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Abstract: The current study relates to designing a swarming computational
paradigm to solve the influenza disease system (IDS). The nonlinear sys-
tem’s mathematical form depends upon four classes: susceptible individu-
als, infected people, recovered individuals and cross-immune people. The
solutions of the IDS are provided by using the artificial neural networks
(ANNs) together with the swarming computational paradigm-based particle
swarm optimization (PSO) and interior-point scheme (IPA) that are the global
and local search approaches. The ANNs-PSO-IPA has never been applied
to solve the IDS. Instead a merit function in the sense of mean square
error is constructed using the differential form of each class of the IDS
and then optimized by the PSOIPA. The correctness and accuracy of the
scheme are observed to perform the comparative analysis of the obtained IDS
results with the Adams solutions (reference solutions). An absolute error in
suitable measures shows the precision of the proposed ANNs procedures and
the optimization efficiency of the PSOIPA. Furthermore, the reliability and
competence of the proposed computing method are enhanced through the
statistical performances.

Keywords: Disease; influenza model; reference results; particle swarm
optimization; artificial neural networks; interior-point scheme; statistical
investigations

1 Introduction

The world faces many severe viruses; one of the dangerous diseases is influenza, which preys on
the bronchi, upper parts of the respiratory systems, throat, and nose. Influenza sometimes affects
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the lungs of humans badly. However, this disease is not as dangerous as that can lead the death. The
recovery process from this disease is high, and most individuals get healthier in a few days. This disease
is dangerous for older individuals or those who have serious infections, like cancer, heart, diabetes,
kidney problems, and lung issues. The epidemic influenza rate always lies around 5% to 15% per annum
of that population that is affected by the breathing system. The epidemic rate is reported between 3 to
5 million yearly, and the number of casualties has been reported to be 250,000 to 500,000 [1]. Many
mathematical epidemiological differential systems contain ordinary differential equations that indicate
the assumptions of the parameters. These systems refer to the transmitting, infected, susceptible, and
recovered variables.

Various schemes have been used to solve the mathematical form of the influenza disease system
(IDS). Astuti et al. [2] used a step-by-step transformation method for the resistance of the IDS.
Alzahrani et al. [3] provided a scheme to find a fractional-order solution to the pandemic IDS.
Erdem et al. [4] provided the mathematical soundings of the SIQR influenza system based on the
quarantine effects. Sabir et al. [5] presented Morlet wavelet neural network for the nonlinear IDS.
Sun et al. [6] indicated the optimization for assigning the infected individuals during the outbreak of
the IDS. González-Parra et al. [7] proposed a fractional kind of epidemiological system for simulating
the outbreaks of this disease. Ghanbari et al. [8] presented an analysis of the two systems of the avian
influenza outbreak to relate the derivatives of the fractal-fractional using the effects of memorabilia
and power through Mittag-Leffler. In another study, Sabir et al. [9] provided the soft computing
procedures for the solutions of the IDS. Tchuenche et al. [10] signified the coverage of media effects
based on the influenza disease. Schulze-Horsel et al. [11] studied the infection and apoptosis of the
virus-induced based on the influenza vaccine production. Patel et al. [12] applied the procedures of the
genetic algorithms to propose the optimal vaccination strategies for the IDS. Hovav et al. [13] provided
a system flow to accomplish influenza’s distribution and inventory of vaccines. Kanyiri et al. [14]
signified the optimal control based on influenza and pulmonic congestion.

The influenza disease system (IDS) is dependent upon four classes, susceptible individuals (S(y)),
infected people (I(y)), recovered individuals (R(y)), and cross-immune people (C(y)). The IDS is
mathematically given as [15]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(y)

dy
= γ C(y) − βI(y)S(y) + μ − μS(y), S0 = u1,

dI(y)

dy
= βI(y)S(y) − αI(y) + βσC(y)I(y) − μI(y), I0 = u2,

dR(y)

dy
= βC(y)I(y) + αI(y) − δR(y) − μR(y) − βσC(y)I(y), R0 = u3,

dC(y)

dy
= −γ C(y) + δR(y) − μC(y) − βC(y)I(y), C0 = u4,

(1)

where β is the spread rate from susceptible to infected, u1, u2, u3 and u4 are the initial conditions.
The exposed form of the cross-immunity people, infected individuals, cross-immune and transmittable
people is presented by σ , γ −1, δ−1 and α−1.The significance of the IDS as provided in the system
(1) based on the necessary derivation, the theoretical concept with validation, an operating point
considered for the ICs, and parameters justification are provided in [16].

