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Abstract: Bloom filter (BF) is a space-and-time efficient probabilistic tech-
nique that helps answer membership queries. However, BF faces several issues.
The problems with traditional BF are generally two. Firstly, a large number of
false positives can return wrong content when the data is queried. Secondly,
the large size of BF is a bottleneck in the speed of querying and thus uses large
memory. In order to solve the above two issues, in this article, we propose the
check bits concept. From the implementation perspective, in the check bits
approach, before saving the content value in the BF, we obtain the binary
representation of the content value. Then, we take some bits of the content
value, we call these the check bits. These bits are stored in a separate array
such that they point to the same location as the BF. Finally, the content value
(data) is stored in the BF based on the hash function values. Before retrieval
of data from BF, the reverse process of the steps ensures that even if the same
hash functions output has been generated for the content, the check bits make
sure that the retrieval does not depend on the hash output alone. This thus
helps in the reduction of false positives. In the experimental evaluation, we are
able to reduce more than 50% of false positives. In our proposed approach,
the false positives can still occur, however, false positives can only occur if
the hash functions and check bits generate the same value for a particular
content. The chances of such scenarios are less, therefore, we get a reduction
of approximately more than 50% false positives in all cases. We believe that
the proposed approach adds to the state of the art and opens new directions
as such.
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1 Introduction

The exponentially growing usage of social media networks, online newspapers, and mobile
applications, among many other platforms, has led to an unprecedented era of massive volumes of data
generated daily. As a result, various techniques are developed to collect structured and unstructured
data as part of what is referred to nowadays as big data [1].
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A variety of applications can be found in big data, such as social networks and healthcare. A
comprehensive study of indexing technologies for big data was recently done by Abdullahi et al. [2],
which indicated that handling big data successfully and efficiently is challenging. Due to an exponential
increase in the variety of cyberattacks, this challenge has played a pivotal role not just in indexing
and membership queries, but likewise in big data security analytics [3]. Big data security analytics
differentiate themselves by being able to correlate events across space and time, in addition to deeply
examining and analyzing the network’s packets.

Accordingly, different techniques have been proposed and utilized in the field of big data security
analytics. Bloom Filter (BF), developed by Bloom in 1970 [4], is a space-and-time efficient probabilistic
data structure. In particular, the BF is generally known as a dense data structure that helps membership
queries [5]. The enrichment of employing BF in terms of space-saving, locating, and saving time
typically dominates a potential false positives’ poor rate that might appear in membership queries. This
directly impacts the main characteristics of big data security analytics, which are scale, performance,
and analytical flexibility.

A previously proposed work by Alsuhibany [6] has conducted an extensive experiment on using
BF for big data security analysis. However, the False Positive Rate (FPR) growth was demonstrated.
In the false positive case, a yes result is returned when the element is not a member of a given set. As
such, the performance of the whole data analytics process can be negatively affected. Therefore, this
paper proposes various techniques based on check bits to reduce the false-positive rate for the BE. The
evaluation of the proposed methods gave quite promising results and helped reduce FPR by more than
80% in some cases.

The rest of the paper is organized as follows: Section 2 discusses the background and related
works. Section 3 presents the proposed methodology, while the experiments and results are provided
in Section 4. The paper is concluded in Section 5, along with the provision of some future directions.

2 Related Work

A bloom filter (BF) is a dense data structure that helps membership queries [5]. The enrichment of
employing BF in terms of space-saving, locating, and saving time commonly overshadows a potential
false-positive poor rate that might appear in membership queries. The core idea of the standard bloom
filter (SBF) is to allocate a bit vector, B, of m bits that are initially assigned zeros, and then a pre-
defined k£ number of independent hash functions, 4, &,, . . ., i, are adopted with a range {0, ..., 1 —m}
for each. The bits’ location of an element to be added, s, into the bit vector B are made as one such as
Blh ()] = ... = B[l (s)] = | to complete the element addition [7].

