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Abstract: Recommendation algorithms regard user-item interaction as a
sequence to capture the user’s short-term preferences, but conventional algo-
rithms cannot capture information of constantly-changing user interest in
complex contexts. In these years, combining the knowledge graph with sequen-
tial recommendation has gained momentum. The advantages of knowledge
graph-based recommendation systems are that more semantic associations
can improve the accuracy of recommendations, rich association facts can
increase the diversity of recommendations, and complex relational paths can
hence the interpretability of recommendations. But the information in the
knowledge graph, such as entities and relations, often fails to be fully utilized
and high-order connectivity is unattainable in graph modelling in knowledge
graph-based sequential recommender systems. To address the above prob-
lems, a knowledge graph-based sequential recommendation algorithm that
combines the gated recurrent unit and the graph neural network (KGSR-
GG) is proposed in the present work. Specifically, entity disambiguation
in the knowledge graph is performed on the preprocessing layer; on the
embedding layer, the TransR embedding technique is employed to process
the user information, item information and the entities and relations in the
knowledge graph; on the aggregation layer, the information is aggregated by
graph convolutional neural networks and residual connections; and at last, on
the sequence layer, a bi-directional gated recurrent unit (Bi-GRU) is utilized
to model the user’s sequential preferences. The research results showed that
this new algorithm performed better than existing sequential recommendation
algorithms on the MovieLens-1M and Book-Crossing datasets, as measured
by five evaluation indicators.

Keywords: Sequential recommendation; knowledge graph; graph neural
network; gated recurrent unit

1 Introduction

Most of the famous sequential recommendation algorithms nowadays are based on the Markov
chains and recurrent neural networks (RNNs). The Markov chain-based methods assume that the
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user’s next behavior relies on the preceding behavior or behaviors, and these methods have achieved
good performance in short-term recommendation. Cai et al. [1] proposed a socially-aware personalized
Markov chains model, which showed excellent performance in addressing the cold-start problem on
sparse datasets, but could not capture frequently-changing dynamic information in complex contexts.
Meanwhile, under the independency assumption of Markov chains, the preceding interactive and
independent combinations of behaviors would reduce the performance of recommendation. The
RNN-based recommendation methods code the user-item interactions into hidden vectors, and predict
the user’s next behavior according to the status of these vectors, which facilitate the storage and
updating of information status. For instance, Xu et al. [2] put forward a recurrent convolutional
neural network (RCNN), which used the RNN to capture long-term dependence relations and the
recurrent module of the CNN to extract hidden short-term sequential relations. Nonetheless, the RNN
often underperforms in explicit extraction of complex shifts of user tastes or more fine-grained user
preferences from interactive sequences; it often fails to model the user time information and contextual
information, and entails training by massive high-density data to reach the expected recommendation
effect.

In these years, the knowledge graph (KG) has been introduced as assistant information to
sequential recommender models [3]. The major KG modelling methods nowadays include the path-
based method and the graph embedding-based method. The former decomposes the KG into linear
paths, but it needs to define many meta-paths, and hence is not applicable to tasks that involve lots
of KGs. The graph embedding-based method, however, falls short of inductive learning capacity;
when a new node occurs, the model will have to learn the feature representations of the whole
graph, which are not correlated to the downstream tasks, and consequently, the downstream task
result cannot be used to optimize feature representations of the graph. Moreover, both methods
cannot establish high-order connectivity of the graphs. Thus, many researchers have tried to optimize
the combination of knowledge graphs with sequential recommender models. Huang et al. [4] put
forward a knowledge-enhanced sequential recommendation model, which for the first time combined
sequential recommender systems with external memory networks based on a large-scale knowledge
base. Wang et al. [5] modeled session sequences into session graphs, and combined the graph neural
network (GNN) and key-value memory networks to fulfill recommendation.Sun et al. [6] combined
the user-item bipartite graph and the knowledge graph into a unified graph, and employed a graph
attention network for propagation among nodes.

