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Abstract: Industry 4.0 production environments and smart manufacturing
systems integrate both the physical and decision-making aspects of manu-
facturing operations into autonomous and decentralized systems. One of the
key aspects of these systems is a production planning, specifically, Scheduling
operations on the machines. To cope with this problem, this paper proposed
a Deep Reinforcement Learning with an Actor-Critic algorithm (DRLAC).
We model the Job-Shop Scheduling Problem (JSSP) as a Markov Decision
Process (MDP), represent the state of a JSSP as simple Graph Isomorphism
Networks (GIN) to extract nodes features during scheduling, and derive the
policy of optimal scheduling which guides the included node features to the
best next action of schedule. In addition, we adopt the Actor-Critic (AC)
network’s training algorithm-based reinforcement learning for achieving the
optimal policy of the scheduling. To prove the proposed model’s effectiveness,
first, we will present a case study that illustrated a conflict between two
job scheduling, secondly, we will apply the proposed model to a known
benchmark dataset and compare the results with the traditional scheduling
methods and trending approaches. The numerical results indicate that the
proposed model can be adaptive with real-time production scheduling, where
the average percentage deviation (APD) of our model achieved values between
0.009 and 0.21 compared with heuristic methods and values between 0.014 and
0.18 compared with other trending approaches.

Keywords: Reinforcement learning; job shop scheduling; graphical
isomorphism network; actor-critic networks

1 Introduction

Along with the fourth industrial revolution, a Smart Factory [1,2] provides flexible and adaptive
production processes that can solve problems appearing in production with dynamic and rapidly
changeable conditions; therefore, it is a need for flexibility in the job scheduling system that can achieve
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balance scheduling efficiency and its costs. From recently reviewed, there are fourteen classes of JSSP
classified as [Deterministic JSSP, static JSSP, dynamic JSSP, flexible JSSP, cyclic JSSP, periodic JSSP,
pre-emptive JSSP, just-in-time JSSP, no-wait JSSP, large-scale JSSP, re-entrant JSSP, assembly JSSP,
stochastic JSSP, and fuzzy JSSP] have been identified in [3]; based on their main characteristics as
Job arrival process, inventory policy, duration time processing, and job attributes. In our research, we
regard the problem as the flexible JSSP of a manufacturing system.

To solve JSSP problems of different scales, several efficient algorithms have been proposed by
researchers to improve various parameters of JSSP. Exact arithmetic-based methods using an integer
programming formula are introduced by [4–8] but the time is usually not acceptable when large-scale
problems are encountered because the solution space is larger will lead to computational complexity.

Heuristics algorithms are capable of real-time decision-making introduced in [9,10] and it only
depends on the limited information, which leads to the instability of the performance of the algorithm.
The meta-heuristic algorithms that are problem-independent and a class of algorithmic frameworks
that are proposed in [11–14] and the performance of these algorisms depends on the control of
parameters, in addition, when the size of the problem increases, there is a slowdown in the performance
of the algorithm. One of the recent trends that solve the scheduling problem is Hadoop Yarn [15], it is a
framework, that provides a management scheduling for big data in a distributed environment, but it is
only suitable for large data volume. With the common technology, different tools for optimization,
such as data science, the Internet of Things (IOTs) [16], and artificial intelligence AI fields create
new opportunities in production control. Many studies apply the reinforcement learning approach
to model routing and scheduling optimization problems such as [17–24], which performed better than
traditional algorithms on some complex combinatorial optimization problems. Researchers in [25–27]
introduced Graph Neural Networks (GNN) and GIN to take advantage of the graph representation
and solve graph-based optimization problems; they are an innovative combination of aggregative
optimization and deep learning.

In this paper, we propose a framework to construct the scheduling policy for JSSPs using the
DRL mechanism, it can learn to choose appropriate actions to achieve its goals through system
environment interactions and respond to reward receipts based on the impact of each action. First,
we formulate the scheduling of a JSSP as a sequential decision-making problem in an MDP concept,
and then we represent the state of a JSSP as a graph representation, consisting of operations that
represent nodes and constraints that represent edges. Next, we use GIN [28] to learn node features
and derive a scheduling policy that defines the included node features to get optimal scheduling. Thus,
when focusing on JSSPs, the output of the neural network directly reflects the priority value of the
appropriate action to act according to the current state. In addition, we introduced the actor-critic
network algorithm into the job-shop scheduling with a good performance and low complexity for the
training and learning agent. For more explanation, we illustrate our proposed framework in Fig. 1.

