
(√

2 − 1
)2n

]
4 · 6n

.

This completes the proof of Observation 3.8.

The below proposition is a direct consequence of Lemma 2.2.

Proposition 3.9: Let �n be a zig-zag polyhex network with n hexagons. Then

Ke (N) =
2n∑

i=2

1
ηi

+
2n∑

j=1

1
ξj

. (8)

The eigenvalues of ΓR are characterized as 0 = η1 < η2 � · · · � η2n and the eigenvalues of ΓS are
0 < ξ1 � ξ2 � · · · � ξ2n.

In the following propositions, we derived the expressions
∑2n

i=2
1
ηi

and
∑2n

j=1
1
ξj

.Based on the
relationship between roots and coefficients of ϕ(ΓR) and ϕ(ΓS)

Proposition 3.10: Let 0 = η1 < η2 � · · · � η2n be eigenvalues of �R. Then
2n∑

i=2

1
ηi

= 25n2 − 7
30

.

Proof. Let ϕ(ΓR) = x2n + a1x2n−1 + · · · + a2n−2x2 + a2n−1x = x(x2n−1 + a1x2n−2 + · · · + a2n−2x + a2n−1),

where a2n−1 �= 0. Then η2, η3, . . . , η2n are the roots of the following equation

x2n−1 + a1x2n−2 + · · · + a2n−2x + a2n−1 = 0.

That is to say,
1
η2

,
1
η3

, . . . ,
1
η2n

are the roots of a2n−1x2n−1 + a2n−2x2n−2 + · · · + a1x + 1 = 0.
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From the Vieta’s Theorem, one has
2n∑

i=2

1
ηi

= −a2n−2

a2n−1

. (9)

Putting Lemmas 3.3 and 3.4 into (9) yields
∑2n

i=2

1
ηi

= 25n2 − 7
30

, as desired.

Proposition 3.11: Let ξ1, ξ2, . . . , ξ2n be eigenvalues of �S. Then

2n∑
i=1

1
ξi

= 7
√

2n
4

·
(√

2 + 1
)n

−
(√

2 − 1
)n

(√
2 + 1

)n

+
(√

2 − 1
)n .

Proof. Let ϕ(ΓS) = x2n + h1x2n−1 + · · · + h2n−1x + h2n,

where h2n �= 0. Then ξ1, ξ2, . . . , ξ2n are the roots of the following equation

x2n + h1x2n−1 + · · · + h2n−1x + h2n = 0.

That is to say,
1
ξ1

,
1
ξ2

, . . . ,
1
ξ2n

are the roots of

h2nx2n + h2n−1x2n−1 + · · · + h1x + 1 = 0.

Bear in mind the Vieta’s Theorem; we have
2n∑

i=1

1
ξi

= −h2n−1

h2n

= − h2n−1

det �S

. (10)

To obtain the expression
∑2n

i=1
1
ξi

, it is enough to obtain h2n−1 and det ΓS in (10). In view of (10),
Observations 3.7 and 3.8, Proposition 3.11 follows directly.

Now, we will calculate some significant invariants related to �n (resp. ∇′
n) by the expression of

the eigenvalues of Γ(N). We also contribute closed-form formulae of Ω and τ for �n (resp. ∇′
n) in the

subsequent section.

4 Main Results
4.1 The Kemeny’s Constant and the Number of Spanning Trees of �n

Let �n is a hexagonal ring network with n hexagons. Then

Theorem 4.1: 	(�n) = 25n2 − 7
30

+ 7
√

2n
4

· (
√

2 + 1)n + (
√

2 − 1)n

(
√

2 + 1)n − (
√

2 − 1)n
.

Proof. Based on Propositions 3.1–3.3 and |E�n | = 5n., we obtain the result immediately.

Theorem 4.2: τ(�n) = n[(
√

2 + 1)n − (
√

2 − 1)n]2.

Proof. Based on the proof of Proposition 3.10, it is easy to see that η2, . . . , η2n are the roots of an
equation x2n−1 + a1x2n−2 + · · · + a2n−2x + a2n−1 = 0. Thereby, one has

∏
2n
i=2 ηi = −a2n−1. By Lemma 3.3,

we have
2n∏

i=2

ηi = 10n2

6n
.
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Similarly,

2n∏
j=1

ξj =
[(√

2 + 1
)n

−
(√

2 − 1
)n]2

6n
.

Note that∏
v∈U�n

d�n (v) = 22n32n, |E�n | = 5n.

Together with Lemma 2.3, we get our desired result.

