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Abstract: Cyber-physical wireless systems have surfaced as an important
data communication and networking research area. It is an emerging disci-
pline that allows effective monitoring and efficient real-time communication
between the cyber and physical worlds by embedding computer software
and integrating communication and networking technologies. Due to their
high reliability, sensitivity and connectivity, their security requirements are
more comparable to the Internet as they are prone to various security threats
such as eavesdropping, spoofing, botnets, man-in-the-middle attack, denial
of service (DoS) and distributed denial of service (DDoS) and impersonation.
Existing methods use physical layer authentication (PLA), the most promising
solution to detect cyber-attacks. Still, the cyber-physical systems (CPS) have
relatively large computational requirements and require more communication
resources, thus making it impossible to achieve a low latency target. These
methods perform well but only in stationary scenarios. We have extracted
the relevant features from the channel matrices using discrete wavelet trans-
formation to improve the computational time required for data processing
by considering mobile scenarios. The features are fed to ensemble learning
algorithms, such as AdaBoost, LogitBoost and Gentle Boost, to classify data.
The authentication of the received signal is considered a binary classification
problem. The transmitted data is labeled as legitimate information, and
spoofing data is illegitimate information. Therefore, this paper proposes a
threshold-free PLA approach that uses machine learning algorithms to protect
critical data from spoofing attacks. It detects the malicious data packets in
stationary scenarios and detects them with high accuracy when receivers are
mobile. The proposed model achieves better performance than the existing
approaches in terms of accuracy and computational time by decreasing the
processing time.
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1 Introduction

Introducing cyber-physical wireless communication (CPWC) systems in the manufacturing indus-
try has significantly improved IoT devices’ performance. The potential applications of CPWC systems
are not only limited to manufacturing industries. Still, they have also brought significant advancements
in personalized health care, traffic flow management, smart grids, transportation systems and many
more. Efficient wireless transmission techniques have been proposed in the literature to meet the
demand for high throughput and reliability in communication. However, wireless networks’ open
and broadcasting nature poses an increased risk of spoofing attacks on the network infrastructure.
Cyber-physical systems are composed of various hardware components controlled and monitored by
the collection of different software. The integration of these many hardware components introduces
complexity, as shown in Fig. 1, leading to data integrity attacks. One of the effective countermeasures
against these attacks is message authentication.

Figure 1: Cyber-physical wireless communication system

Traditional security methods were implemented at the upper logical layers using key-based
cryptographic mechanisms, such as digital signatures [1–3], message authentication code (MAC)
etc. However, management, distribution and the high computational cost of the key generation
make it impractical to implement data encryption over these highly complex networks. Digital
keys only validate the user identity and access privileges; therefore, attackers employing illegal
security keys cannot readily be identified when physical-layer features are ignored. Some researchers
proposed authentication using both non-cryptographic and cryptographic algorithms to solve the
security and latency issues [4]. The heterogeneous nature of wireless networking makes traditional
authentication methods challenging to implement or manage. However, physical (PHY) layer authen-
tication methods provide new approaches to distinguishing legitimate messages from illegal ones.
These techniques implement authentication without additional overhead. Some of the physical layer
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authentication methods proposed include channel-based authentication using channel state informa-
tion [5–8], radio frequency (RF) fingerprint-based schemes [9–11], received signal strength indicator
(RSSI) [12–15], multi-attribute multi-observation (MAMO) techniques [16], fingerprint/watermark
embedding [17,18] and so on. All these authentication methods were threshold-based, in which the
channel state information (CSI) is compared with a reference CSI. The received messages for which
the difference between estimated CSI and reference CSI is below the threshold are legitimate messages.
However, these threshold-based Physical Layer Authentication (PLA) methods cannot solve the
multi-classification problem, such as distinguishing many nodes simultaneously [19]. Although these
methods work very well in stationary scenarios, the proposed techniques fail when the transmitter
is mobile. In [20], the authors proposed an algorithm based on channel frequency response (CFR)
statistics which considers the time variations in the case of mobile transceivers. But this solution
only works well for the slowly varying channels. Therefore, learning-based authentication methods
are required to learn the features of legitimate and illegitimate messages. Thus, models would be able
to adapt themselves to time-varying communication quickly. Physical layer authentication can also
be achieved by secret key generation [21], but keyless methods are also in use due to the latency and
overhead resulting from this method.

