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Abstract: Nowadays most communications are done by utilizing digital
transmission mechanisms. The security of this digital information transmitted
through different communication systems is quite important. The secrecy of
digital data is one of the burning topics of the digitally developed world. There
exist many traditional algorithms in the literature to provide methods for
robust communication. The most important and recent modern block cipher
named the advanced encryption standard (AES) is one of the extensively
utilized encryption schemes with binary based. AES is a succession of four
fundamental steps: round key, sub-byte, shift row, and mix column. In this
work, we will provide an innovative methodology for extending the AES in a
Galois field with any characteristic p. All four steps in the fundamental process
with binary characteristics will be adjusted because of the new enhancement.
By applying double affine transformations, we have enhanced the number
of options in our suggested substitution boxes. The reconstruction of the
nonlinear confusion component and encryption structure provides robustness
in the generalized AES. The increase in the keyspace due to the Galois field
generalization implies that we have improved additional confusion abilities
and broadened the current notions. The implementation of the proposed
structure of AES for image, audio, and video encryption will provide high
security for secure communication.
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1 Introduction

It is critical to keep secret multimedia material out of the hands of unauthorized parties. Content,
music, still images, liveliness, and video are all examples of the interactive media material. Multimedia
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security is used to protect these compounds. This is done using cryptographic techniques. These plans
foster communication security, robbery, and refugee protection. Encryption is made more difficult
by image size [1]. Typically, a typical photograph is of a large scale. Encryption of large amounts
of mixed media data will be difficult if a standard encryption technique is used [2]. Due to the
large amount of data that must be encrypted, we need to use techniques that demand a minimal
amount of computation [3]. Privacy of data is also concerned with the authentication of the source
[4,5]. Authentication is provided by some hashing and signature schemes [6,7]. Many encryption
structures are protected by digital signature schemes [8]. Numerous studies show the importance of
digital signature implementation [9-11]. Digital signatures work on the structure of the asymmetric
encryption phenomenon [12]. In comparison to asymmetric key algorithms, private key methods are
computationally less genuine. Asymmetric key algorithms are often thousands of times quicker than
public-key algorithms [13]. Symmetric key encryption methods provide a more acceptable approach to
scrambling interactive media content [14]. It is because of this that the AES symmetric key encryption
approach is so fast [15]. In the literature, several novel AES enhancements have been presented [16—19].
In the symmetric block cipher family, the AES is one of the most important, with a key of 128 bits.
Typically, the total round in AES is determined by one of three sizes of the secret key utilized in several
variations: 128 bits, 192 bits, and 256 bits (10, 12 & 14). A new extension of current AES structures
on any characteristic Galois field is our major goal here. Brute-force assaults on encrypted data have
been bolstered by the removal of the field of generic prime features [20]. We have added two examples
for ternary and quinary finite fields [21,22].

There are four sections in this research article. The basic notions are discussed in segment 2. The
suggested scheme along with examples is now discussed in Section 3. Lastly, we have concluded the
section.

2 Mathematical Concepts
2.1 Galois Field

A Galois field is a finite field with finite order. The Galois field has an order of prime or an
exponent of prime, GF (p"), as p is prime and represents the field’s characteristic and n denotes a positive
integer. It is described as:

GF(p") ={ay+ax+ax+...+a,,x""a €ZNie[0,n—1]}. (1)

Now we describe the structure of GF(3%). Consider f(x) = x*> 4+ 2x + 2 be a primitive irreducible
polynomial for GF(3?). Consider a be the solution of this polynomial thus

fa) =0, ®)
o +20+2=0, 3)
o = 20 -2, 4)

Asin GF(3?), 3a + 3 = 0 therefore we can write it as,
a’=-2a—-24+3c+3=a+ 1, =20+ 10" =2, =20, =20 +2, 0’ =a+2,a*=1. (5)

GF(3) =1{0,1,a, o*,a’,a*, o’ af, 0’} = {0, 1,0, + 1,20 + 1,2, 200, 2c¢ + 2, ¢ + 2}. (6)
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The elements of GF(3?) represents the extension field of polynomials with maximum degree one,
whose coefficients belongs to Z.

2.2 Ternary Logic

There are three sets of assertions or propositions that we will refer to as ternary logic {0, 1, 2}. To
designate this collection, we’ll use the set Z;. It is possible to determine the value of the r proposition
by using the map u : n — Z;, as shown below.

