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Abstract: Task scheduling in highly elastic and dynamic processing environ-
ments such as cloud computing have become the most discussed problem
among researchers. Task scheduling algorithms are responsible for the allo-
cation of the tasks among the computing resources for their execution, and
an inefficient task scheduling algorithm results in under-or over-utilization of
the resources, which in turn leads to degradation of the services. Therefore, in
the proposed work, load balancing is considered as an important criterion
for task scheduling in a cloud computing environment as it can help in
reducing the overhead in the critical decision-oriented process. In this paper,
we propose an adaptive genetic algorithm-based load balancing (GALB)-
aware task scheduling technique that not only results in better utilization of
resources but also helps in optimizing the values of key performance indicators
such as makespan, performance improvement ratio, and degree of imbalance.
The concept of adaptive crossover and mutation is used in this work which
results in better adaptation for the fittest individual of the current generation
and prevents them from the elimination. CloudSim simulator has been used
to carry out the simulations and obtained results establish that the proposed
GALB algorithm performs better for all the key indicators and outperforms
its peers which are taken into the consideration.

Keywords: Cloud computing; genetic algorithm (GA); load balancing;
makespan; resource utilization; task scheduling

1 Introduction

Since its inception, cloud computing technology has witnessed phenomenal growth in its adoption
in a very short period. Advancements in communication technologies and the exponential rise in
Internet usage by people for carrying out their day-to-day computing-related activities is also one of
the major reasons behind such growth. The prominent characteristics of the cloud computing model,
which include on-demand self-service, rapid elasticity, broad network access, and resource pooling,
also help in gaining the popularity of cloud-based computing models among users [1]. Cloud service
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providers (CSPs) strive to optimally use the underlying computing resources in data centers to fulfill
the computing-related demand raised by the variety of customers to carry out their activities [2–5].

The scheduling of tasks in a collaborative computing environment, such as cloud computing, is a
challenging problem which lies in the nondeterministic polynomial (NP)-hard category. Lots of efforts
have been made by the researchers to provide the solution for the task scheduling problem in cloud
computing using the meta-heuristic algorithms still lots of space for improvement is there. In this work,
we propose a genetic algorithm-based mechanism for task scheduling that primarily considers load
balancing among virtual machines (VMs). To achieve the same two novel techniques for the selection
of the parents in genetic algorithm, i.e., adaptive crossover and adaptive mutation has been used which
helps in increasing the rate of convergence and reduction in loss of diversity two main problems from
which standard genetic algorithm used to suffer. To the best of our knowledge, the proposed adaptive
genetic algorithm-based load balancing (GALB) aware task scheduling strategy, which we consider in
this work with many performance indicators in a cloud computing environment, has never been used.

The primary contributions of this paper are summarized as:

• The proposed GALB algorithm considers load balancing as an important criterion for task
scheduling in a cloud computing environment, as very little work has been conducted in
this area.

• The proposed algorithm uses the concept of adaptive rate for crossover and mutation, which
helps in the better adaptation of the fittest individual of the current generation and helps in
protecting them from elimination. The adaptive approach used for parent selection significantly
improved the performance of the proposed algorithm.

• Performance evaluation of the proposed GALB algorithm using key performance indicators
such as makespan, performance improvement rate (PIR %), degree of imbalance, and resource
utilization.

The remainder of this paper is structured as follows: Section 2 describes the related work, and
Section 3 presents the system model and problem formulation used in this work. The proposed GALB
algorithm is described in Section 4. The performance evaluation of the proposed algorithm, along
with the performance metrics, is presented in Section 5. Section 6 discusses the results and compares
them. Finally, Section 7 presents the conclusions of the study.

2 Related Work

The field of distributed computing has witnessed significant development in the domain of
scheduling since the 1980 s, as it involves the allocation of a limited number of available computing
resources to the task or applications submitted by the users for their execution. The adoption of the
Internet by the general masses to carry out their computing activities opens a new area of research
for modern scheduling. In the last decade, researchers have proposed several algorithms to solve the
most discussed problems of task scheduling [6–14]. In this section, References and its citations has
been reordered to maintain sequencial order. Kindly verify. we present a brief overview of some of
the popular task scheduling algorithms that may or may not involve load balancing factors but are
important in the context of our proposed work.