In response to the problems of existing sequential recommendation methods, such as the inability
to capture fine-grained dynamic user preferences under complex conditions and the inability to
establish higher-order connections of graphs, this paper proposes a knowledge graph sequential
recommendation algorithm that fuses gated recursive units and graph neural networks. Under the
premise of capturing the dynamic information of the recommendation system in real time, the accuracy
of the recommendation results is improved by fusing the user-item history interaction information and
the features of the knowledge graph. The main contributions are as follows.

(1) A graph convolutional neural network (GCNN) framework for aggregating user infor-
mation and item information end-to-end learning features is constructed. And the residual
connectivity mechanism is introduced at the input and output of the graph convolutional
network, and the Bi-GRU network is able to fuse item sequences and knowledge graph
entity sequences for short-term interest modeling, which solves the problem of higher-order
connectivity of the graph that cannot be established in the application of the knowledge graph
to serialized recommendation algorithms.
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(2) To address the problem that higher-order connectivity cannot be established in the
knowledge graph applied to the sequential recommendation algorithm, this paper proposes a
sequential recommendation algorithm that incorporates higher-order semantic relationships
in the knowledge graph of item attributes, and effectively improves the accuracy of the
recommendation results by introducing rich speech information.
(3) The proposed algorithm is compared with several baseline methods on MovieLens-1M and
Book-Crossing datasets, and the comparison experiments show that the proposed algorithm
has improved the recall, mean reciprocal rank (MRR), normalized discounted cumulative gain
(NDCG), hit rate (HR) and precision of recommendation.

2 Related Works
2.1 Sequential Recommendation

Conventional recommender systems include demographics-based recommendation, content-
based recommendation, association rules-based recommendation, collaborative filtering-based
recommendation, knowledge-based recommendation and hybrid recommendation [7]. The major
shortcomings of these systems are as follows. First, algorithms in these systems rely mainly on static
historical interactive data and cannot capture dynamically-changing information, which reduces
the accuracy of recommendation; secondly, conventional recommendation algorithms regard user
behaviors as independent events and overlook the impacts of behavior sequences on recommendation;
thirdly, conventional systems consider only long-term user taste, but not the short-term user
preferences at different time intervals. Sequential recommendation algorithms that consider both
short-term and long-term user preferences have overcome these shortcomings and hence gained
momentum in these years.

Conventional recommender systems like the content-based systems and collaborative filtering
systems rely on static user-goods interactive data to generate recommendations [8]. In real-world
scenarios, the user interest, and the goods popularity changes from time to time, and to capture the
changing information is important to improve the performance of recommender systems. Sequential
recommender systems, which regard user-goods interactive information as dynamic sequences, model
the sequence dependency and hence can achieve higher recommendation accuracy than conventional
systems. Specifically, in sequential recommendation algorithms, user behaviors are represented as a
sequential decision-making process, i.e., the sequence of the user’s previous and current behaviors will
affect their future behavior sequences [9,10]. Meanwhile, the sequential recommendation algorithms
can model the information about the changes in the parameters and types of the goods as well as their
popularity to provide more accurate, customized and dynamic recommendations.

2.2 Knowledge Graph-Based Recommender System

The knowledge graph, as assistant information to recommender systems, boasts many advantages.
First, the KG modelled by the goods parameters and social networks introduces more seman-
tic associations, which will allow the system to mine user interests and improve the accuracy of
recommendations. Zhu et al. [11] put forward a knowledge graph-enhanced neural collaborative
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recommendation framework, which made use the rich relations in the graph to improve the accuracy
of recommendation. The rich relations between KG entities facilitate the expansion of the inter-item
relations and increase the diversity of recommendations. For instance, Sang et al. [12] designed a
learning path recommendation model based on a multidimensional knowledge graph framework,
which provided diverse and customized learning path recommendations for e-learners. Last, the inter-
entity relation paths in KGs can connect users with the recommendations, which hence increases
interpretability of the recommendations. Xie et al. [13] put forth an explainable recommendation
framework based on the KG and multi-objective optimization, in which the path between the target
user and the recommended item is used as an explanation basis.