We organized the rest of the paper as follows: Section 2 Explains the methods used in this research.
Section 3 introduced the DRLAC for job-shop scheduling with the proposed architecture. Section 4.
Introduced the experiments in two parts, using case study and using benchmarks data set then result-
analysis stated, finally the Conclusions and Future Research presented in Section 5.
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Figure 1: Explanation of the proposed framework

2 Methodology
2.1 Job Shop Scheduling Problem (JSSP) Description

JSSP is a type of scheduling problem that aims to define optimal sequential assignments of
machines to multiple jobs consisting of a sequence of operations while maintaining problem con-
straints (such as processing precedence and machine sharing).

When a request is received for n jobs defined as J = {j1, j2,.., jn}, it must specify how to allocate it
to the assigned number of machines and create an appropriate production schedule.

Each machine can produce kinds of product with different efficiency, defined as M = {m1, m2, . . . ,
mm} and each job can be directed through m machines in a predetermined order.

The processing of a job on a machine is called an operation; each operation can be processed on
one or more suitable machines with different processing times. The operation can be denoted by Oij

and the set of operations can be formulated in the form of O = {Oij | i ∈ [1, n], j ∈ [1, m]}. For an
operation, Oij of job i on machine m, the processing time of operation can be denoted by Pij where
(Pij > 0), and the total completion time for a set of operations is Cij (Oij ∈O). Thus, the main goal of
the problem is to minimize C.

Therefore, the job shop-scheduling problem is regarded as a sequential decision problem for
assigning jobs to specific machines. We explained the constraints of JSSP as the following:

• As soon as the process of a job can begin at any time, the required machine becomes available.
• Each job must pass through a series of pre-defined operations, where operation cannot be

started until the previous one is complete, (i.e., processing Oij cannot begin the processing on a
machine until Oij−1 has been completed).

• One or more machines must process each operation completely.
• When assigning jobs to machines, it is necessary to consider whether the machines have

operations that can be processed by a machine at this time.
• If there are multiple optional choose operation sets, the machine can select one of them

for processing. Otherwise, it needs to wait for the arrival of the next operation processing
completion event.
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2.2 Disjunctive Graph Representation for JSSP

The solution approach applied in this paper is based on a graph, and represents JSSP as G = (N,
C, D) where:

• N is the set of nodes representing the processes and N = O U {O0} U {OT+1}] where {O0} and
{OT+1} are the special dummy operations of the start and end of the node. T is the total number
of operations that T = n × m,

• C is a set of directed-lines (conjunctions) that connect approved operations of the same job,
• D is a set of undirected-lines (disjunctions), which connect operations performed on the same

machine.

To illustrate job-scheduling problems, we assume the JSSP problem as n/m/G/Cmax JSSP, the idea
of the proposed model is to start a set of nodes iteratively, Which moves in a common environment
consisting of all operations in JSSP. We build a graphical representation of the optimization problem
as Fig. 2, which represents the number of nodes representing all Oij, where O11 to O1j for the first job
and O21 to O2j for the second job, etc., two dummy nodes (S, E) for the start and end of routing of
total operations. The directional edges connect nodes that indicate the precedence constraints.

Figure 2: JSSP graphical representation for size problem nxm

Later, in this paper, we can potentially deal with complex environments with dynamics and
uncertainty conflicting such as job arriving, by adding or removing certain nodes and/or lines from
the disjunctive graphs.

We represent the state of JSSP using a disjunctive graph like the following:

• Nodes are represented as operations,
• Conjunctive edges are represented as precedence constraints between two nodes,
• Disjunctive edges are represented as machine-sharing constraints between two operations.