Static task scheduling algorithm such as First Come First Serve (FCFS), Round Robin (RR), and
Shortest Job First (SJF) are not suitable for varying load environments, such as cloud computing,
as they require information regarding the tasks (such as task size/length, task count, any deadline
associated with them, etc.) and available computing resources (such as bandwidth, storage capacity,
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processing elements, power, etc.) in advance [15]. On the other hand, task scheduling mechanisms,
which are based on dynamic and meta-heuristic algorithms, such as artificial bee colony (ABC), ant
colony optimization (ACO) [16], cuckoo search (CS) [17], genetic algorithm (GA) [18], particle swarm
optimization (PSO) [19,20], etc., prove their efficiency over static algorithms in cloud computing, as
they do not require prior information about tasks and computing machines.

The problem associated with heuristic algorithms is that they are often used to trap into local
optima, and because they fail to converge quickly and do not result in better solutions. On the other
hand, meta-heuristic algorithms have proven their efficiency in solving NP-hard problems [21]. Some
of the most popular metaheuristic techniques used to solve such NP-hard problems are the artificial
bee colony [22], ant colony optimization [23], genetic algorithm [24], and particle swarm optimization
[25]. The ability of metaheuristic techniques to find the near-optimal solution makes them the most
appropriate techniques for solving the cloud computing scheduling problem.

The authors in [25] presented the ABC algorithm-based load-balancing technique, which results
in the minimization of the makespan along with the balancing of workload across the VMs in a
cloud computing environment. D. B. et al. [26] proposed a task scheduling mechanism based on
PSO. Wang et al. [27] in their work presented a load-balancing mechanism based on a hyper-heuristic
algorithm to provide a system that distributes tasks in a balanced manner. The authors in [28] proposed
a dynamic resource allocation technique that helps in reducing the energy consumption by data centers
in a cloud computing environment, whereas Agarwal and Srivastava [29] proposed a task scheduling
mechanism in which the initial population of the PSO is generated by an opposition-based learning
concept so that diversity in the population can be achieved and results in improvement for the set of
performance indicators.

3 System Model and Problem Formulation

In this work, it is assumed that a cloud-based computing model comprises several data centers,
which are responsible for the provisioning of resources and computing facilities as per the demand of
the users. Data centers in cloud computing are mainly a collection of heterogeneous computing nodes
known as virtual machines (VMs), which are connected through high–speed links. VMs are computing
machines primarily responsible for the execution of different workloads with diverse computation
requirements Tab. 6.

For more clarity regarding the problem of task scheduling in cloud computing, let us consider
a cloud computing system that consists of m heterogeneous independent VMs that are represented
as VM = {VM1, VM2, VM3, . . . VMm}, and a set of n tasks that are represented by T = {T1, T2, T3,

. . . Tn}. In this study, it is assumed that each machine will follow the first-come-first-serve policy to
execute the submitted tasks or workloads that are mutually independent and can be executed on any
virtual machine. Let Tij be the time required by virtual machine VMj to execute an ith task, which is
calculated using Eq. (1).

Tij = TLi

Vj

(1)

where TLi is the size of task Ti in million instructions (MI), and Vj represents the computation speed
of the jth virtual machine in million instructions per second (MIPS).
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The finishing time of the jth virtual machine is denoted by VFTj and computed using Eq. (2) as
follows:

VFTj =
∑n

i=1
ETij ∗ A (i, j) (2)

where i represents the task index or number whose value lies in [1 – n], j represents the index of VM
whose value lies in [1 – m], and ETij is the time consumed while the execution of task Ti on VMj and
calculated as shown below:

ETij = Tij + (TISi + TOSi) /Bwj (3)

ETij consists of two parts: the time required for execution and data transfer time. TISi and TOSi

are used to represent the input size and output size of the ith task respectively, while Bwj denotes the
bandwidth of the jth node.

A (i, j)= 1 when task Ti is allocated to machine VMj otherwise A (i, j) = 0.

If a cloud computing-based system starts the execution of the tasks at time 0; then makespan is
the time when all VMs will complete the execution of the entire load on them.

makespan = max
{
VFTj

}
(4)

Our objective was to choose an optimal solution that provides the minimum value for the
makespan for the discussed scenario.