It is worth mentioning that some bits might be turned into one numerous times because some bits
might be shared among the added elements. As such, bits at the location %, (s) , .. ., /. (s) are checked to
query using the BF whether a particular element, s, is a member of the BF or not. When the values of all
checked bits are one, then the element in question is a member in B; otherwise, it is not. Nevertheless,
the checked bits might be one, but the element s is not a member in B, in which case this probability is
known as the false positive.
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In false positive, a yes result is returned when the element is not actually in the filter. On the other
side, it is not possible in BF to get a false negative, that is, getting ‘no’” when the element in question
indeed exists in the filter. The false-positive probability can be computed as shown in Eq. (1).

f%(l _ (1 _ }%)A)m (1 —e’%)k (1)

where f is the false positive rate (FPR), m is the storage size, and k is the computation time. There
exists a tradeoff between m, k, and f such that f/ can be minimized by setting k = In2* and f becomes

i = (%)k ~ (0.6185)" . As such, / decreases as m increases in proportion to n [8].

Various types of BFs have been classified grounded on the application. However, because the
work presented in this paper centers on introducing the concept of check bits and applying the BF
in the network security domain, we only assess some types of BF, such as (i) standard BF (SBF),
(i1)) compressed (ComBF), (iii) dynamic (DBF), (iv) generalized (GBF), (v) hierarchical (HBF), (vi)
space-code BF (SCBF), and their involvement in the network security field.

In SBF, which this paper utilizes to introduce the concept of check bits, the elementset S: f = S —
[0, 1] membership function is stored [9]. With SBF, arbitrary functions can be encoded to associate
values with a subset of the elements. While their efficient use of storage is maintained, such arbitrary
functions can be generalized with dynamic updates though the functions remain unaffected.

ComBF [10] introduces a transmission size z alongside three main factors, k, m, and n. The idea
behind this transmission size is that the data size must be sent over the network, which turns out
to be significant in saving the bandwidth but with higher memory requirements cost. As highlighted
previously, the SBF is only applicable with static (unchangeable over time) and known-size sets. To
address this limitation, a DBF was introduced by Guo et al. [11], in which a dynamic set A with
an active n x m bit matrix is created. The DBF initially starts with activating an SBF, followed by
activating a new SBF only when the FPR starts growing. Once the new SBF is activated, the old one
is switched to the new one. All other filters (old ones) are then deactivated, and only the last activated
filter is maintained active.

SBF lacks the upper bound of the FPR, which is a lack of achieving 100% FPR, which might cause
a security issue. The GBF was thus proposed by Laufer et al. [12] to tackle this issue with an upper
bound on the FPR probability by setting the bits of the filter and resetting the bits by hash functions.
GBEF reports a robust performance for security purposes.

Instead of only using a single level of the probabilistic array, HBF uses two levels of arrays to
lookup and map files inside a group of metadata servers [13]. The first array signifies the distribution
of the metadata server to reduce the memory overhead considerably, while the second array caches
a partial distribution information metadata server. HBF demonstrates an efficient and improved
performance and scalability of the file system.

Kumar et al. [14] later introduced SCBF to approximate the measurement of per-flow traffic.
Precisely, SCBF approximates using several SBFs the representation of a multiset for answering
queries, such as whether an element x is an element of a multiset or not.

It is worth highlighting the involvement of the BF types mentioned earlier in the network security
domain from the perspective of authentication, firewalling, anomaly detection, trace backing, node
replication detection, anonymous routing and privacy-preserving, string matching, and SYN flooding
addressing [6].
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The SBF involves and is applicable in all of the aforementioned network security perspectives,
which justifies utilizing it with the proposed check Bits approach in this paper. Nevertheless, ComBF,
GBF, HBF, and SCBF are involved with trace backing alone, and similarly, DBF involvement is solely
on node replication detection.

Alsuhibany [6] has introduced big data security analysis using BF. In particular, the counting BF
with a smaller dataset was presented to test such a space-and-time efficient probabilistic technique
with big data security analysis. However, such a concept was only evaluated with a small dataset
using counting BF to prove the concept. Recently, potential vulnerabilities to cryptanalysis attacks
are associated with BF’s encoded values. For example, an efficient simulated attack was conducted on
BFs and reported success with re-identifying sensitive attribute values [15]. The efficient attack is later
carried out on an actual database based on the BF construction principle of hashing elements of sets
into the positions of bits. This process can effectively re-identify sensitive encoded values independently
of the encoding function. Therefore, Christen et al. [15] proposed Hashing BF method seeking to
utilize a single base hash function and some modulo operations to reduce the expenses caused by hash
functions while maintaining a similar FPR.