2.3 Markov Decision Process Formulations for JSSP

Since the next job processing state only changes based on the present state, we can model the
job shop-scheduling problem as an MDP. Therefore, we will consider the decisions of dispatching as
actions of changing the graph, and we formulate the MDP model as the following:
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State. The state noted as st at decision step t is a disjunctive graph DGt = (O, C ∪ ADt, RDt)
representing the current status of the solution; where ADt ⊆ D includes all the directed disjunctive
lines which have been assigned a direction till step t and RDt ⊆ D includes the remaining ones. The
initial state So is the disjunctive graph that represents the original instance of the problem, and the
terminal state sT is a complete solution where RDT = ∅, i.e., all disjunctive lines have been assigned a
direction.

For each node O ∈ N, we record two features, the operations that they are scheduling in st, and the
completion lower bound (LB) duration of the estimated time of operation completion in st, we regard
the (LB) as exactly its minimum completion time. Towards the unscheduled operation of job Ji, we
calculate this lower bound as Eq. (1) recursively by only considering the precedence restrictions from
its predecessor, i.e., Oi, j−1 → Oij, and Eq. (2) where Oij is the first operation of Ji and ri is the release
time of Ji.

LB
(
Oij, st

) = LB
(
Oij−1, st

) + Pij (1)

LB
(
Oij, st

) = ri + Pij (2)

Action. An action at ∈ At is an appropriate operation at decision step t. when each job can have
at most one operation at t, the maximum size of action procedure space is |J|, which depends on the
instance performed. During processing, |At| will be smaller as more jobs are completed.

State-transition. Once determining an operation to dispatch next, we first find the closest possible
period to allocate to the desired machine. Next, we update the trends of that machine’s disjunctive
lines based on the time relationships and create a new disjunctive graph as the new state st+1.

Reward. For each action the agent performs, the environment will return the corresponding
reward. Since we used the reward to evaluate the action performed, the setting of it directly affects
the change of the agent strategy.

Policy. For state St, a stochastic policy denoted by π (at|st) results in distribution over the actions
in At. To obtain the optimal policy to solve the JSSP it is very important to set appropriate rewards.

Our problem environment will feedback a corresponding reward for each agent action, so the
paper will propose to set the reward in the job shop scheduling process to be related to machine
functions, which means that the optioned makespan will be a function of cumulative rewards. This
leads to obtaining the optimal policy to solve our problem and get an optimal or near-optimal solution
(min makespan); we formulate the reward as the minim of the makespan Cmax, computed as {min Cmax

(Oij, st)}.

2.4 Graph Isomorphism Network (GIN)

GIN is one such example among many maximally powerful GNNs, while being simple [29], it
is based on graph operations that include training a neural network for various graph-related tasks,
and it seems to be effective on social datasets [30]. Two multi-layer of GINS are used to encode the
features constraint and processing time characteristics of the flow shop problem scheduling, they can
efficiently aggregate node features and other neighbor features to get for each node the contextual
representation [27].

The disjunctive graph based on the MDP formula provides an overview of the scheduling states
containing numerical and structural information such as processing time of operation, each processing
order of the machine, and precedence constraints. The efficient transmission is viable when extracting
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all the state information from disjunctive graphs. This prompts us to select the stochastic policy π (at

|st) as the GIN with θ trainable parameter, i.e., πθ (at |st) enables learning strong dispatching rules.

Fig. 3 is an example that explains the difference between the deterministic policy concept and the
stochastic policy concept intended in our research to obtain scheduling optimization.

Figure 3: The concept of deterministic and stochastic policy

Given a graph G = (V, E), GIN performs K iterations of update expressed as Eq. (3):

h
k
v = MLP

k
θk

(
(
1 + εk

)
.h

k − 1
v +

∑
uεN(v)

h
k − 1

u (3)

where h
k
v is node v representation of iteration k, h

0
v indicated his initial features for the input, MLP

k
θk

is a Multiable-Layer Perceptron for iteration k with parameter θ k, and N(v) is the v neighborhood.