With the advancement in artificial intelligence, threshold-free physical layer authentication meth-
ods based on machine learning and deep learning have been proposed. The DL and ML-based
authentication methods can distinguish multiple sensor nodes simultaneously with high accuracy and
excellent performance. In paper [22], the deep neural network framework is proposed to estimate the
channel state information in orthogonal frequency division multiplexing (OFDM) systems. Similarly,
[23,24] used machine learning for intrusion detection and detection of spoofing attacks. The paper
[25] uses machine learning in multi-input multi-output (MIMO) wireless communication systems.
It performs feature selection using neighborhood component analysis and prediction using radial
basis function (RBF) kernel-based support vector machine (SVM). The proposed method in [26]
detects spoofer in the Fog network using State Action Reward State Action (SARSA) and Q-
learning techniques. Some previously proposed approaches include extracting channel difference using
difference equations [27] and then identifying an optimal threshold value using the hit and trial
method. This model achieved the best accuracy of 49.7% when the receiver and transmitter were
stationary. For mobile scenarios, Pan et al. [28] used the channel difference and matrix. They classified
them using Machine Learning Algorithms, which resulted in a training accuracy of 77%, with the
number of sub-carriers being 128.

This paper proposes a threshold-free physical authentication model based on supervised learning
to classify legitimate and illegitimate data packets. The proposed model in this paper extends the
previous models with better performance and improved accuracy. The main contributions of this
approach are

• Considering mobile scenarios, we have extracted relevant features from channel matrices using
Discrete wavelet transformation, which has improved the computational time required to
process the data.

• These reduced features are then passed to different ensemble learning algorithms, such as
AdaBoost, LogitBoost and GentleBoost for data classification.

• The authentication of a received signal is a binary classification problem. The data sent by the
transmitter can be labelled as a legitimate message, and the data transmitted by the spoofer is
illegitimate.
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2 Proposed Architecture

The block diagram in Fig. 2 shows the architecture of the proposed model. Our proposed
architecture predicts whether the received data is legitimate (sent by the transmitter) or illegitimate
(sent by spoofer) using supervised Machine Learning based algorithms.

Figure 2: Proposed model’s architecture

Channel State Information (CSI) plays a critical role in PLA, many methods have been used to
extract channel matrices through CSI, but in this article, the received pilot is used as a channel metric.
As OFDM is used for signal transmission, the received signal is a complex matrix with dimensions
equal to a × b where b is the number of receiving antennas, and a is m x n with m being the number of
sub-carriers used n being the number of transmitting antennas. Then feature extraction is performed
to get relevant features and discard the irrelevant and noisy data, which helps improve the accuracy of
ML methods.

2.1 Problem Formulation

The communication between Physical Wireless components and Cyber components of industrial
CPWC systems is vulnerable to many threats, like MITM, eavesdropping, spoofing, etc. Physical-
Layer Authentication is used to handle such attacks [27], which works better in stationary scenarios,
but its performance degrades when the wireless components are mobile. Supervised ML classification
algorithms predict whether the received signal is legitimate or illegitimate. Let α be the class label ML
trained model classifies the received signal as the problem can be formulated as

α1,0 = ML (XR) (1)

where X R is the received signal, which also depends upon the distance of the transmitter from the
receiver. When the signal is legitimate, α is 1, and when illegitimate, it equals to 0. Fig. 3 shows the
system model for data acquisition of a mobile transmitter, along with a spoofer that follows the same
path and speed as the transmitter. The receiver (cyber component) is stationary, and the model also
covers both the line of sight path and the non-line of sight path.