For identifying the repeatedly co-occurring positions of bits in the BF set, Christen et al. [16] have
similarly proposed a frequent item mining attack method. This attack method has the ability to re-
identify the sensitive encoded values, despite the uniqueness of the encoded item set in the database. A
study by Lu et al. [17] has later introduced an enhancement of BF called Ultra-Fast BF (UFBF),
following the approach of the Single Instruction Multiple Data (SIMD) processor. UFBF mainly
focuses on an efficient membership checking process with a bit-test process in parallel and encoding
the bit information in a small block.

Patgiri et al. [18] analyzed the role of BF in big data research. They discussed fingerprint
BF, a specific BF to match a fingerprint with stored fingerprints. Furthermore, they presented a
Multidimensional BF that uses 2D, 3D, or even higher dimensional BF arrays. A BF is not suitable
for exact query requirements e.g., real-time systems. Reviriego et al. [19] proposed one memory
access BF that avoids false positives for repeated elements for various queries. The approach was
tested in networking applications and an FPR of less than 5% was achieved while using as little as
four bits per element. Another survey related to BF variants for different domains was conducted
by Abdennebi et al. [20]. They discussed one hashing BF, which only uses a single function. Only
some of the BF, such as Cuckoo BF, Counting BF, DBF, and High-dimensional BF allow deletions.
Wu et al. [21] came up with an interesting idea of Elastic BF which offers deletion as well as
expansion without increasing the FPR and avoiding the reduced query speed. They introduced Elastic
fingerprints which absorb and release bits during compression and expansion.

To the best of our knowledge, none of the aforementioned related work has principally focused on
addressing the issue of the increasing FPR. Hence, the work presented in this paper introduces a novel
approach based on check bits, as a false positive reduction approach, as detailed in the next section.

3 Proposed Methodology

This section gives an overview of the proposed methodology. More specifically, we offer a novel
method to reduce the false positive rate of the bloom filter. In particular, the proposed algorithm is
based on the concept of using multiple check bits. The input element to the BF, which can be in textual
or numeric form, is converted to binary format. Later, all the bits are added together to generate a
number in decimal form. This is followed by converting the number once again to the binary form.
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After getting the binary number, we devise various techniques to reduce the number of false
positives. For our approach, the check bit offset is fixed to 1. It means that the increment of bits
for taking check bits from the bits’ sample is 1. In case the check bits’ offset is more than one, there is a
higher chance of getting out of the bits’ array (beyond 0 and beyond the maximum size) of the content
bits. Moreover, we set the number of hash functions to three. With initial experiments, we found three
hash functions to be optimal. Then, we varied different parameters, such as the check bits’ position
(e.g., middle or at the left of the bits) and their number and bloom filter size. Fig. 1 shows the flowchart
of the proposed method to reduce the false positives.

Input to the BF Conversion to the el L L Conversion to the
| . generate a decimal
| (text/numeric) binary form number binary form

Variation in the check

i e ) Usage of three hash
Analysis of Results O L I e <:’ functions
Check bits offset =1

of the bloom filter

Figure 1: Flowchart of the proposed false positive reduction approaches

The stepwise implementation of the proposed algorithm in the form of Pseudo-Code is provided
in Algorithm 1.

Algorithm 1: Check Bits Algorithm
Read the input to the Bloom Filter (in textual or numeric form)
Convert the input to the binary form
Add the bits to generate a number in the decimal form
Convert once again the number to the binary form
Select the hash functions and the check bits’ offset
Generate the hash values
while (acceptable results are not achieved)
Finalize the check bits’ position which could be left, middle, or right
Select the number of check bits
Select the size of the bloom filter
end while
BF_parameters = Array (check bits, hash values)
Out (BF (BF_parameters)) // Out represents the final Bloom Filter

4 Experiments and Results

This section describes the experimental evaluation of the effect of the check bits.
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4.1 Variation in the Number of Check Bits

Tab. 1 represents the constant parameters used for the first set of experiments. For these experi-
ments, the check bit offset is fixed to 1. It means that the increment of bits for taking check bits from
the bits’ sample is 1. The size of the bloom filter is kept at 500. We keep this size to analyze the influence
of the check bits optimally. A large number can be used; however, the false positives can already be
reduced without check bits by significantly increasing the bloom filter size. Therefore, we choose 500
to be the optimal size of the bloom filter for the tested dataset. Tab. | shows that three hash functions
are used for the first set of experiments. With initial experiments, we found three hash functions to be
optimal. For extracting the position of check bits, we start from the middle of the bits and increment
by 1 for extracting the check bits.