The purpose of this work is to calculate the numerical performances of the IDS by using the
artificial neural networks (ANNs) together with the computational paradigm-based particle swarm
optimization (PSO) and interior-point scheme (IPA) that are the global and local search approaches.



CMC, 2022, vol.73, no.3 4853

The stochastic computational approaches have been provided to solve a variety of submissions, like
coronavirus models [17,18], the fractional form of the singular systems [19,20], singular functional
systems [21,22], higher kinds of nonlinear systems [23,24], Lotka Volterra system [25], dengue fever
formulation of the model [26] and differential form of the multi-singular system [27,28]. Based on these
applications, the authors are interested in finding the solutions to the IDS based on the computational
paradigm of ANNs using the hybridization of PSOIPA. Few novel paradigms of the novel scheme are
presented as:

• The proposed form of the ANNs using the hybrid computing-based PSOIPA is provided to
solve the IDS.

• Consistent, reliable, and stable outcomes from the IDS authenticate the performance of the
ANNs using the hybrid computing-based PSO-IPA.

• The absolute error (AE) values are performed in suitable measures that indicate the consistency
of the ANNs using the hybrid-computing based PSO-IPA.

• The numerical performance of the ANNs using the hybrid computing based PSO-IPA is
recognized through the statistical observations for the IDS.

• The designed ANNs procedure with the hybrid computing-based PSO-IPA scheme is effort-
lessly executed to solve the IDS with inclusive and easy to understanding.

The other parts of the paper are organized as follows: Section 2 shows the method used to solve the
IDS. Section 3 presents the statistical procedures. Section 4 shows the results and discussions. Finally,
the last Section provides the concluding remarks.

2 Methodology

In this section, the proposed methodology based on the artificial neural network procedures
is provided using the optimization of the PSO-IPA to solve the influenza disease system (IDS).
Furthermore, a merit function using the differential IDS is also provided, along with the necessary
setting for PSO-IPA hybridization.

2.1 Construction of ANNs

This section shows the IDS that has susceptible individuals (S(y)), infected people (I(y)), recovered
individuals (R(y)), and cross-immune people (C(y)). The proposed outcomes of these categories are
shown as follows:

[Ŝ(y), Î(y), R̂(y), Ĉ(y)] =

⎡
⎢⎢⎣

k∑
v=1

qS,vT(wS,vy + rS,v),
k∑

v=1

qI ,vT(wI ,vy + rI ,v),

k∑
v=1

qR,vT(wR,vy + rR,v),
k∑

v=1

qC,vT(wC,vy + rC,v)

⎤
⎥⎥⎦ , (2)

[
dŜ
dy

,
dÎ
dy

,
dR̂
dy

,
dĈ
dy

]
=

⎡
⎢⎢⎣

k∑
v=1

qS,v

d
dy

T(wS,vy + rS,v),
k∑

v=1

qI ,v

d
dy

T(wI ,vy + rI ,v),

k∑
v=1

qR,v

d
dy

T(wR,vy + rR,v),
k∑

v=1

qC,v

d
dy

T(wC,vy + rC,v)

⎤
⎥⎥⎦ .

W is an unidentified weight vector, provided as:
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W = [WS, W I , WR, WC], for WS = [qS, ωS, rS], W I = [qI , ωI , rI ], WR = [qR, ωR, rR] and WC =
[qC, ωC, rC], where

qS = [qS,1, qS,2, . . . , qS,k], qI = [qI ,1, qI ,2, . . . , qI ,k], qR = [qR,1, qR,2, . . . , qR,k],
qC = [qC,1, qC,2, . . . , qC,k], wS = [wS,1, wS,2, . . . , wS,k], wI = [wI ,1, wI ,2, . . . , wI ,k],
wR = [wR,1, wR,2, . . . , wR,k], wC = [wC,1, wC,2, . . . , wC,k], rS = [pS,1, pS,2, . . . , pS,k],
rI = [pI ,1, pI ,2, . . . , pI ,k], pR = [pR,1, pR,2, . . . , pR,k], pC = [pC,1, pC,2, . . . , pC,k].