4.2 The Kemeny’s Constant and the Number of Spanning Trees of ∇′
n

Now, we devote our attention to determining the Ω and the τ for the Möbius hexagonal ring net-
work 	′

n. Based on the labeled nodes of ∇′
n as shown in Fig. 2, one has π = (1, 1′)(2, 2′) · · · (2n, (2n)′) is

an automorphism of ∇′
n. From Fig. 2, we have U0 = ∅, U1 = {1, 2, . . . , 2n} and U2 = {1′, 2′, . . . , (2n)′}.

For the sake of simplicity, we denote �R(∇′
n) and �S(∇′

n) to �′
R and �′

S, respectively. Thereby, it is easy
to see that �′

R = �R and

�′
S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3

− 1√
6

0 0 · · · 0 0
1√
6

− 1√
6

1 − 1√
6

0 · · · 0 0 0

0 − 1√
6

4
3

− 1√
6

· · · 0 0 0

0 0 − 1√
6

1 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 1 − 1√
6

0

0 0 0 0 · · · − 1√
6

4
3

− 1√
6

1√
6

0 0 0 · · · 0 − 1√
6

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n×2n

.

Note that η1, η2, . . . , η2n are the spectrums of �′
R and suppose that β ′

j (1 � i � 2n) are the spectra of
�′

S. Due to Lemma 2.1, we have the normalized Laplacian eigenvalues of ∇′
n is {η1, . . . , η2n, β ′

1, . . . , β ′
2n}.

In the following theorem, we give the formula for Ω and the τ for ∇′
n.

Theorem 4.3: 	(∇′
n) = 25n2 − 7

30
+ 7

√
2n

4
· (

√
2 + 1)n − (

√
2 − 1)n

(
√

2 + 1)n + (
√

2 − 1)n
.

Proof. We denote h′
2n−1 as the coefficient of x in det(xIn − �′

S), and expand det �′
S with regards to

the last row, we have

det �′
S = w2n−1 − 1

6
(w2n−2 + u2n−2) + 2

6n
=

[(√
2 + 1

)n

+
(√

2 − 1
)n]2

6n
.
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Similar to the method applied in Proposition 3.11, we have h′
2n−1 = h2n−1. Hence

	
(∇′

n

) =
2n∑

i=2

1
ηi

+
2n∑

j=1

1
β ′

j

= 25n2 − 7
30

− h′
2n−1

det �′
S

= 25n2 − 7
30

+ 7
√

2n
4

·
(√

2 + 1
)n

−
(√

2 − 1
)n

(√
2 + 1

)n

+
(√

2 − 1
)n ·

Theorem 4.4: τ(∇′
n) = n[(

√
2 + 1)n + (

√
2 − 1)n]2.

Proof. By keeping the same discussion as in the proof of Theorem 4.2, one has

2n∏
i=2

ηi = 10n2

6n
,

2n∏
j=1

β ′
j =

[(√
2 + 1

)n

+
(√

2 − 1
)n]2

6n
.

Note that∏
v∈U	n′

d∇′
n (v) = 22n32n, |E∇′

n | = 5n.

With the above expressions and Lemma 2.3, we get our desired result.

5 Comparison and Discussion

Theorem 4.1 and Theorem 4.2 implies that the Ω(�n) and τ(�n) of our considered network scales
linearly and in direct proportion with n. We have verified our precise results in Figs. 3 and 4, which show
that when we increase n, consequently Ω(�n) and τ(�n) also increases. Our findings give some new
insights that can readily distinguish the structure of significant categories in our network. Similarly,
Theorem 4.3 and Theorem 4.4 implies that the 	(∇′

n) and τ(∇′
n) of our considered network scales

linearly and in direct proportion with n. We have verified our precise results in Figs. 5 and 6, which
show that when we increase n, consequently 	(∇′

n) and τ(∇′
n) also increases.

Figure 3: Spanning trees and n in 	n

Figs. 7 and 8 reflect the relationship between Ω(�n), τ(�n) and 	(∇′
n), τ(∇′

n) respectively.
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Figure 4: Spanning trees and n in �n

Figure 5: Kemeney’s constant and n in ∇′
n
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Figure 6: Spanning trees and n in ∇′
n

Figure 7: Comparison of Ω and τ in �n
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Figure 8: Comparison of Ω and τ in ∇′
n

6 Concluding Remarks

In this paper, bear in mind the spectrums of normalized Laplacian; we identified the explicit
closed-form formulae of Ω and τ for �n and ∇′

n, respectively. It is natural and exciting to study the
hitting times of random walk for the hexagonal ring network and the Möbius hexagonal ring network.
We will do it shortly.
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