3 Knowledge Graph-Based Sequential Recommendation Combining Gated Recurrent Unit and Graph
Neural Network (KGSR-GG)

3.1 Problem Description and Definitions

In a knowledge graph, both the knowledge framework and the entity data are described by struc-
tured 3-tuples to store inter-entity relations in the real world. The KG is expressed as G = (ε, �, S),
where ε = {

e1, e2, . . . , e|ε|
}

stands for the entity set consisting of |ε| entities; � = {
r1, r2, . . . , r|R|

}
stands

for the relation set, comprised of |R| relations; and S ⊆ ε × � × ε is the 3-tuple set in the KG. The
3-tuple describes a fact in a given domain, consisting of a head entity, a tail entity and the relation
between the two entities.

In the KGSR-GG algorithm, the task is defined as follows: a knowledge graph (G) for the
historical interactive sequence S (u) of a user u and the item is given to predict the user u’s behavioral
sequence for the item in the next time point, i.e., the user u’s potential interest in the interactive item
v. A prediction function is constructed here:

ŷuv = f (u, v|S (u) , G, �) (1)

where ŷuv refers to the probability of the user u to visit the item v at the next time point, Θ is the
correlation parameter of f .

3.2 Implementation of the KGSR-SS Algorithm

Fig. 1 shows the architecture of the algorithm, which consists of four layers—a pre-processing
layer, an embedding layer, an aggregation layer, and a sequence layer. In sequential recommendation,
the KG serves as assistant information to the recommender system to model user interest and generate
recommendations. The pre-processing layer pre-treat the partial source data to improve the quality of
the KG; the embedding layer embeds the user information, item information, and the KG entities
and relations into a unified low-dimension vector space to generate user and item embeddings; the
aggregation layer fuses the information between the central node and the neighboring nodes in the
user vectors and item vectors to capture more latent vectors of the user. On the sequence layer,
the item sequences and the entity sequences are processed to model the user’s sequential preferences,
and the loss function is calculated.
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Figure 1: Architecture of the KGSR-GG algorithm

3.2.1 The Pre-Processing Layer

The main goal of the pre-processing layer is to cleanse the partial source data, perform entity
disambiguation, and ensure the quality of the KG in the algorithm. Existing KG-based recommender
systems rely on the user’s social network and attributes of items to generate simple KGs. Hence,
the conventional entity disambiguation method is adopted in the present work. In the present work,
duplicate entity names N were clustered into the same target list E, and a function for deleting repetitive
entities was designed as the entity disambiguation function δ:

δ = funique() (2)

3.2.2 The Embedding Layer

The major goal of the embedding layer is to embed information about users and items as well
as entities and relations in the KG from a high-dimensional sparse feature vector space into a
low-dimensional dense feature vector space, while maintaining the inherent structure and semantic
information, and reducing the overhead of data storage and computation in the recommendation
process. The TransR embedding method was employed here to process the entities and relations in the
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KG, and the general embedding method was used to process user information and item information.
TransD, though more simplistic and faster than TransR, has lower knowledge representation accuracy.
Thus, TransR was selected in the present study to generate embeddings for information in the KG.