The efficient form of the log-sigmoid function [29] is mathematically presented as
T(y) = (1 + e−y)

−1

[
Ŝ(y), Î(y), R̂(y), Ĉ(y)

]
=

⎡
⎢⎢⎣

k∑
v=1

qS,v

1 + e−(wS,vy+rS,v)
,

k∑
v=1

qI ,v

1 + e−(wI ,vy+rI ,v)
,

k∑
k=1

qR,v

1 + e−(wR,vy+rR,v)
,

k∑
k=1

qC,v

1 + e−(wC,vy+rC,v)
,

⎤
⎥⎥⎦ ,

[
dŜ(y)

dy
,

dÎ(y)

dy
,

dR̂(y)

dy
,

dĈ(y)

dy

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

k∑
v=1

wS,vqS,ve−(wS,vy+rS,v)(
1 + e−(wS,vy+rS,v)

)2 ,
k∑

v=1

wI ,vqI ,ve−(wI ,vy+rI ,v)(
1 + e−(wI ,vy+rI ,v)

)2 ,

k∑
v=1

wR,vqR,ve−(wR,vy+rR,v)(
1 + e−(wR,vy+rR,v)

)2 ,
k∑

v=1

wC,vqC,ve−(wC,vy+rC,v)(
1 + e−(wC,vy+rC,v)

)2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(3)

The merit function is written as:

E =
5∑

i=1

Ei, (4)

E1 = 1
N

N∑
v=1

[
dŜ
dyv

− γ Ĉv − μ + β ÎvŜv + μŜv

]2

, (5)

E2 = 1
N

N∑
v=1

[
dÎ
dyv

− β ÎvŜv + αÎv − βσ ÎvĈv + μÎv

]2

, (6)

E3 = 1
N

N∑
v=1

[
dR̂
dyv

− β ÎvĈv + δR̂v − αÎv + μR̂v + βσ ÎvĈv

]2

, (7)

E4 = 1
N

N∑
v=1

[
dĈ
dyv

+ γ Ĉv − δR̂v + μĈv + β ÎvĈv

]2

, (8)

E5 = 1
4

⎡
⎣( dŜ

dy0

− u1

)2

+
(

dÎ
dy0

− u2

)2

+
(

dR̂
dy0

− u3

)2

+
(

dĈ
dy0

− u4

)2
⎤
⎦ , (9)

where Ŝv = S (yv) , Îv = I (yv) , R̂v = R(yv) and Ĉv = C (yv). The values of E1, E2, E3 and E4 indicate
the merit functions linked to the model (1), whereas E5 shows the ICs.
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2.2 Optimization: PSO-IPA

The present section shows the ANNs procedures using the hybrid computing-based PSO-IPA to
solve the IDS. The complete detail of these procedures is given.

The Neuro swarming computational paradigm PSO is an optimization algorithm, applied as a
global search scheme. PSO is functional to regulate the specific population to solve the numerous
stiff systems based on optimal training. PSO is used to alter the of global genetic algorithm process
introduced by Eberhart et al. in the previous century [30]. Executing the process of PSO is easy and
straightforward due to the short requirements of the memory [31]. Few recent submissions of PSO are
the parameter estimation [32], wind turbine through pitch control model [33], benchmark optimization
[34], reactive power dispatch models [35], electric circuits based nonlinear systems [36], the adaptive
tune of PID controller [37] and approximation of undrained based shear soil strength [38].

In the process of search space investigations, a single candidate solution of the optimization
procedure is known as a particle. During the optimization process of PSO, an initial swarm spread in
the greater ranges. To enhance the PSO, the scheme provides optimal outcomes based on the process
of iteration Pφ−1

LB and Pφ−1
GB called the swarm’s position and velocity, mathematically shown as:

Xφ

i = Xφ−1
i + Vφ−1

i , (10)

Vφ

i = �Vφ−1
i + θ1(P

φ−1
LB − Xφ−1

i )r1 + θ2(P
φ−1
GB − Xφ−1

i )r2, (11)

where Vi is the velocity, X i is the position, and the inertia vector is �. The constant accelerations are
φ1 and φ2.