The system model covers different scenarios, at t = 0, where the transmitter is stationary and the
spoofer is not introduced in the loop. Then, at t = T−m, the transmitter and spoofer are moving at
the same speed, and the receiver receives both of their data. Finally, at t = T , when the receiver has
completed the loop and is stationary again, the spoofer is yet to stop.
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Figure 3: System model

2.2 Channel Matrix Acquisition

Many approaches follow the idea of reducing dimensions of CSI to improve computational time,
but many essential features are lost in that process, especially by using channel difference equations.
That’s why using CSI as a channel matrix is an optimized method, for which the dimensions of the
matrix can be varied. With the increase in dimensions, the training time also increases, but decreasing
dimensions from a certain limit may remove important features from the data, hence reducing the
accuracy. Due to this, multiple values of dimensions are considered to find an optimal tradeoff between
training time and accuracy, where the values of dimensions to be considered are {64,128,8188}.

2.3 Features Extraction Using Wavelet Transform

After acquiring channel matrices, discrete wavelet transform (DWT) is applied to the dataset to
select only meaningful, relevant features. A reduction in data size decreases the time required to process
the data. DWT is preferred over other methods as it preserves the information regarding time evolution
and frequency shift of the non-stationary signal. It can be calculated using the following formula:

DWT (x, y) =
∫ +∞

−∞
H (t) ψx,y (t) dt (2)

where ψ (x,y) (t) is the scale of the wavelet, and H(t) is the time-series signal. This model acts
discrete wavelet transform using Haar, Daubeches, Symlets, Coiflets and Reverse Biorthogonal wavelet
method. The best results are achieved by reverse biorthogonal wavelets, the inverse of which exist, but
the wavelets may not be orthogonal. DWT deconstructs the wave such that the original wave can be
reconstructed using the decomposed wavelet, which is the main principle of bijective mapping.

2.4 Classification

The last stage is the classification of data for which supervised machine learning algorithms are
implemented. Supervised ML predicts whether the received packets are sent from the transmitter or
spoofer. ML algorithms work better when artifacts or irrelevant features are removed from the data.
The training speed decreases with the decrease in the number of trained features. This prediction model
can be generated by offline data training and then used for real-time testing [29,30]. The processing
speed of online prediction is further reduced by using ML as the speed of offline feature extraction
is faster than the online testing. Ensemble learning works on improving classification accuracy by
combining multiple algorithms with different features. Many ensemble algorithms are in use, but the
ones used in this paper are AdaBoost, LogitBoost and GentleBoost, with the highest accuracy achieved
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with the LogitBoost Algorithm. AdaBoost or Adaptive Boosting is an ensemble learning algorithm
that combines multiple decision trees and passes the false positive and accurate negative classified
data from other trees, minimizing their number. LogitBoost or Logistic Boosting is an extension of
AdaBoost, and it applies Logistic Regression to training data. It is also a greedy algorithm, while the
GentleBoost Algorithm updates the weights of training data to the weights of previous values.

1. LogitBoost
2. AdaBoost
3. GentleBoost

3 Results

The data collected from real-time test sites and industries are usually very time and resource
consuming, so to overcome these issues, training data is acquired from a real industrial dataset
provided by NIST, available publicly.

3.1 Dataset Description

The data used in this paper is available in NIST wireless dataset by the name of “Automotive
Factory”. The test site is a concrete building of size 400 × 400 × 12 m. It consists of multiple hurdles
and surfaces which may be absorbing or reflective. Fig. 4 shows the path followed by the transmitter
and spoofer. The transmitter starts from position (−1.1837, 12.6553) at a distance of 12.71 from the
receiver and then sends data at 120 positions of the loop shown in Fig. 2. The ending position of a
transmitter is (−1.4560, −4.0801), which is 4.33 m away from the receiver. The receiver with an hpol
antenna, as shown in Fig. 4, is stationary. The spoofer starts moving in the same loop but after the
transmitter starts. It is moving at an average distance of 14.54 m from the transmitter. In total, 300
frames are sent at each position, with the bandwidth being 2.4 GHz.