Load Balancing Mechanism in Cloud Computing

Load balancing in a dynamic and distributed environment, such as cloud computing, is an
important aspect from a performance point of view, and it must be considered while forming any
task scheduling strategy. A load-balancing-enabled task scheduling strategy can result in (i) balanced
distribution of the load or tasks among the virtual machines for better utilization of the underlying
VMs, and (ii) reduction in waiting time for the execution of tasks.

Let Vi represent the computation power of the ith VM and V be the processing capacity of all
available VMs, which is calculated as shown in Eq. (5):

V =
∑m

i=0
Vi (5)

After determining the maximum processing capacity, V; the next step is to determine the number
of underloaded, overloaded, and balanced virtual machines.

For this work, a VM is categorized as an underloaded virtual machine (UVM) if its utilization
is less than 30% of its capacity and as an overloaded virtual machine (OVM) if its utilization is more
than 75% of its capacity.

The load on a VM at time t can be defined as the total size of the tasks on a particular VM and
can be denoted as LVMi,t

and the load on all the VMs, L can be calculated as shown in Eq. (6):

L =
∑m

i=1
LVMi (6)
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The finishing time of a VM (FTVM) is the time required by the VM to complete the execution of
tasks mapped to it. The finishing time of ith VM can be determined using Eq. (7) as follows:

FTVM,i = LVM,i

Vi

(7)

Finishing time of all the VMs, FTVM can be calculated as:

FTVM = L
V

(8)

In cloud computing, load balancing can be determined using the standard deviation (σ) of the
entire system load as shown in Eq. (9),

σ =
√

1
m

∑m

i=1

(
FTvm,i − FTvm

)2
(9)

A system is said to be unbalanced if the value obtained for the standard deviation (σ ) is greater
than the threshold value (VThres), which is used in the range [0,1] [26]; otherwise, the system is said to
be in a balanced state.

Algorithm1: Load Balancing Process
Begin
Generate a set of tasks randomly; T = [T1, T2, T3, . . . Tn].
Arrange the task in decreasing order of their task size.
Generate random set of VMs V = [VM1, VM2, . . . VMm].
Map Ti→ VMj using the first-come-first-serve mechanism.
Calculate load of VMs;
LVMi = (total task allocated ∗ Task length) / (MIPS ∗ Number of processing unit) Calculate process-
ing capacity of VM; Vi = (MIPS ∗Number of processing unit) + Bwi .
if (LVMi < Vi)

Load Balancing is possible.
else

Load Balancing is not possible.
end if
Determine the state of the Virtual Machine.
if (Resource_Utilization > 80% ∗ (Vi))

VM is said to be in an Overloaded (OL) state.
else if (ResourceUtilization < 25% ∗ (Vi))

VM is said to be in Under Loaded (UL) state.
else

VM is said to be in a Balance state.
end if
if (OL & UL state exist)

Shift task from overloaded machine to under loaded machine
Until Vi < = OL && Vi > = UL
Repeat the process till any VM remain overloaded.

end if
End
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4 Proposed Adaptive Genetic Algorithm Based Load Balancing Aware Task Scheduling Mechanism:
GALB

In this section, the proposed GALB-aware task scheduling technique is elaborated. The genetic
algorithm belongs to the evolutionary algorithm family, which is based on the principle of natural
evolution. GA works iteratively and maintains a set of solutions, also known as the population.
Broadly, each genetic algorithm comprises three main operators, namely selection, crossover, and
mutation, to generate a new population from the old one.

Genetic algorithms are well known for solving large, nonlinear, and discrete problems. As the
solution development follows the probabilistic approach, they do not guarantee the optimal solution
but can produce near-optimal solutions for the concerned problems.

4.1 Representation of the Chromosomes

In this work, we used the structure of chromosomes shown in Fig. 2. Let there be 12 different tasks
(T1, T2, T3, . . . , T11, T12) and five distinct virtual machines (VM1, VM2, . . . , VM5) which are allocated
as shown in Fig. 1. As shown in Fig. 1., tasks T1, T5 and T9 are allocated to VM2; tasks T2 & T11 are
allocated to VM5; T3, T10 and T12 are allocated to VM3; T4, T6 allocated to VM1; T7 and T8 allocated
to VM4.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

VM2 VM5 VM3 VM1 VM2 VM1 VM4 VM4 VM2 VM3 VM5 VM3

Figure 1: Allocation of 12 tasks on 5 VMs

4.2 Initialization of Population

A population in the GA is the collection of individuals or chromosomes, which is a representation
of the probable solution of the given problem. The number of chromosomes in a population is
controlled by sPop, which represents the size of the population. For the combination of 12 tasks and
5 VMs, a sample population is shown in Fig. 2.