1 if r is true
w () =140 ifriseither true, or false (7
2 if r is false

Consider, if u(r) = 1, then it is true according to the rules of binary logic, and if () = 1, then
it is true according to the rules of ternary logic. The same is true for the false value. Alternatively,
analogous factors are created for binary logic, which we avoid p by having u(r) = r. Over n, we
describe the subsequent fundamental operations:

Implication — (if ... then)
Negation ~ (not)
Conjunction A (and)
Disjunction Vv (or)

The system 7 satisfies closure law for the above operations, by this assumption, we can suppose
thatifr,s € nthenrvs e n,~renrnansen andr — s € n. Additionally, the proposition
in ternary logic is not derived from the other three fundamental operations such as we accomplish in
binary logic.

The outcomes in Tab. | are ~ r,r VvV s,y A s and r — s differ in their input r and s. The
conjunction and implication equivalency operation are also shown in Tab. 1. Another way to think
of these fundamental processes is as functions. The unary operator negation is a function described
as h : Zy — Z, and a binary operator can be defined as / : Z; — Z,;. Commonly, we can identify a
ternary logic function as mappings s : Z; — Zs.

Table 1: Basic operation in ternary logic

2
=
=
>
@

NS r— s

r r
1 1
1 0
1 2
1 0
0 1
0 0
1 2
0 0
2 1

[\S I \S I\ B es i er BN el el B
N O =N O =N ="
—_——= = OO O N NN
[\ORN \O RN S I S e e S -l =
e i e = R T e B B e =




6124 CMC, 2022, vol.73, no.3

Unary functions are defined as those in which there is only one solution, and this is the case when n
is equal to one. There are 3°' = 27 possible solutions, each of which has its own unique set of functions
h(r). All 27 of these functions are also referred to as modal functions. The binary function /4(r, s) has
3¥ = 19683 possible outcomes when 7 is 2 (see Tab. 2).

Table 2: All ternary functions with one variable

X h h, hy hy hs hg hy hs hy hyo
0 1 1 1 1 1 1 1 1 1 0
1 0 0 0 2 2 2 1 1 1 0
2 2 1 0 2 1 0 2 1 0 2
X hll hl2 h13 h14 hlS h16 h17 hl8 h19 h20
0 0 0 0 0 0 0 0 0 2 2
1 0 0 2 2 2 1 1 1 0 0
2 1 0 2 1 0 2 1 0 2 1
X h21 h22 h23 h24 h25 h26 h27
2 2 2 2 2 2 2
1 0 2 2 2 1 1 1
2 0 2 1 0 2 1 0
By utilizing this process, we can calculate 3*' = 7625597484987 various functions of several
functions. Usually, there exist 3* several ternary functions A(ry, r,, . .., r,) for n variables.

2.3 S-box Usedin AES

An affine transformation S : GF(2)" — GF(2)" known as a substitution box or S-box is defined
by the combination of three functions [7].

S=GoLoM, ®)

where L is the linear transformation, M is the inverse transformation, and G is the affine transforma-
tion, which can be stated mathematically as follows:

_Ja' a#0,
M@ = i 0 alo ©)
L(a) = Ba, (10)
G(a) =a®,b.

As a result, S-box structure is described as

S(a) = G(L(M(a))) = G(L(a™")) = G(Ba™") (1)
=Ba'®b,
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This is the required structure for the S-Box design created on GF(p)".

2.4 Proposed S-box

S-box is the main non-linear component of the block cipher, which increase the confusion in the
algorithm, therefore it must be strong and highly resistant to cryptanalytic attacks. Here we define a
new approach to constructing a strong Substitution box. We define a map S : GF(p)" — GF(p)" by

S(x) = A, I(A,x ® b)) & b,, (12)

where A4,, A, are linear invertible matrices, b,, b, are column matrices, / is the inverse transformation,
and @ is rit-wise addition operation under mod p.

2.5 Advanced Encryption Standard

In the context of symmetric algorithms, AES is referred to as a “block cipher.” Commercial
systems, such as Microsoft’s Windows, use it regularly (IPsec, the internet Skype, the IEEE 802.111,
and TLS). AES is referred to as AES-128, AES-192, or AES-256 depending on the size of the key
employed in the encryption of the information being protected. Depending on the size of the key, the
data matrix has 10, 12, or 14 rounds. m(x) = x* + x* + x> + x + 1 is an irreducible polynomial in
a finite Galois field of degree 8. The finite Galois field of degree 8 is utilized in the construction of
S-box, Sub-byte transformation, and mix column transformation.