Figure 4: Loop positions of movement of transmitter and spoofer

3.2 Performance Metrics

The performance of the model is evaluated using the following parameters:

1. Authentication Accuracy
2. Prediction Time
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3.3 Authentication with 8188-Channel Matrix

The training data is prepared with reverse biorthogonal wavelet transform (3.7) and then classified
for 3 ensemble algorithms, AdaBoost, LogitBoost and GentleBoost. The highest average accuracy of
78.56% was achieved for Logit Boost. Fig. 5 shows the accuracy achieved for each position of the loop.

Figure 5: Authentication accuracy with the 8188-channel matrix as channel metric

3.4 Authentication with 128-Channel Matrix

Authentication accuracy significantly increases when the 128-channel matrix is trained after
feature extraction, as some irrelevant features might be included in the 8188-channel matrix. This
reduced dataset shows an average accuracy of 81.24% and 81.45% for AdaBoost and GentleBoost
Algorithms and 82.67% for the LogitBoost Algorithm. Fig. 6 shows the validation accuracy of
multiple algorithms for each loop position.

Figure 6: Authentication accuracy with 128-channel matrix as channel metric with LogitBoost,
GentleBoost and AdaBoost as classification algorithm
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Fig. 7 shows the validation accuracy of the LogitBoost Algorithm to each position in the loop,
with a considerable decrease in training time between the 128-Channel matrix and 8188-Channel
matrix.

Figure 7: Authentication accuracy with 128-channel matrix as channel metric

3.5 Authentication with 64-Channel Matrix

64-channel matrix resulted in average training accuracy equal to 71.34%. It can be noted that a
significant decrease in average accuracy might be caused due to training data containing not enough
features for classification. Thus, it can be concluded from Fig. 8 that after a 128-channel matrix, further
data reduction may result in decreased authentication accuracy.

Figure 8: Authentication accuracy with 64-channel matrix as channel metric

3.6 LogitBoost with Multiple Dimensions

This paper focuses on decreasing training time by reducing channel matrix dimensions and
increasing training accuracy. Fig. 9 shows the results obtained for authentication accuracy for each
position in the loop using the LogitBoost algorithm. It can be seen that the average authentication
accuracy results with a 128-channel matrix, along with significant improvement in training time.
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Figure 9: Authentication accuracy with 8188, 128 and 64-channel matrix as channel metric and
LogitBoost as training classifier

Here, the proposed method improved accuracy for all matrix sizes, but the highest accuracy is
achieved with a 128-channel matrix size, which can be chosen for the test model.

3.7 Discussion

The results show that the reduction of data size to 128-matrix classified with Logit Boost results in
the highest training accuracy and a decrease in computational time compared to the previous methods.
Tab. 1 compares the training and testing parameters of Boosted Tree Ensemble Algorithm and Logit
Boost Ensemble Algorithm.

Table 1: Comparison between LB and BT classification

BT128 LB128

Training time 100 s 4.42 × 10−1 s
Testing time 10−2 s 9.20 × 10−3 s
Accuracy 77.10% 82.67%

4 Conclusion

This paper proposes a comprehensive model for authenticating the received data with less
computational time and more efficiency. The following conclusions can be drawn from the results:

• PLA can be considered as a binary classification problem, where efficiency is improved by
appropriate feature extraction.

• There is always a tradeoff between training time and authentication accuracy, so multiple input
sizes are considered to find an appropriate input value.

• Ensemble classifiers work better for PLA than the traditional ML classifiers like Trees, SVM,
KNN and Naïve Bayes etc.
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• Best authentication accuracy is achieved by using a 128-channel matrix and training it using
the LogitBoost Algorithm.

Wireless cyber-physical communication plays an essential role in data communication for IoT, etc.
This model produces improved results for the classification of legitimate and illegitimate messages than
the existing threshold-free and threshold-based methods. Furthermore, the accuracy can be improved
by extracting features from the DWT wavelet and removing the artifacts from the received signal.
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