The convergence of the PSO is performed rapidly using the hybridization of the local search
method. Therefore, an efficient and quick local search IPA is applied to solve the IDS. The global
best PSO performances are applied as an initial input using the optimization of IPA. The local search
IPA has been implemented to solve diverse applications. Few recent submissions of the IPA are control
of active-noise model [39], aircraft parts riveting simulation [40], assorted complementary monotone
systems [41], nonlinear identification models [42] and economic load dispatch framework [43], singular
third kind of systems [44], nervous stomach nonlinear system [45] and singular natured of pantograph
differential models [46]. The hybridization of PSO-IPA is applied in this study to solve the IDS. The
detail of the procedure is provided in Tab. 1, and the Proposed ANNs procedure using the optimization
performances of PSOIPA for the IDS is drawn in Fig. 1.

Table 1: Optimization performances through PSO-IPA to solve the IDS

PSO starts
Inputs: The initial swarms have been generated randomly and the parameters of PSO along

with optimizations have been transformed.
Fitness formulation: Examine the fitness formulation using systems 4–9.
Ranking: Rank each particle individually for the small fitness values
Stopping measures: Stop if Fitness is accomplished or the number of flights achieved.

When the above standards are obtained, then
Go to [step 5]
Renewal: Use the position/velocity in the PSO section.
Fitness assessment: Adjust fitness (E) in the population (P) based systems 4–9

(Continued)
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Table 1: Continued

Improvement: The step repeats, until all the flights are achieved.
Storage: Best fitness, which is obtained by using the best values of the PSO.

PSO Ends
Start the PSOIPA
PSOIPA starts

Inputs: WBest−PSO.
Output: WPSOIPA are the best weights of PSOIPA.
Initialize: Best PSO values, assignments, iterations, and other measures.
Termination: The process can be stopped if the values of [Iterations = 750],

[E = 10− 21],[TolFun = 10−21], [TolX = TolCon = 1 × 10−18] and [MaxFunEvals = 170000] achieved.
Fitness valuation: Compute W and E through the network 4–9.
Adjustments: ‘fmincon’ for IPA, calculate E for Eqs. (4)–(9).
Accumulate: WPSOIPA, time, function counts and generations

PSOIPA End

Figure 1: Proposed ANNs procedures using the optimization performances of PSOIPA for the IDS
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3 Statistical Performances

The statistical indices based on the semi-interquartile (SIR), variance account for (VAF), mean
square error (MSE), Theil’s inequality coefficient (TIC), and their Global measures are described to
solve the influenza disease system (IDS). The mathematical form of these operators is provided as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[VAFS, VAFI , VAFR, VAFC] =

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝1 −

var
(

Sv − Ŝv

)
var (Sv)

⎞
⎠× 100,

⎛
⎝1 −

var
(

Iv − Îv

)
var (Sv)

⎞
⎠× 100,

⎛
⎝1 −

var
(

Iv − Îv

)
var(Iv)

⎞
⎠× 100,

⎛
⎝1 −

var
(

Rv − R̂v

)
var (Rv)

⎞
⎠× 100

⎤
⎥⎥⎥⎥⎥⎥⎦

,

[EVAFS, EVAFI , EVAFR, EVAFC] =
[|VAFS − 100| , |VAFI − 100|
|VAFR − 100| , |VAFC − 100|

]
.

(12)

[TICS, TICI , TICR, TICc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
1
n

n∑
v=1

(
Sv − Ŝv

)2

(√
1
n

n∑
v=1

Sv
2 +

√
1
n

n∑
v=1

Ŝ2
v

) ,

√
1
n

n∑
v=1

(
Iv − Îv

)2

(√
1
n

n∑
v=1

I 2
v +

√
1
n

n∑
v=1

Î 2
v

) ,

√
1
n

n∑
i=1

(
Rv − R̂v

)2

(√
1
n

n∑
v=1

R2
v +

√
1
n

n∑
v=1

R̂2
v

) ,

√
1
n

n∑
v=1

(
Cv − Ĉv

)2

(√
1
n

n∑
v=1

C2
i +

√
1
n

n∑
v=1

Ĉ2
v

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (13)

SIR = −1
2

(Quartile1 − Quartile3) , (14)

[MSES, MSEI , MSER, MSEC] =
⎡
⎢⎣

n∑
v=1

(
Sv − Ŝv

)2

,
n∑

v=1

(
Iv − Îv

)2

,
n∑

v=1

(
Rv − R̂v

)2

,
n∑

v=1

(
Cv − Ĉv

)2

⎤
⎥⎦ (15)