After updates iterations K, the global representation of the entire graph can be obtained using
the aggregate function L which takes as input information for all nodes and outputs the dimensional
vector hg formed in Eq.(4).

hg = L
({

hk
v : vεV

}) = 1/ |V |
∑

vεV

hk
v (4)

The disjunctive Gt graph associated with each state st is the mixed graph with directed-lines, which
describe the critical characteristics such as the operation sequences on machines and the precedence
constraints, therefore, we need to generalize the GIN for supporting disjunctive graphs. When adding
incoming neighbor u of v, then the neighborhood of node v in Eq. (3) can be defined as N (v) = {u|
(u, v) ∈ E (GD) t}, where GD is a directed graph i.e., NV contains all incoming neighbors of v.

3 DRL Based Actor-Critic for Job-Shop Scheduling
3.1 Model Description

In reinforcement learning methods, comparing value-based methods, policy-based methods are
more suitable for continuous state and action space problems such as JSSP. This is useful in our prob-
lem environment because the action space is continuous and dynamic and has a faster convergence.
Reinforcement learning occurs when the agent interacts with its surrounded environment to perform
actions and learn by a trial-error learning method.

As one of the policy-based methods, the actor-critic one of the RL training algorithms can obtain
good performance by limiting the policy update to reduce parameter settings sensitivity. The Actor
refers to the policy network πθ described in the previous section, it controls how the agent behaves by
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learning the optimal policy (policy-based). The critic vϕ shares the GIN network with the actor and

uses MLP
k
θk

that takes the input of hG(st) to output a scalar to estimate the cumulative rewards at

st, it evaluates the action by computing the value function (value-based).

To raise learning, we follow the principle of AC and update network parameters. For JSSP, DRL
can implement real-time scheduling and adapt strategies based on the environment’s current state
when dealing with problems. DRL aims to enable the agent to learn to take actions to maximize the
cumulated reward from the process of interacting with the environment.

3.2 DRLAC Model Architecture

We present in Fig. 4 the DRLAC architecture of the job-shop scheduling based on the AC
algorithm. There are two main parts to this architecture:

Figure 4: The architecture of DRLAC for job-shop scheduling

(1) The Interaction Part between the Agent and the Environment

We define the environment as a set of jobs with their assigned machines and their processing time.
For the JSP environment, the agent needs to observe the information of the environment state at each
moment, such as the processing status of jobs, the assigned machine matrix, and the processing time
matrix, and then take action to select operations for appropriate machines to make jobs be processed in
an orderly manner with the minimum of maximum completion time. To select an action at, we further
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process the extracted graph information hk
v with an action selection network. In doing so, we expect to

produce a probability distribution over action space from which at can be formed. The agent receives
the reward function about the machine utilization after the action is executed and the environment
gives makespan, then the next state of the environment is to run the next step for the system.

(2) The training part of the algorithm

This is the part of the agent policy update, where the buffer memory forms mini-batches to update
πθ . The parameter θ is updated according to the stochastic gradient method to optimize the objective
function L(θ) of the AC algorithm. In this way, the dynamic JSSP system based on AC is constructed.
The agent interacts with the JSSP environment in a trial and error manner at the beginning of training.
The agent can make real-time decisions on the job shop environment once it learns the optimal policy
using the trained model, thus achieving real-time job shop scheduling. Moreover, when the agent faces
an unknown environment state, it can make a good decision by updating the policy network in real-
time, to achieve flexible scheduling.

3.3 Pseudo-Code for the Proposed Algorithm

We adopt the Actor-Critic algorithm to train our agent and provide details of our algorithm in
terms of pseudo-code, as shown in Algorithm 1; it provides pseudo-code for RL agent interacting with
an environment with changing action sets.

Algorithm 1: Actor Critic Algorithm
1: Initialize the network parameters of the AC algorithm, Actor-Network πθ , with trainable

parameters θ old = θ ; Critic Network vϕ with trainable parameters ϕ, and algorithm parameters.
2: Draw JSSP instance from DG and generate JSP scenario
3: For iteration = 1, 2, . . . , n do:
4: For each train step t = 1, 2, . . . do:
5: The agent observes the environment state, and runs policy πθ old to take action: πθ old (an,t | sn,t);
6: The environment feeds back a reward rt for at, the next state st+1, If the scheduling process is over,

the makespan is about the function of the reward.