εr = Mrε (3)

sr = Mrs (4)

The score function used in the TransR method is

fr (ε, s) = ||εr + r − sr||L1/L2
(5)

Matrix factorization is an embedding method that factorizes the user embedding matrix and the
item embedding matrix; the obtained simplified matrices maintain the basic attributes of the original
matrices, incorporate the “implicit vectors”, and have stronger capacity in addressing sparse matrices.
Given a user matrix U ∈ Rm×k, an item matrix V ∈ Rk×n, and a cooccurrence matrix Y ∈ Rm×n, the
predicted score of the user u to the item v is:

ruv = qT
v pu (6)

where pu is the row vector of the user u in the user matrix U , qv is the column vector of the item v
in the item matrix V . The object function of matrix factorization is to reduce the difference between
the original score ruv and qT

v pu, and store the original information in the co-occurrence matrix to the
maximum extent. The object function of the regularizes is introduced:

U ∈ Rm×k, V ∈ Rk×n min
q∗ ,p∗

∑
(u,v)∈K

(
ruv − qT

v pu

)2 + ψ
(||qv||2 + ||pu||2

)
(7)

where k is the dimension of the implicit vector, which determines the expression capacity of matrix
factorization, ψ is the regularization parameter, and a larger parameter indicates stronger constraints
of regularization, which can alleviate overfitting.

3.2.3 The Graph Neural Network-Based Aggregation Layer

The aggregation layer processes unstructured graph data generated by the embedding layer,
such as the user vectors and item vectors. It works on the end-to-end learning structure in the graph,
improves the algorithm’s learning capacity and hence optimizes the recommendation accuracy. As
Fig. 2 shows, the core function of the aggregation layer is to define the convolutional calculation on
the graph data based on the features of the neighboring nodes. Specifically, the convolution of the
central node and the neighboring nodes in the CNN was used to represent the aggregation between
neighboring nodes and update the status of the nodes. For two given graph signals x1 and x2, the graph
convolution calculation is defined as

x1 ∗ x2 = Hx̃1
x2 (8)

where the graph displacement operator Hx̃1 = Vdiag(x̃T)V T , V ∈ RN×N is an orthogonal matrix, and
x̃1 is the Fourier coefficient of x1.
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Figure 2: Architecture of the graph convolutional neural network on the aggregation layer

The graph convolutional neural network (GCNN) on the aggregation layer is a message transmis-
sion network, and the message transmission can be divided into two steps: message delivery and status
updating, which are expressed by the functions of message function M and the updating function U ,
respectively:

cvw = (
d (v) d (w)

1/2 Avw

)
(9)

Mt

(
εt

v, ε
t
w

) = cvwε
t
w (10)

Ut
v

(
εt

v, mt+1
v

) = ReLU
(
W tmt+1

v

)
(11)

Specifically, the message transmission rule in the multi-layer graph convolutional network is:

f
(
H (l), A

) = σ
(

D̂− 1
2 ÂD̂− 1

2 H (l)W (l)
)

(12)

where l is the l-thlayer in the graph convolutional network; Â = A+I , where A is the feature adjacency
matrix, and I is the unit matrix; D̂ = ∑

jÂij is the diagonal matrix of the matrix Â; H (l) is the feature
of the feature of the convolutional neural network on the l-th layer; W (l) is the weight matrix of the
convolutional neural network on the l-th layer; σ is the nonlinear activation function.

A single entry in the dataset exists in the form of a user and its corresponding preferred item. For
example, “User A prefers cell phones”, where more than one item is preferred by a user, is stored in
the dataset in multiple single entry format.

In the embedding layer, we encode the items in the dataset according to the user identity to generate
the corresponding item embedding vector. The vector representation of the “user-item” sequence
is input to the graph neural network pair by pair, and all item features of interest to the user are
aggregated to the user node. At this point, the aggregation layer outputs the sequence of items of
interest to the user and sends it to the next layer for processing.