Table 1: Constant parameters used for the first set of experiments

Parameters Values
Check bit offset 1

Size of the bloom filter 500
Number of hash functions 3
Position of check bits Middle+

Fig. 2 shows the first set of experiments and depicts the performance analysis of the number
of check bits enabled/disabled. The x-axis indicates the number of check bits used. Y-axis shows
the number of false-positive entries. The blue color shows the number of false positive for the
corresponding check bits enabled. Similarly, the red bars show the performance when the check bits
are disabled. For example, ‘2’ on the x-axis represent the check bits used while creating a bloom filter.
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Figure 2: Check bits and their role in the false-positive reduction (check bits computed from the middle)

As seen in Fig. 2, for two check bits, the number of false positives without check bits is 1061. For
being enabled, we get 472 false positives. For two check bits, we get 55.51% reductions. We got 359 false
positives for three check bits when check bits were enabled, thus providing a 66.16% improvement in
the number of false positives. Similarly, as the number of check bits increases, more and more reduction
in the number of false positives is observed. 86.71% reduction is seen when the number of check bits
is increased to 7.
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4.2 Effect of the Position of Check Bits on the False Positives

The constant parameters for the second set of experiments are shown in Tab. 2. The check bit offset
is kept as one, and three hash functions are used, just like in the first set of experiments. Moreover, the
bloom filter size is fixed at 500, like in the first set of experiments. However, for extracting the position
of check bits, we start from the leftmost bit and increment by 1 each time.

Table 2: Constant parameters used for the second set of experiments

Parameters Values
Check bits’ offset 1

Size of the bloom filter 500
Number of hash functions 3
Position of check bits Left+

Fig. 3 shows the impact of this approach on the number of false positives. A gradual reduction in
the number of false positives is observed as the number of check bits is increased from 2 to 7, where the
check bits are computed from the left. The number of false positives without any check bits remained
at 1061, just like the first set of experiments. 55.42% reduction in false positives is observed as two
check bits are used. This increased to a 67.20% reduction as the number of check bits was incremented
by 1. The maximum reduction is observed for seven check bits (82.66% reduction).
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Figure 3: Check bits and their role in the reduction of false positives (check bits computed from the
left)

4.3 Impact of Bloom Filter Size vs. Check Bits

Tab. 3 depicts the set of constant parameters used for the third set of experiments. In this set, the
number of check bits is kept constant at 2. Similarly, the check bit offset is fixed as one, and three hash
functions are used just like the first two sets of experiments. For extracting the position of the check
bits, we still start from the middle of the bits.
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Table 3: Constant parameters used for the third set of experiments

Parameters Values
Check bits’ offset 1
Number of check bits 2
Number of hash functions 3
Position of check bits Middle+

The bloom filter size is increased from 500 to 3000 (six times increase), as shown in Fig. 4. The role
of the size of the bloom filter on the number of false positives could be easily observed. Increasing and
decreasing trends are seen for the number of false positives without using any check bits. As the bloom
filter size is increased from 500 to 600, the false positives are increased from 1061 to 1125, representing
an increase of 6.03%. On the other hand, the number of false positives decreased to 958 as the bloom
filter size is further increased to 700, showing a reduction of 14.84%. The minimum number of false
positives is observed for a bloom filter of size 2000. Increasing the size of the filter further to 3000 does
not help further reduce the number of false positives. On the other hand, the number of false positives
while using two check bits is 472.
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Figure 4: The role of the size of the bloom filter on the false positives
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5 Conclusion and Future Work

This paper presented various techniques based on check bits to reduce the false-positive rate
observed in a bloom filter. The bloom filter is a space-and-time efficient method designed to satisfy
membership queries. We discussed techniques based on the positioning of the check bits, such as in
the middle or on the left side. The proposed method got promising results and helped reduce the check
bits up to more than 80% in some cases. Lastly, the impact of the bloom filter size on the number of
false positives is also observed.

One of our future works is to evaluate the proposed false positive rate reduction method using a
large dataset in different scenarios. Moreover, it might be interesting to apply the proposed method to
the Cuckoo filter, which is somehow related to the bloom filter.
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