7: An,t =
t∑
0

γ trn,t − vϕ

(
sn,t

)
, rn,t (θ) = πθ (an,t | sn,t)

πθold (an,t|sn,t)

Store (st, at, rt) to buffer [(s1, a1, r1), . . . , (sT, aT, rT)]
8: if sn,t is terminal then break end
9: For epoch = 1, 2, . . . , K do:
10: form mini-batches from the buffer
11: Update θ , ϕ with cumulative reward by Adam optimizer: Update θ by gradient method to optimize

the objective function Lt(θ) θ , ϕ = argmax(
∑N

n=1 Ln (θ , ϕ)) end
12: Update πθold to πθ

4 Experimentally and Result Analysis
4.1 Configuration and Hyper-Parameters Setting

We used the settings that were previously used in our research and they performed well in [31],
shown in Tab. 1, the results indicated that our proposed model has more effective to solve the problems
with big data set that has more than 100 jobs and 100 machines.
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Table 1: Values of algorithm parameters

Episodes 1000 Hidden layers with hidden dimension 32 2
Learning rate A 0.001 Hidden layers with hidden dimension 64 2
Discount factor � 1 The coefficient for policy loss 1
Number of iterations K 2 Value function 0.01
Epochs of updating network 1 Seed 1

In this research, we use the Adam optimizer for training the AC algorithm. Other parameters
follow the default settings in PyTorch [26] and use the repository of its implementation [32] with python
machine learning as Numpy (library used for working with arrays), Torch (provides a flexible N-
dimensional array), Tensor(supports basic routines for indexing), TensorFlow (libraries used to create
Ultimate Software’s Python-based, AI open-source generation and testing tool Agent or AgentX) and
Gym (communicate between learning algorithms and environments). In addition to Microsoft Excel
to store, analyze, and chart generating data. The hardware we use is a machine with an Intel Core i5
CPU and a single NVIDIA GeForce GPU with Windows 10 as an operating system.

The evaluation criterion in the experiment is the maximum completion time ‘makespan’ and our
goal is to minimize it.

Compared to optimization strategies, Reinforcement learning allowed making moves with a
negative reward. Therefore, we set the returned reward in our model as negative rewards. In general,
we prefer to have negative returns for stability purposes. If you do back-propagation equations, you
will see that yield affects gradients. Thus, we like to keep their values in a specific appropriate range,
so if you increase or decrease all rewards (good and bad) equally, nothing will change.

4.2 Experimentally Using Case Study
4.2.1 Computational Results on Instances Before Conflicting in Job Scheduling

We suppose that a job instance for two jobs J1and J2 are scheduled simply performed in three
machines M1, M2, and M3 distributed in Tab. 2, it illustrates that each job j has an associated
processing time and is to be assigned to a single machine, and each machine can process at most one
job at a time.

When modeling this instance as a disjunctive graph G = (J, E) and if {j, j′} ∈ E then jobs j and j′

are two conflicting jobs, and they must be assigned to different machines.

Each job has three operations, each operation o can assign to one machine sequentially and it
has a processing time PT that it takes for performing on the machine. The minimum completion time
takes to complete the scheduling process (makespan) is 47 UT.

Now to prove the NP-hard problem of job scheduling, we suppose an additional job J3 with an
addition node has operations [o31, o32, o33] and needed to assign to machines [2, 3, 1] with processing
time [20, 20, 10] sequentially. In a traditional dispatching algorithm such as FIIFO, the scheduling is
solved by keeping track in a queue of the previous arrival job in front and the recent addition job at
the back.
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Table 2: Distribution of two jobs on three machines

Operations of J1 Operations of J2

O11 O12 O13 O21 O22 O23

Machine-Order 3 1 2 1 2 3
Processing-Time 20 20 7 10 15 10

Fig. 5 illustrates the distribution of the additional job based on the First in First Out (FIFO) rule,
that operation o31 begins to handle after the last operation o23 so the maximum completion time takes
to complete the scheduling process is Cmax = 97 UT.