3 Generalization of AES on Ternary Logic Function and Double Affine Transformation

Other than binary qualities, we’ve mostly made use of the extension field in this section. To begin,
we must expand the block cipher’s nonlinear S-box component to include features 3 and 5, as well as
shift row, mix column, and round key. Here we define AES on the plaintext and key of 8-rits with two
rounds of encryption, but in general, we can use the desired length of key and plaintext. The round of
encryption can also be increased. The working strides of the proposed generalized AES are shown in
Fig. 1.

Input Data (128 rits)
|

AT, kmﬁ Add round key
|

h 4

Bytesub

Add round key (1) Shiftrows

Mix Columns

Add round key

I}

Bytesub

Add round key (n)
Shiftrows Final round

Add round key
I |

-
Encrypted Data (128 rits)

Figure 1: Working strides of proposed generalized AES
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3.1 Structure of S-box Created on GF(3*) and Double Affine Transformation Proposed S-box

A substitution box can be constructed by using the map S : GF(3)> — GF(3)? therefore we can
write it as

S(x) = A, 1(A\x D3 b)) s b, (13)

where [ represents the inverse transformation and the symbol @; is rit-wise addition under modulo 3.
Now consider the matrices for this expression be

e[t o[
oeft foefl

The S-box changes to the following value when input values are inserted into the expression (see
Tab. 3):

Table 3: S-box on GF(3?)

0 1 2
0 2220 00
1 21 02 10

2 01 11 12

The inverse S-box, as shown in the Tab. 4, can be obtained by applying the inverse transformation.

Table 4: Inverse S-box on GF(3?)

0 1 2
0 02 20 11
1 12 21 22

2 01 10 00

3.2 Proposed AES on GF(3?)
Suppose the plaintext of 8-rits be

P =01211020.

Now we divide this 8-rits plaintext into 4 parts, each consisting of 2-rits

POZOI,P1:21,P2:1O,P3:20.

The following matrix can be used to represent the simple text:

01 10
P:[zl 20]'
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Assume the key be of equal length as plaintext i.e., 8-rits
K, = 10112022.

The following is a matrix representation of the key:
10 20
K= [11 22] '
First, we add a key matrix in the plaintext matrix

A, = P+ K,,
01 10 10 20
Alz[zl 20] ®: [11 22}’
11 00
A= [02 12]'
Round 1
Sub-byte Transformation

The first step is to do the sub-byte conversion to each element of the matrix A4, and we get

02 22
Bi= [00 10]'

Shift Row

After shifting the components in the matrix B, using the shift row, we get

00 11
¢ = [21 20]'

Mix Column

Consider a matrix for the mix column’s operation.

)

By successively multiplying the X matrix by the C, matrix’s columns, we arrive to

o) =lo 2] ] = )
o =o 2] 3] =[]

In the end, when we combine these two columns into a single matrix, we obtain

2 2
D= [20 oo]

6127
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Key Generation

By using the recent key K, we can construct a new key K, by using the following procedure

Wy = ko,
wy = ki,
w, =k,
wy = k;.

wy = wy, @5 Nibble sub.(w;) @ rcon(1),
Ws = w; D3 Wy,

Ws = W, D3 Ws,

W, = W, D3 W,

wy, = 10 @5 Nibble sub.(22) &, 01 = 20,
ws =11 @; 20 = 01,

we =20 @, 01 = 21,

w; =22 @, 21 = 10.

Therefore, the key becomes

20 21
Kl:[m 10]'

Key Addition
By adding the key K, in the matrix D,, we get
El = Dl @ Kl)

12 2 20 21

=120 00[® o1 10|
21 02

EF[zo 00]

Round 2

Sub-byte transformation

We obtain the following as the matrix E, has been sub-byte transformed:
00 21
B. = [11 21} '
Shift Row
Shift row is applied to the matrix B,

00 21
G= [21 11]'
Mix Column

There is no mix column in the last round
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Key Generation

The following procedure can be used to produce the key:

wg = wy, @5 Nibble sub.(w,) @ rcon(1),
Wy = Ws D3 Wy,

Wi = W D3 Wy,

Wi = Wy D3 wyg.

wg = 20 @, Nibble sub.(10) &, 10 = 10,
wy = 01 ;21 =22,

Wy = 21 @, 22 =10,

wy, = 10 @5 10 = 20.

Therefore, the key becomes
21 10
k. ::[22 20]'
Key Addition
E, =G, @ Kz,

{00 21 o 21 10
21 11|01 20)°
21 01
E:LOOJ'
The encrypted message is E, = 21100101.
Decryption

The encrypted data can be decrypted by utilizing the reverse process of encryption.