Meanwhile, the residual connection mechanism was introduced to the input layer and the output
layer of the GCNN to fuse the features of the items, improve the model’s feature learning capacity,
improve the accuracy of the algorithm, and alleviate the problem of vanishing gradient and exploding
gradient during network training. We assume that the GCNN is a single-layer network, and the
principle of residual connection is:

Zl+1
concat = σ

(
ÂHlWl

)
+ Hl (13)

where Zl+1
concat is the final fused feature vector by the function concat ().
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3.2.4 The Sequence Layer

Recurrent neural networks are often employed in recommender systems to learn the user’s short-
term interest from their recent interactive sequences. Knowledge graphs establish connections between
items in terms of interactions between nodes. Other items related to the items of interest to the user
in the dataset are pointed out by the knowledge graph. Enhancing the recommendation system model
with knowledge of new item interactions from the knowledge graph helps to find potential points
of interest for the user. The set of items that may be of interest to this user is obtained by learning
the sequence of items of interest to the user and the sequence of relationships between items in the
knowledge graph. The basic unit of the RNN on the sequence layer uses a Bi-GRU to process the item
sequence vectors generated on the aggregation layer and the entity sequence vectors generated by the
TransR. The computing equation of the reset gate and the update gate is:

rt = σ (Wrxt + Urht−1) (14)

Zt = σ (Wzxt + Uzht−1) (15)

where xt is the input vector at the time step t, and ht−1 is the stored information at the previous time
step t−1. Wr ∈ R

n×m, Wz ∈ R
n×m, Ur ∈ R

n×m, and Uz ∈ R
n×m are all weight parameters of the network.

The calculation equations for the candidate hidden layer and the output hidden layer are:

h̃t = tanh (Whxt + U (rt � ht−1)) (16)

ht = (1 − zt) � ht−1 + zt � h̃t (17)

where � is the Hadamard product; rt and zt represent the outputs of the reset gate and the update gate
at the time point t; ht and h̃t represent the status and the candidate status at the time point t.

Given the complexity of the user’s short-term interest, in our algorithm, the GRU output layer is
connected to a bi-directional fully-connected layer to serve as a classifier of the sequences. The fully-
connected layer comprised of multiple neurons maps the learnt user short-term sequence features into
the sample label space to transform and classify the sequence features. After these aforementioned
procedures, the algorithm output sequences-based recommendations. At last, the cross entropy is
employed to calculate the loss of the recommendations:

L
(
ŷ
) = −1

n

n∑
i−1

(
yi ln ŷi + (1 − yi) ln

(
1 − ŷi

))
(18)

where n is the number of samples, yi is the true value, and ŷi is the output value of the algorithm.

3.3 Workflow of the KGSR-GG Algorithm

Tab. 1 shows the implementation steps of the proposed KGSR-GG algorithm. As per the
mathematical theories for the algorithm detailed in the previous section, the KGSR-GG algorithm
is further described here.
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Table 1: Procedures of the KGSR-GG algorithm

Input “User-item” interactive information; knowledge graph G

OutputPrediction function ŷuv = f (u, v|S (u) , G, �)

1 Initialization: vdata, u, NERD (vindataset, G)

2 fulfill KG embeddings: vG ← TransR (G) Eqs.(4)–(6)
3 For i in u:
4 complete information aggregation: vu

data ← GCN (u, vdata) Eq. (13)
5 graph Convolution Output: Zl+1

concat ← Res
(
vu

data

)
Eq. (14)

6 processing output sequences: ỹuv ← BiGRU
(
Zl+1

concat, vG

)
Eqs. (15)–(18)

7 regularized prediction sequence: ŷuv ← LSR
(
ỹuv

)
8 return ŷuv

9 Comparing ŷuv and yuv

The algorithm updates the model by giving the input “user-item” historical interaction informa-
tion S (u) and the linkage information G of the items in the knowledge graph, and expects the output
prediction ŷuv and compares it with the real label. First, the user vector u and item vector v are randomly
initialized and named entities are linked from the knowledge graph, and the graph items corresponding
to the items vdata in the dataset are found after disambiguation. These items are transformed into the
graph item embedding vector vG (line 2) by TransR. For each user, the following steps are performed
separately: this user vector and the vector of items he is interested in are jointly input to the GCN
for learning to obtain the user representation vector vu

data (line 4) that aggregates information about all
items preferred by the user. The aggregation of item information is enhanced by connecting the graph
input layer with the output layer using the residual mechanism to obtain Zl+1

concat (line 5). At this point,
the output sequence Zl+1

concat of the graph neural network and the item sequence vG of the knowledge
graph are input to the Bi-GRU for knowledge enhancement to obtain the initial prediction vector ỹuv

(line 6), and the final prediction vector ŷuv (line 7) is obtained by regularization. Finally, the model
parameters are updated by comparing with the real labels (line 9).