Figure 5: The scheduling of 3 × 3 instance-based FIFO algorithms with Cmax = 97

Fig. 6 illustrates the optimal scheduling of addition job distribution where the operation o31 is
performed before o22 in machine two and operation o32 is performed before operation o23 in M3 based
on the Longest Processing Time (LPT) rule with a less waiting time equal to 20 UT, and the maximum
completion time taken is Cmax= 50 UT.



CMC, 2022, vol.73, no.3 5113

Figure 6: The optimal scheduling of 3 × 3 instance with Cmax = 50

4.2.2 Computational Results on Instances with Two Conflicting Jobs Scheduling

When we assume that the operations of two jobs have the same requirement for each machine, a
conflict engenders between a subset of jobs, and the requirement of at least one machine exceeds its
capacity.

We consider the previous instance of three jobs {J1, J2, J3} to be processed on three machines.
Suppose that we have one rescheduling job 3 such that J3 operations [o31, o32, o33] needed to assign
to machines [2, 1, 3] with processing time [20, 10, 20] sequentially. Hence, J1 and J3 are conflicting
shown in Fig. 7, where the second operation o12 of J1 and the second operation o32 of J3 needed to be
performed in machine one at the same time = 20 UT, which means the requirement of two jobs exceeds
the machine one capacity at the same time. Therefore, this case requires a rescheduling.

Figure 7: J1 and J3 are conflicting at machine M1
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The first operation o31 of J3 was performed before o22 of J2 in machine two based on the LPT rule,
this leads to the conflict between the two next operations of J1and J3, and the second operation of
the two jobs needed to perform at the same machine and the same time.

The optimal solution of this instance can obtain different values of compilation time based on
Remaining Processing Time RPT obtains Cmax = 70 or 65 and 60 UT with different job distribution in
two cases shown in Figs. 8A, 8B. Based on FIFO Algorithm, the completion time of this instant case
is equal to 97 UT as in the previous case shown in Fig. 4.

Figure 8: Different completion times obtained by different distributions of job 3

The algorithm proposed can train no of steps to solve the conflicting scheduling based on longest
RPT, through 100 episodes number with six steps of problem environment, the model can generate
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the optimal scheduling and the minimum of maximum completion time can be obtained based on
the cumulative rewards generated through training, illustrated in Fig. 9. We noted the stability of the
appearance of the reward in the last episode, and it gives near-optimal values of makespan shown in
Fig. 10.

Figure 9: The generated rewards and makespan through training algorithm with no of steps = 6,
obtains average Cmax = 65.7 UT

Figure 10: The generated rewards through six environments in the last episode

4.3 Experimentally Using Benchmarks Data Set
4.3.1 Benchmarks Data Set Description

To prove the performance of the proposed algorithm, we evaluate our model on instances of
various benchmark dataset sizes benchmarking instances of OR-Library [33], such as 6 × 6, 10 × 10
instances are generated following the well-known Fisher and Thompson (FT) [34], 10 × 5, 15 × 5
and 20 × 5 instances generated also following Lawrence (LA) in Gröflin [35], and Applegate and
Cook [36] called ORB instances, they are all size of 10 × 10.

4.3.2 Comparing with Heuristic Rules

Tab. 3 illustrates the comparison between the generalization performance on the makespan of
the DRLAC model and other heuristic rules. Shortest Processing Time (SPT), LPT, and FIFO are
heuristic rule methods for production sequences; they give an optimal or near-optimal solution for
JSP scheduling. We calculate the APD of our techniques from the optimal value of makespan obtained
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by the Eq. (5):

APDDRLAC = (Cmax − Optimal) /Opimal (5)

Table 3: A Comparison illustrating the efficiency of the DRLAC model and other dispatching rules

Instance -size Optimal SPT LPT FIFO DRLAC APDDRLAC

FT06 6 × 6 55 88 77 65 65 0.181818
FT10 10 × 10 930 1074 1295 1184 1091 0.173118
LA01 10 × 5 666 751 822 772 693 0.040541
LA02 10 × 5 655 821 990 830 799 0.219847
LA03 10 × 5 597 672 825 755 631 0.056951
LA04 10 × 5 590 711 818 695 658 0.115254
LA05 10 × 5 593 610 693 610 620 0.045531
LA06 15 × 5 926 1200 1125 926 957 0.033477
LA07 15 × 5 890 1034 1069 1088 960 0.078652
LA08 15 × 5 863 942 1035 980 989 0.146002
LA09 15 × 5 951 1045 1183 1018 994 0.045216
LA11 20 × 5 1222 1473 1467 1272 1233 0.009002
LA12 20 × 5 1039 1203 1240 1039 1171 0.127045
LA13 20 × 5 1150 1275 1230 1199 1222 0.062609