2 5 3 1 2 1 4 4 2 3 5 3 Chromosome (Ch1)
1 3 2 3 5 2 4 1 5 2 4 1 Chromosome (Ch2)
3 2 5 5 3 1 2 1 2 4 3 4 Chromosome (Ch3)
4 3 1 5 4 2 5 1 3 2 2 1 Chromosome (Ch4)
4 2 1 4 2 5 1 4 3 1 5 2 Chromosome (Ch5)

Figure 2: Sample initial population

4.3 Fitness Calculation

To check the efficiency of the proposed algorithm, it is necessary to evaluate the performance of
every probable solution by using a fitness function. The proposed GALB algorithm has been used in
this study to present a solution for the task scheduling problem that can result in (i) a lower value of
makespan, (ii) a lower degree of imbalance, and (iii) an increase in resource utilization. Many attempts
have been made to present the trade-off between the two conflicting objectives, such as makespan and
resource utilization; however, in this work, we establish the relationship between these objectives, as
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shown in Eq. (10).

VMutilization,i = FTvm,i

makespan
(10)

4.4 Resource Utilization

This may be defined as the duration of the overall execution time required for tasks during which
the virtual machine remains occupied for execution. Let VMutilization,i denote the utilization of the ith
VM, which can be determined as shown in Eq. (10).

The average utilization of all available VMs can be determined by using the Eq. (11) as,

VMAverage Utilization =
∑m

i=1VMutilization,i

m
(11)

To facilitate the design of the load-balancing aware task scheduling mechanism, a genetic
algorithm for the above-mentioned objectives has been incorporated into a single objective function
according to which a solution is said to be better if it has a lower value for the fitness function, which
is defined in Eq. (12) as follows:

Fitness = makespan
VMAverage Utilization

(12)

4.5 Selection

The primary objective of the selection operation in the genetic algorithm is to create an interme-
diate population or mating pool for reproduction by selecting the fittest individuals from the current
population. A tournament selection operator was used in this study for the selection of individuals
from the current population. In this method of selection, a set of individuals is selected, and a
tournament is carried out between them as a result of which an individual with better fitness is selected
for further reproduction in the mating pool.

4.6 Adaptive Crossover

In this work, a two-point crossover operator is used which involves the random selection of
two points in selected chromosomes for the generation of two offspring. The crossover rate plays a
significant role in the efficient operation of any genetic algorithm. In this study, an adaptive crossover
rate was used to avoid the problems associated with classical or standard genetic algorithms. The
adaptive crossover rate needs to be calculated for the current population of each generation, which
results in an improved rate of convergence and helps in avoiding the local optima and converges to the
global optimal solution.

The adaptive crossover rate (Pc) used in this study was calculated as shown in Eq. (13):

Pc =

⎧⎪⎨
⎪⎩

r2, if Makespancurrent is memory
r1 ∗ Makespanbest− Makespancurrent

Makespanbest− Makespanavg
, elseif Makespancurrent ≥ Makespanavg

r2, Makespancurrent ≤ Makespanavg

(13)

Here, r1 and r2 are the two real numbers that range in [0.8, 0.95] based on the simulation analysis
and help in significantly improving the performance of the algorithm.
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4.7 Mutation

Mutation in the genetic algorithm helps maintain the variety in the population. In this study,
a random mutation operator is used, which involves the random swapping of two gene positions.
The development of the future population is the result of the application of selection, crossover, and
mutation operations to the initial population in a single generation. Similar to the crossover rate, the
mutation rate also significantly affects the performance of the algorithm to a large extent.

In this work, the adaptive mutation rate is used, which is calculated as shown in Eq. (14):

Pm =

⎧⎪⎨
⎪⎩

m2, if Makespancurrent is memory
m1 ∗ Makespanbest− Makespancurrent

Makespanbest− Makespanavg
, elseif Makespancurrent ≥ Makespanavg

m2, Makespancurrent ≤ Makespanavg

(14)

Here, m1 and m2 are the two real numbers that lie between 0.01 and 0.001 based on the simulation
analysis and help improve the performance of the genetic algorithm significantly.