4 Experiment and Analysis

To verify our proposed KGSR-GG algorithm, the dataset, data processing steps and evaluation
indicators are described first; then, the proposed algorithm is compared with other advanced baseline
methods; at last, the performance of our proposed algorithm is evaluated by performance indicators.

4.1 Experiment Datasets

The movie rating dataset MovieLens-1M and the book rating dataset Book-Crossing were
employed to train and evaluate the algorithms in the experiment. The datasets involve data of different
sizes, data sparsity degrees and application realms, and are publicly accessible. The specifics of the
datasets are as follows. The details of the two data sets are shown in Tab. 2.

The KGs in the two datasets were constructed based on the attributes of the items, which were
compared with the movie names and book names in the datasets to identify relations and hence match



5518 CMC, 2022, vol.73, no.3

the items with entities. Then, with the obtained entity set that was related to the datasets, the item IDs
were matched with the head entity and tail entity in the three-tuples of the KGs.

Table 2: Specifics of the two datasets used in our experiments

Dataset MovieLens-1M Book-crossing

Number of users 6040 278858
Number of items 3952 271379
Number of interaction logs 1000209 69873
Number of KG entities 79347 77903
Number of KG relations 49 25
Number of KG three-tuples 385924 151500
Number of items connected to KG 3655 14967

4.2 Baseline Methods

To verify the overall performance of the KGSR-GG algorithm, it was compared with several
baseline algorithms. The baseline methods used in the present work are as follows.

FPMC [14]: The factorizing personalized Markov chains (FPMC) system introduces the Markov
chains to customized transition matrix and the matrix factorization model, and merges the sequence
and customization for recommendation;

HRM [15]: in the hierarchical representation model (HRM), a layered structure that merges the
sequential behaviors of the user’s general taste is put forward to model the complex interactions
between nonlinear factors.

GRU4Rec [16]: this model generates session-based recommendations with RNNs.

TransRec [17]: this model is a Markov chain model, but the major distinction is that the model
introduces a novel “transition space” into the space vectors and is explainable.

Caser [18]: this model ranks the timestamps of the user-interactive items, embeds the items into an
image, models the network using a CNN, and optimizes the network by the minimum cross entropy.

SASRec [19]: in this model, the self-attention mechanism is used to model the user sequential
information, the obtained valuable information and all item embeddings are used to generate the inner
product, and items are sequenced by the size of correlation to provide sequential forecasts.

4.3 Experiment Setting
4.3.1 Experiment Environment

To verify the recommendation performance of the proposed KGSR-GG algorithm, the Pytortch
machine-learning architecture was implemented on the Ubuntu operating system, PyCharm2020,
AMD 3700x CPU, GTX 1080Ti GPU, 64GB memory; and the experiment results were analyzed in
Python 3.7.
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4.3.2 Evaluation Indicators

After the dataset was filtered, the two datasets were divided into a training set and a test set evenly,
and repetitive optimization experiments were performed to reach the optimal result. Five indicators
were employed for evaluation:

(1) recall@K: the recall is the ratio of the items in the test set to the items in the recommended list,
which is a measure of the precision ratio of the recommender system. The recall is defined as:

recall@K =
∑

u∈U |R (u) ∩ T (u) |∑
u∈U |T (u) | (19)

where R (u) is the recommendation list generated for the user u; T (u) is the list of items the user
interacts with in the test set. K is the length of the recommendation list, i.e., the K items with the
highest predicted recommendation score.