Round 1

Key subtraction

6129

For decryption, the key matrix K, is subtracted from the encrypted matrix E, and each element is

subtracted from other rit-wise under mod3.
C.—E K, = [21 01] _ [21 10]’

10 01] |22 20
00 21
Q:bllJ'

Inverse Shift Row

After key subtraction inverse shift row is applied to the matrix C,

00 21
&:lej'
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Inverse Sub-byte Transformation

After applying inverse shift row, inverse sub-byte transformation is applied by using inverse S-box

02 10
E= [21 10} :
Round 2

Key Subtraction
Now we subtract the key of round 2 i.e., K

02 101 [20 21
Dlel_Klz[zl 10}_[01 10]’

12 22
Di= [20 00]
Inverse Mix Column

In the inverse mix column, we take the inverse of the matrix

(1 o |11

<o o] -l a)
After multiplying the columns of the matrix D, with the matrix X' one by one we get

G| |1 112 (02

a| |0 2([20( |10}’

of| |1 1][22] [22

a|l [0 21100 00|
After putting these columns together in a matrix,

02 22

Gi= [10 00]'
Inverse Shift Row

After utilizing the inverse shift row on the matrix, which is obtained after the inverse mix
column, C,

02 22
Bi= [oo 10} '

Inverse Sub-byte Transformation

After utilizing inverse Sub-byte transformation by using inverse S-box, we get

1100
Al:[oz 12]'
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Key Subtraction
Finally, we subtract the initial key from the matrix 4,, and we get
P=4 - Ko;

_ {11 00| {10 20
102 12 1 220
01 10
P= [21 20]
Finally, the recovered message is P = 01211020.

3.3 Construction of S-box GF (5%) Based on Double Affine Transformation

A substitution box can be constructed by using the map S : GF(5)* — GF(5)* therefore we can
write it as

S(x) = A,.1(A,x ®s by) Ds b,
where I represents the inverse transformation and the symbol &; is rit-wise addition under mod5.

Now consider the matrices for this expression be

oefp o-f]
oot el

As a result, we acquire output values by adding input values into the above formula, the required
S-box is given in Tab. 5.

Table 5: S-box on GF(5%)

0 1 2 3 4

00 12 32 11 34
13 40 31 04 22
41 03 24 42 21
10 14 20 23 01
44 43 02 30 33

AW N - O

The inverse S-box is shown below in Tab. 6.

Table 6: Inverse S-box on GF(5%)
0 1 2 3 4

0 00 34 42 21 13
1 30 03 01 10 31

(Continued)
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Table 6: Continued
0 1 2 3 4
2 32 24 14 33 22

43 12 02 44 04
4 11 20 23 41 40

W

3.4 AES Based on GF(5%)
Consider the plaintext of 8-rits be

P =01423143.

Now we divide this 8-rits plaintext into 4 parts, each consisting of 2-rits
P0=01,P1 =42,P2=31,P3=43

The following is a matrix representation of the plain text
01 31
P= [42 43] '
Assume the key be of equal length as plaintext i.e., 8-rits
K, = 40231330.

Using the matrix form, the key may be expressed as follows:
40 13
Ko = [23 30] '
First, we add a key matrix in the plaintext matrix
Al =P SPE K(n

01 317 [40 13
A1=[42 43] ®s [23 30]’
41 44
Alz[lo 23]'

Round 1
Sub-byte Transformation

CMC, 2022, vol.73, no.3

Initially, we utilize the S-box transformation to all components of the matrix 4, and we obtain

43 33
Bi= [13 42]
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Shift Row

After employing the shift row to the components of the matrix B, we obtain
43 33
¢ = [42 13] '
Mix Column

Consider a matrix for the mix column’s operation.

1 4
[t 1]
This is the result of multiplying each column of the matrix C, with X one by one
do| |1 4([43| (01
di| |0 2|[42| |34)
d| |1 4[33] |20
d;| |0 2|13 |21
Combining these two columns into one matrix yields the following result:
01 20
Di= [34 21} :
Key Generation

By using the recent key K, we can construct a new key K, by using the following procedure

wy = ko,
wy =k,
w, =k,
wy = k;.

wy = wy, @5 Nibble sub.(w;) @s rcon(1),
Ws = W Ds Wy,

Ws = W, Ds Ws,

W, = W, Ds W,

wy = 10 @5 Nibble sub.(22) & 01 = 20,
ws =11 @520 =01,

we =20 s 01 =21,

w, =22 @21 = 10.