The values of Pc and Pm computed above are inversely proportional to the difference between
the best fitness and average fitness values, that is,fitnessbest − fitnessavg; Pc and Pm adjust themselves
according to the situation to avoid premature convergence. Hence, the proposed adaptive probability
rate of crossover and mutation helps protect the fittest individual from elimination and enters the next
generation without any changes.

4.8 Termination Condition

To determine the point at which the GA must stop further execution of the involved steps, it is
necessary to decide on termination conditions. For this task scheduling problem, the GA will stop its
execution if any of the two stopping criteria have been met, first when we reach an absolute number
of iterations that are used to define before commencing the experiments and, second, when there is no
improvement in the population for 25% of the absolute iterations.

5 Performance Evaluation

This section presents the experimental and simulation setups used to test and analyze the
performance of the proposed GALB algorithm for task scheduling.

The results obtained for the key performance indicator are compared with other prominently used
algorithms, such as FCFS, dynamic load balancing (DLB), cuckoo search, standard genetic algorithm
(sGA), particle swarm optimization (PSO), and hyper-heuristic (HyperLoad), using the CloudSim
platform [30]. This simulator provides a virtualized environment for the simulation and supports on-
demand provisioning of resources. Existing packages of the CloudSim simulator have been extended
for modeling and simulation purposes, as discussed by researchers in their work [18,20].

Various experiments with different combinations of tasks and VMs were performed using the
following machine configuration: Core i5 processor, 16 GB RAM, and 64-bit Windows 10 operating
system to judge the efficiency of the proposed GALB algorithm. A random generator was used to
generate different tasks with varying sizes and computing machines with varying processing power.
The values of the input parameters used in this study are listed in Tab. 1.
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Table 1: Simulation parameters used for result analysis

Parameter Values

Number of tasks 100—1000
Size of tasks (MI) 1000—100000
Number of virtual machines (VMs) 25—100
Processing power of VM (MIPS) 100—2500
Chromosome size, nPop 50
Maximum number of generations, maxGen 75
Initial crossover probability, pc .9

The performance of the proposed algorithm is determined with the help of the performance
metrics which include makespan, performance improvement ratio (PIR %), degree of imbalance (DI),
and resource utilization. To the best of our knowledge, no researchers have considered these parameters
together in their work, and most of them consider only the makespan as the main evaluation criteria.

5.1 Makespan

The computation of the values of the makespan obtained for the variety of experiments in this
work is computed using Eq. (4) and the definition discussed in Section 3, which is used to denote the
time required by the virtual machine to complete the execution of the submitted tasks. This is one of
the most extensively used parameters for determining the efficiency of any algorithm.

5.2 Performance Improvement Ratio-PIR %

This parameter helps in determining the extent to which the makespan value is reduced for the
proposed algorithm in comparison to the base algorithm, which is used for comparison purposes. In
this study, it was calculated using Eq. (15):

PIR % = Makespan − MakespanGALB

Makespan
× 100 (15)

here Makespan and MakespanGALB represents the makespan of base and proposed GALB algorithm
respectively.

5.3 Degree of Imbalance (DI)

DI is used to present the level of imbalance in terms of load allocation among the available VMs,
and is computed using Eq. (16), as follows:

DI = Tmax − Tmin

Tavg

(16)

here Tavg, Tmin, Tmax represents the average, minimum, and maximum time a VM requires to execute
all the tasks allocated to it. Therefore, an algorithm that results in the minimum value of DI with an
increase in the number of tasks is considered efficient.
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5.4 Resource Utilization (VMAverage Utilization)

Clouds may be defined as the pool of resources, and efficient utilization of resources, especially
virtual machines, is considered an integral part of any efficient task scheduling algorithm. In this study,
the value of resource utilization was computed using Eq. (11), as described in Section 4.