(2) MRR@K: the mean reciprocal rank (MRR) is the mean of the reciprocal rankings of the
expected items, which measures the system’s performance based on the ranking of the correctly
recommended items in the recommendation list. The mathematical expression of MRR is:

MRR = 1
|Q|

|Q|∑
i=1

1
ranki

(20)

where |Q| is the number of users, ranki is the ranking of the first item in the ground-truth result in the
recommendation list for the i-th user.

(3) NDCG@K: Normalized discounted cumulative gain (NDCG) measures the accuracy of the
ranking by the ranking of the item in the list. NDCG is defined as:

NDCG@N = 1
IDCGi

N∑
i=1

2reli − 1
log2 (i + 1)

(21)

(4) HR@K: the hit rate (HR) is a popular measure of the recall rate in recommendation systems
and indicates “accuracy” of the forecasts. Its mathematical expression is:

HR@K =
∑N

i=1 hits@K
N

(22)

where N is the number of users, hits is the number of items in the test set that occur in the list of
recommendations.

(5)Precision@K: precision, or precision ratio, is a popular measure of precision of sequential
recommendation systems. The mathematical expression of this indicator is as follows.

Precision@K =
∑

u∈U |R (u) ∩ T (u) |∑
u∈U |R (u) | (23)

where R(u) means the list of user behaviors on the training set, and T(u) is the list of user behaviors
on the test set.

4.3.3 Experiment Parameter Setting

For the training hyper parameters, the checkpoint_dir parameter was used to store the model, the
epochs for each training were set at 150, and the batch size of samples captured in each training was
set at 1024, and the learning rate was set at 0.0005. For the evaluation hyper parameters, the batch size
of samples captured by each training was set at 2048. In algorithm implementation, the embedding



5520 CMC, 2022, vol.73, no.3

size of the embedding layer was set at 64, and the hidden size of the hidden layer was set at 128, the
dropout rate of the model was set at 0.3, and the learning rate at 0.001; the cross entropy loss function
was used as the loss function.

4.4 Experiment Result and Analysis

On the selected two datasets, five evaluation indicators recall@10, MRR@10,NDCG@10,
HR@10 and Precision@10 were employed to evaluate the performance of our KGSR-GG algorithm
and other baseline algorithms. The models achieved different results on the same datasets under the
same experiment conditions. Tabs. 3 and 4 present the results.

Table 3: Experiment results of different recommender systems on the MovieLens-1M dataset

Model MovieLens-1M

recall@10 MRR@10 NDCG@10 HR@10 Precision@10

FPMC 0.1621 0.0569 0.0814 0.1621 0.0162
HRM 0.1656 0.0484 0.0755 0.1656 0.0166
GRU4Rec 0.2295 0.0957 0.1270 0.2295 0.0229
TransRec 0.1185 0.0309 0.0511 0.1185 0.0119
Caser 0.2096 0.0838 0.1131 0.2096 0.0210
SASRec 0.2224 0.0842 0.1162 0.2224 0.0222
KGSR-GG 0.2502 0.1087 0.1394 0.2505 0.0251

Table 4: Experiment results of different recommender systems on the Book-Crossing dataset

Model Book-crossing

recall@10 MRR@10 NDCG@10 HR@10 Precision@10

FPMC 0.0667 0.0310 0.0393 0.0667 0.0067
HRM 0.0669 0.0401 0.0464 0.0669 0.0067
GRU4Rec 0.0706 0.0422 0.0489 0.0706 0.0071
TransRec 0.0727 0.0428 0.0498 0.0727 0.0073
Caser 0.0706 0.0421 0.0488 0.0706 0.0071
SASRec 0.0730 0.0423 0.0494 0.0730 0.0073
KGSR-GG 0.0776 0.0435 0.0515 0.0776 0.0078