Therefore, the key becomes

21 32
K= [24 12]'
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Key Addition
By adding the key K, in the matrix D,, we get
E, =D, ®;s Kl)

_Jor 20 01 32

=134 21|% |4 12|
02 02

b= [03 33]

Round 2

Sub-byte transformation

We obtain the following as the matrix £, has been sub-byte transformed:

2 3
B = [11 23]
Shift Row

By implementing shift row on the matrix B,
32 32

G = [23 1 1] :
Mix Column

In the last round, there is no mix column.
Key Generation

Keys can be produced in the following way:
wg = w, @5 Nibble sub.(w,) @s rcon(1),
Wy = Ws Bs Wy,

Wip = We Ds Wo,

Wi = Wy @s W

wg = 01 @5 Nibble sub.(12) &5 10 = 12,
wy =24 @ 12 = 31,

Wy =32 31 =13,

wy = 1265 13 = 20.

Therefore, the key becomes
12 13
K = [31 20] :
Key Addition

E2:C2@5K27
32 » 12 13
=123 11|%]31 20|

44 40
E2=[04 31]

CMC, 2022, vol.73, no.3
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The encrypted message is E, = 21100101.
Decryption

The encrypted text can be decrypted by utilizing the reverse process of encryption.
Round 1
Key Subtraction

For decryption, the key matrix K, is subtracted from the encrypted matrix F, and each element is
subtracted from other rit-wise under mod5.

o E K= [44 40] B [12 13]’

04 31| |31 20
32 32
C2=[23 11]'

Inverse Shift Row

After key subtraction inverse shift row is applied to the matrix C,
32 32
B = [11 23] '
Inverse Sub-byte Transformation

After applying inverse shift row, inverse sub-byte transformation is applied by using inverse S-box

02 02
E = [03 33]'
Round 2

Key subtraction

Now we subtract the key of round 2 i.e., K

D =E —K, = [02 O2:| B |:01 32:|’

03 33] [24 12
01 20
D':[34 21]

Inverse Mix Column

In the inverse mix column, we take the inverse of the matrix

R R D
v o fp 3

After multiplying the columns of the matrix D, with the matrix X' one by one we get
6| {1 3|[01| [43
al| |0 3|[34| [42)°
o |1 3[][20] |33
a| |0 321 |13
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After combining these columns in one matrix
43 33

Gi= [42 13] ‘

Inverse Shift Row

After utilizing the inverse shift row on the matrix, which is obtained after the inverse mix
column, C,

43 33
B = [13 42]
Inverse Sub-byte Transformation

After employing inverse Sub-byte transformation by using inverse S-box, we get
41 44
A = [10 23] '
Key Subtraction

Finally, we subtract the initial key from the matrix A4, , and we get
P =4, -K,,

(41 44 40 13
{10 23| |11 30|’
01 31
P= [42 43]'
Finally, the recovered message is P = 01423143,

4 Conclusion

In this paper, we have defined a generalization of AES which gives better results to increase the
security of the algorithm. This modifies AES as a complex mathematical structure which is utilizing
the composition of two affine nonlinear functions instead of one affine Boolean function as in the
case of standard AES. Moreover, the use of different characteristics other than the binary is one of
the thought-provoking problems of cryptography. As a result, brute force attacks fail on the modified
AES due to increasing the number of possibilities to find the key. The use of ternary and quinary
characteristic finite field is yet not used in the development of AES structure. We have utilized ternary
and quinary characteristic fields to design a new mathematical foundation for modified AES. The
implementation of the generalized AES on hardware is one of the challenging problems for future
interests. The designed structure can be utilized for audio and video encryption as well.

Acknowledgement: This research was funded by Princess Nourah bint Abdulrahman University
Researchers Supporting Project Number (PNURSP2022R87), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.



CMC, 2022, vol.73, no.3 6137

Funding Statement: This research was funded by Princess Nourah bint Abdulrahman University
Researchers Supporting Project Number (PNURSP2022R87), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8]
]

[10]
(1]
[12]
[13]
[14]
[15]
[16]

(17]

(18]

[19]

A. M. Shtewi, “An efficient modified advanced encryption standard (MAES) adapted for image cryptosys-
tems,” International Journal of Computer Science and Network Security, vol. 10, pp. 226-2232, 2010.

S. Lian, “Quasi-commutative watermarking and encryption for secure media content distribution,” Multi-
media Tools and Applications, vol. 43, pp. 91-107, 2009.