The results of makespan in Tab. 3 clear that our DRLAC model in the case of two instances of
FT with two different sizes 6 × 6 and 10 × 10 obtains better values than LPT. It obtains good values
compared with FIFO and SPT. It is better than SPT, LPT, and FIFO from LA01 to LA04 with size
10 × 5, and from LA11 to LA13 with size 20 × 5. It obtains good values, for instance, LA06 to LA09
with size 15 × 5. By calculating APD for each algorithm shown in Fig. 11, we find that our proposed
model performs better than the dispatching rules.

Figure 11: The values of average percentage deviation for DRLAC and dispatching rules
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4.3.3 Comparing with Other Trending Approaches

Tab. 4 illustrates the comparison between various approaches such as Genetic algorithm, Deep
Reinforcement Learning (DRL) model proposed in [37], A Multi-Agent Reinforcement Learning
(MARL) model proposed in [38], and deep deterministic policy gradient (DDPG) proposed in [39],
they give an optimal or near-optimal solution of JSP scheduling.

Table 4: A Comparison illustrating the efficiency of the DRLAC model and various approaches

Instance-Size Optimal GA DRL MARL DDPG DRLAC APDDRLAC

ORB1 10 × 10 1059 1379 1131 1154 1211 1074 0.014164306
ORB2 10 × 10 888 1141 993 931 1002 978 0.101351351
ORB3 10 × 10 1005 1300 1092 1095 1150 1070 0.064676617
ORB4 10 × 10 1005 1229 1118 1068 1132 1081 0.075621891
ORB5 10 × 10 887 1135 972 974 1045 902 0.016910936
ORB6 10 × 10 1010 1309 1140 1064 1106 1104 0.093069307
ORB7 10 × 10 397 505 432 424 468 469 0.181360202
ORB8 10 × 10 899 1174 979 956 1022 1000 0.112347052
ORB9 10 × 10 934 1158 1005 996 1082 1050 0.124197002

From the results in Tab. 4, for all instances with size 10 × 10, it is clear that our DRLAC model
obtains values of makespan better than the Genetic Algorithm (GA).

In addition, DDPG is better than DRL from ORB1 to ORB6 and better than MARL on only four
instances of ORB (1, 3, 5, and 7). By calculating the deviation values APD shown in Fig. 12, we find
that our proposed model performs well, compared to the different approaches in the types of machine
learning. In addition, it performs better than the Meta-heuristic algorithm as GA.

Figure 12: The values of average percentage deviation for DRLAC and various approaches
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5 Conclusions and Future Research

The contributions of this paper are summarized as We propose a problem formulation for JSSP
as a sequential decision-making problem then, we design the model to represent the scheduling policy
based on Graph Isomorphism Network, then we introduced the training algorithm as the actor-critic
network algorithm. Our design of a policy network has advantages where first, it can potentially deal
with more environments with dynamics and uncertainty systems such as new job arriving and random
machine breakdown, by adding or removing certain nodes and/or lines from the disjunctive graphs.

We noted that the GIN representation scheduling for JSSP outperforms practically favored
dispatching rules on various benchmark JSSP instances and provides an effective scheduling solution
to cope with new job instances. Second, since all nodes shared all parameters in the graph, this property
effectively enables generalization to situations of different sizes without training or knowledge transfer.

Finally, through observing the simulation results, we find that if the goal of scheduling is to
minimize tardiness or makespan . . . Etc. Then it may be appropriate to put negative rewards if one or
more jobs break their deadlines. For Future work, our model could extend to other shop scheduling
problems (e.g., flow-shop). We can introduce another type of graph network as Graph Pointer
Networks (GPNs) using reinforcement learning (RL) for tackling the optimization problem.
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