6 Results and Comparison

This section discusses the performance and results obtained for the proposed task scheduling
mechanism based on GALB in cloud computing with the help of a variety of environments, which is
divided into two categories: category-1 and category-2. Here Category-1 involves randomly generated
tasks ranging from 100 to 1000 with varying task lengths, as mentioned in Tab. 1, whose execution
is carried out on 50 VMs that are homogeneous and remain fixed in number. Category-2 involves the
execution of 1000 homogeneous tasks with the same task length on randomly generated heterogeneous
VMs with numbers varying from 25 to 100.

6.1 Result Comparison Based on Makespan

The performance of the proposed GALB algorithm is presented in this subsection for different
sets of tasks and VMs, in which the makespan is considered as the key performance indicator.
Tab. 2 represents the makespan values of all seven algorithms, which are taken into consideration for
category-1 in which ten combinations of tasks are executed with the help of 50 VMs, and the values
of makespan obtained for the proposed GALB algorithm are minimum (better) in comparison to
the other extensively used algorithms. It can also be easily observed from Fig. 3. that the proposed
GALB performs better than other algorithms as the number of tasks also increases, which needs to be
executed with a fixed number of VMs, as stated in category-1.

Table 2: Makespan values obtained for different tasks–Category-1

# Tasks FCFS DLB CS GALoad PSOLoad HyperLoad GALB
(proposed)

100 1993 1920 1848 1811 1842 1763 1710
200 2758 2617 2495 2540 2596 2471 2216
300 3396 3210 3138 3093 3082 2905 2791
400 4419 4241 4160 4071 4097 3824 3690
500 4990 4914 4889 5007 4793 4810 4581
600 6035 6009 5910 5868 5762 5529 5110
700 7398 7154 6817 6732 6581 6293 5778
800 8557 8245 7909 7797 7518 7280 6632
900 10052 9708 9582 9210 9239 8727 8005
1000 14291 12147 11025 10654 9928 9401 8997
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Figure 3: Comparison of makespan–Category-1

Tab. 3 presents the values of makespan obtained for the execution of 1000 homogeneous tasks over
the combinations of VMs, as stated in category-2 and the proposed GALB algorithm outperforms the
other algorithms, which are considered for the comparison. Fig. 4. presents a graphical representation
of the obtained values of the makespan for category-2.

Table 3: Makespan values obtained for different VMs–Category-2

# VMs FCFS DLB CS GALoad PSOLoad HyperLoad GALB
(proposed)

25 16912 16007 16092 15297 14812 14727 13815
50 12587 12111 11498 11249 10695 10110 9368
75 8963 8218 7983 7998 7682 7209 6812
100 5914 5441 4907 4711 4476 3925 3609

6.2 Result Comparison Based on PIR%

In this subsection, the performance of the proposed GALB algorithm is measured in terms of
the PIR%. Tab. 4 presents the value of PIR% obtained for different combinations of tasks, as stated
in category-1. Values marked in bold represent the reduction in execution time in percentage by the
proposed GALB algorithm in comparison to its competitor algorithm. For category-1, GALB resulted
in a reduction in makespan by 10.31% to 37.04%. Tab. 5 presents the PIR% value for category-2.
Again, the GALB algorithm outperforms its peers and can reduce the value of the makespan by 8.05%
to 38.97% and establishes that the proposed algorithm is much better and able to reach the optimal
solution.
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Figure 4: Comparison of makespan–Category-2

Table 4: PIR% for GALB (proposed) for different task combinations–Category-1

# Tasks FCFS DLB CS GALoad PSOLoad HyperLoad

100 14.19 10.9 7.46 5.57 7.05 3.0
200 19.65 15.32 11.18 12.75 14.63 10.31
300 17.81 13.05 11.05 9.76 9.44 3.92
400 16.49 12.99 11.29 9.35 9.93 3.5
500 8.19 6.77 6.29 8.5 4.42 4.76
600 15.32 14.96 13.53 12.91 11.31 7.57
700 21.89 19.23 15.24 14.17 12.20 8.18
800 22.49 19.56 16.14 14.94 11.78 8.90
900 20.36 17.54 16.45 13.08 13.35 8.27
1000 37.04 25.93 18.39 15.55 9.37 4.29