K. Gu, W. 1. Jia and J. M. Zhang, “Identity-based multi-proxy signature scheme in the standard model,”
Fundamenta Informaticae, vol. 150, no. 2, pp. 179-210, 2017.

K. Gu, W. J. Jia, G. J. Wang and S. Wen, “Efficient and secure attribute-based signature for monotone
predicates,” Acta Informatica, vol. 54, no. 5, pp. 521-541, 2017.

K. Gu, K. M. Wang and L. L. Yang, “Traceable attribute-based signature,” Journal of Information Security
and Applications, vol. 49, pp. 102400, 2019.

K. Gu, W. I. Jia and C. L. Jiang, “Efficient identity-based proxy signature in the standard model,” the
Computer Journal, vol. 58, no. 4, pp. 792-807, 2015.

K. Gu, L. H. Yang, Y. Wang and S. Wen, “Traceable identity-based group signature,” RAIRO-Theoretical
Informatics and Applications, vol. 50, no. 3, pp. 193-226, 2016.

K. Gu, Y. Wang and S. Wen, “Traceable threshold proxy signature,” Journal of Information Science &
Engineering, vol. 33, no. 1, pp. 63-79, 2017.

Z.Xu, C. Xu, J. Xu and X. Meng, “A computationally efficient authentication and key agreement scheme
for multi-server switching in WBAN,” International Journal of Sensor Networks, vol. 35, no. 3, pp. 143-160,
2021.

L. Y. Xiang, X. B. Shen, J. H. Qin and W. Hao, “Discrete multi-graph hashing for large-scale visual search,”
Neural Processing Letters, vol. 49, no. 3, pp. 1055-1069, 2019.

M. A.R. Khan and M. K. Jain, “Feature point detection for repacked android apps,” Intelligent Automation
& Soft Computing, vol. 26, no. 6, pp. 1359-1373, 2020.

N. B. A. Ghani Binti, M. Ahmad, Z. Mahmoud and R. M. Mehmood, “A pursuit of sustainable
privacy protection in big data environment by an optimized clustered-purpose based algorithm,” Intelligent
Automation & Soft Computing, vol. 26, no. 6, pp. 1217-1231, 2020.

S. Heron, “Advanced encryption standard (AES),” Network Security, vol. 2009, no. 12, pp. 8-12, 2009.

F. B. Muhaya, “Modified AES using chaotic key generator for satellite imagery encryption,” Emerging
Intelligent Computing Technology and Applications, vol. 5754, pp. 1014-1024, 2009.

G. N. Krishnamurthy and V. Ramaswamy, “Making AES stronger: AES with key dependent S-box,”
International Journal of Computer Science and Network Security, vol. 8, pp. 388-398, 2008.

P. Kawle, A. Hiwase, G. Bagde, E. Tekam and R. Kalbande, “Modified advanced encryption standard,”
International Journal of Soft Computing and Engineering, vol. 4, pp. 21-23, 2014.

M. Khan, T. Shah and S. 1. Batool, “A new approach for image encryption and watermarking based on
substitution box over the classes of chain rings,” Multimedia Tools and Applications, vol. 76, pp. 24027—
24062, 2017.

M. Khan and T. Shah, “Construction and applications of chaotic S-boxes in image encryption,” Neural
Comput & Applic, vol. 27, pp. 677-685, 2016.

M. Khan, T. Shah and S. I. Batool, “A new implementations of chaotic S-boxes in CAPTCHA,” Signal,
Image and Video Processing, vol. 10, pp. 293-300, 2016.



6138 CMC, 2022, vol.73, no.3

[20] A. Belazi, M. Khan, A. A. Abd El-Latif and S. Belghith, “Efficient cryptosystem approaches: S-boxes and
permutation substitution-based encryption,” Nonlinear Dynamics, vol. 87, pp. 337-361, 2017.

[21] K. N. Vijeyakumar, V. Sumathy, M. G. Devi, S. Tamilselvan and R. R. Nair, “Design of hardware efficient
high speed multiplier using modified ternary logic,” Procedia Engineering, vol. 38, pp. 2186-219, 2012.

[22] M. Mukaidono, “Regular ternary logic functions; ternary logic functions suitable for treating ambiguity,”
IEEE Transactions on Computers, vol. 35, pp. 179-183, 1986.



	Generalization of Advanced Encryption Standard Based on Field of Any Characteristic
	1 Introduction
	2 Mathematical Concepts
	3 Generalization of AES on Ternary Logic Function and Double Affine Transformation
	4 Conclusion