Knowledge-enhancing item associations help discover more potential preferred items for users. As
Fig. 3 shows, when the length of the recommendation list was 10, the KGSR-GG algorithm achieved
the highest values of all these five indicators on the two datasets. On the MovieLens-1M dataset, the
KGSR-GG algorithm achieved recall@10, MRR@10, NDCG@10, HR@10 and Precision@10 that
were 2.07, 1.3, 1.24, 2.1, and 0.22 percent higher than those achieved by the GRU4Rec algorithm that
ranked the second among all algorithms; on the Book-Crossing dataset, it achieved the recall@10,
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MRR@10, NDCG@10, HR@10 and Precision@10 that were 0.46, 0.12, 0.21, 0.46 and 0.05 percent
higher than those achieved by SASRec that ranked the second among all algorithms. After analysis,
the item interaction information in the knowledge graph can link some possible new items for the list
of items of interest to the user, which helps the model to process new data in the test set in a more
informed way and discover the potential preferences of the user.

Figure 3: Comparison of performance between KGSR-GG and baseline models
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The combination of graph neural network and Bi-GRU can extract the features of items of interest
to users in the sequence more effectively. In Tabs. 3 and 4, the KGSR-GG model outperforms the
GRU4Rec model, which also uses GRU modeling. GRU4Rec feeds the items clicked by the user into
multiple GRUs, and finally converts them into ratings for the next sequence of users selecting all items
through the forward network FFN. Compared with GRU4Rec, the graph neural network module of
KGSR-GG can aggregate the item features of interest to users more effectively, while Bi-GRU can
learn the degree of association between item and users better.

KGSR-GG performs better in sparser data sets. As shown in Figs. 3 and 4, the sparsity degree of
the data has some effect on the experiment result. The KGSR-GG algorithm performed better on
the dataset of lower data sparsity, the reason of which is that the dataset of lower data sparsity has
incomplete KGs and interactive data, and these problems will reduce the algorithm’s accuracy.

Other factors, aside from the data sparsity, which would affect the experiment result were
explored. A contrast experiment was performed on the KGSR-GG algorithm. The length of the
recommendation list K in the two datasets was set at 10, 20, 40, 60, and 100, to construct corresponding
training sets and test sets. Fig. 4 shows the experiment results of the algorithm under different values of
K. As the figure. shows, within a given range, a longer length of the recommendation list corresponded
to a higher recall, MRR, NDCG and hit rate, but a lower precision. In sum, setting K at 10 could well
reflect the performance of the KGSR-GG algorithm.

Figure 4: (Continued)
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Figure 4: Performance of KGSR-GG under different lengths of the recommendation list

The superior performance of the KGSR-GG algorithm could be credited to the following
three reasons. First, it aggregates the information of adjacent nodes to the central node by the
graph convolutional network, establishes high-order connectivity, introduces the residual connection
mechanism to the input and output layers of the graph convolutional network, and fulfills feature
fusion of the items to the maximum degree. Second, it uses the TransR embedding technique to model
the item attributes into knowledge graphs as auxiliary information, and the rich semantic information
of the KG improves the interpretability and diversity of the recommendations. Third, the bi-directional
GRU network fuses the item sequence and the KG entity sequence to model the user’s short-term
interest, and improves the accuracy of the recommendation.

5 Conclusions

In the present work, a new sequential recommender algorithm—KGSR-GG is proposed, which
integrates the graph neural network-based recommender system, the knowledge graph and the gated
recurrent unit into a unified recommender framework. Compared with conventional sequential
recommender methods like the Markov chain and the recurrent neural networks, the proposed
algorithm could capture more complicated dynamic information. Compared with other baseline
models, the KGSR-GG algorithm, by dint of the high-order connectivity of graphs and the advantages
of knowledge graphs, improves the accuracy and diversity of the recommendations, and achieves better
performance than the baseline models on two datasets. Future work will focus on how to create high-
quality knowledge graphs and dynamic sequences to improve the recommendation.
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