Table 5: PIR% for GALB (proposed) for different task combinations–Category-2

# VMs FCFS DLB CS GALoad PSOLoad HyperLoad

25 18.31 13.69 14.14 9.68 6.73 6.19
50 25.57 22.64 18.52 16.72 12.4 7.33
75 23.99 17.10 14.66 14.82 11.31 5.50
100 38.97 33.67 26.45 23.39 19.36 8.05
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Table 6: Denote symbol and their meaning

Symbol Meaning

m Number of virtual machines (VMs)
n Number of tasks
T Set of task
Tij Execution time of ith task on jth VM
TLi length or size of ith task
Vj Processing speed of jth VM
MIPS million instructions per second
VFTj finishing time of jth VM
MI million instructions
ETij Complete execution time
UVM under loaded virtual machine
OVM Over loaded virtual machine
LVMi Load on ith VM at time t.
L Load on all VMs
FTVM,i Finishing time of ith VM
FTVM Finishing time of all VM
σ standard deviation
VMmax maximum number of available virtual machines

6.3 Result Comparison Based on Degree of Imbalance (DI)

This subsection discusses the performance of the proposed GALB algorithm, based on the degree
of imbalance.

Fig. 5. presents the performance of various task scheduling algorithms based on DI for category-1
and the proposed GALB algorithm can achieve a lower value of DI for the cases. Reduction in the value
of DI when compared with its close competitor algorithm, HyperLoad by 32.64%, and PSOLoad,
GALoad, CS, DLB, and FCFS by 38.30%, 39.58%, 71.54%, 58.36%, and 56.04%, respectively, which
suggests that the load will be allocated more uniformly among the VMs in the case of the proposed
GALB algorithm. Similarly, Fig. 6. presents the result for Category-2, our proposed GALB task
scheduling algorithm results in a reduction of the DI for the different combinations of VMs by up
to 41.40%, 46.27%, 52.87%, 61.72%, 60.70%, and 64.29% for HyperLoad, PSOLoad, GALoad, CS,
DLB, and FCFS, respectively.
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Figure 5: Comparison based on degree of imbalance (DI)–Category-1

Figure 6: Comparison based on degree of imbalance (DI)–Category-2

6.4 Result Comparison Based on Resource Utilization

A performance analysis of the proposed GALB algorithm is presented in this subsection, in which
resource utilization is considered as the performance evaluation parameter, as defined in Section
4. Different combinations of tasks and VMs were used, as shown in Figs. 7 and 8, respectively.
Fig. 7. shows the performance of the algorithms that are taken into consideration, and it is easy to
conclude that our proposed GALB-based task scheduling algorithm results in a higher rate of resource
utilization for all combinations of the task ranging from 100 to 1000, whose execution has been done
with the help of 50 VMs, as mentioned in category-1. Similarly, for category-2 which involves the
execution of a fixed number of tasks on a varying number of VMSs, the proposed GALB outperforms
the other prominently used algorithms reported in the literature, as presented in Fig. 8. Therefore,
the GALB-based task scheduling algorithm again proves its superiority for both categories that we
considered for the purpose of sensitivity analysis.
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Figure 7: Comparison based on rate of resource utilization–Category-1

Figure 8: Comparison based on rate of resource utilization–Category-2

7 Results and Comparison

Load balancing in a high-performance computing environment, such as the cloud, proves to be
a significant factor that helps both the cloud service user and provider economically and also plays
a very important role in minimizing the overhead related to decision-making. The popularity and
adoption of cloud computing, especially in the last decade, is possible because of its pay-per-usage
mode of renting the required computing resources, which helps the service user meet their computing-
based expectations. This work presents a novel meta-heuristic load-balancing aware task scheduling
algorithm (GALB) to solve the most popular problem of task scheduling in cloud computing, which
results in the allocation of tasks among the available virtual machines in a balanced manner and
helps in the reduction of makespan, better utilization of resources, etc. The performance of GALB
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is evaluated and compared with the optimal environment and state-of-the-art algorithms available in
the literature. An extensive simulation study with sensitivity analysis was performed by introducing
variations in several tasks and VMs to determine the efficiency of the proposed GALB algorithm.
The proposed GALB algorithm results in better performance for the number of parameters discussed
in the performance metrics section for both categories, and outperforms other meta-heuristic and
traditional algorithms. Furthermore, in the future, the proposed GALB algorithm may be extended
to include more features and can also be used for scientific workflow with other QoS parameters in a
cloud computing environment.
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