4 Results and Discussions

In this section, the simulations are provided to solve the influenza disease system (IDS) using the
ANN procedures and the optimize of the PSO-IPA. Finally, the mathematical form of the IDS by
using the appropriate values is given as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(y)

dy
= 0.5C(y) + 0.02 − 0.5I(y)S(y) − 0.02S(y), S0 = 0.1,

dI(y)

dy
= 0.5I(y)S(y) − 0.2I(y) + 0.5C(y)I(y), I0 = 0.15,

dR(y)

dy
= 0.5C(y)I(y) + 0.3I(y) − 0.2R(y), R0 = 0.2,

dC(y)

dy
= 0.1R(y) − 0.2C(y) − 0.5C(y)I(y), C0 = 0.25.

(16)
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A merit function for the above IDS is provided as:

E = 1
N

N∑
v=1

⎛
⎜⎜⎜⎜⎝

[
dŜ
dyv

− 0.5Ĉv − 0.02 + 0.5ÎvŜv + 0.02Ŝv

]2

+
[

dÎ
dyv

− 0.5ÎvŜv − 0.5ÎvĈv + 0.2Îv

]2

+
[

dR̂
dyv

− 0.5ÎvĈv − 0.3Îv + 0.2R̂v

]2

+
[

dĈ
dyv

− 0.1R̂v + 0.2Ĉv − 0.5ĈvÎy

]2

⎞
⎟⎟⎟⎟⎠

+1
4

[(
Ŝ0 − 8

10

)2

+
(

Î0 − 1
10

)2

+
(

R̂0 − 1
25

)2

+
(

Ĉ0 − 3
50

)2
]

.

(17)

The optimization procedures based on the PSO-IPA to solve the IDS are verified for 20 runs. The
proposed outcomes of the IDS are stated to find the best weights using the Eqs. (18)–(21), and the
graphical depictions of these weights are illustrated in Fig. 1.

Ŝ(y) = 2.7414
1 + e−(−2.547y−1.3634)

+ 4.2451
1 + e−(−4.144y−2.7064)

+ 3.6014
1 + e−( 0.2572y−1.6676)

+ 1.4152
1 + e−( −1.515y−1.130)

− 1.4900
1 + e−( 1.4698y+2.6464)

+ 1.1511
1 + e−( 3.8924y−0.5094)

+ 0.1321
1 + e−( −0.359y+2.1255)

+ 0.9795
1 + e−( −0.662y−2.2267)

− 2.9049
1 + e−( −0.312y−1.6757)

+ 0.4875
1 + e−( 10.058y+0.169)

,

(18)

Î(y) = −1.8074
1 + e−(0.7321y−1.2196)

+ 2.4637
1 + e−(−0.044y−2.5238)

+ 1.2961
1 + e−( −0.0101y+3.560)

+ 1.4838
1 + e−( 0.9973y−1.9513)

+ 0.8482
1 + e−( 1.0391y+1.0897)

− 3.9560
1 + e−( 7.6329y+2.8265)

− 1.8243
1 + e−( 0.2651y−1.9545)

+ 0.9067
1 + e−( 8.7412y+1.2587)

+ 1.1782
1 + e−( −0.172y+2.6786)

+ 0.3915
1 + e−( 0.2822y+1.3163)

,

(19)

R̂(y) = −0.9605
1 + e−(−1.4353y−1.1268)

− 0.6711
1 + e−(−1.218y−2.039)

+ 0.4045
1 + e−( −4.575y+0.079)

+ 0.0554
1 + e−( 2.0566y+1.8233)

− 3.4127
1 + e−( 9.6631y+0.9188)

+ 6.5034
1 + e−( 8.1809y+1.5886)

− 4.9969
1 + e−( 0.1488y+1.6958)

− 0.4463
1 + e−( 1.9855y+0.4224)

+ 1.7487
1 + e−( −0.7249y+1.7026)

+ 0.3438
1 + e−( 1.061y−05289)

,

(20)

Ĉ(y) = −0.0401
1 + e−(0.6549y+2.031)

− 0.0914
1 + e−(1.7093y+3.0003)

− 1.4018
1 + e−( 0.4254y−0.3388)

− 0.2131
1 + e−( 1.2393y+3.7756)

− 1.6602
1 + e−( 0.3741y−1.0481)

− 1.2893
1 + e−( −1.5430y−1.2232)

− 1.2239
1 + e−( 0.1356y−0.0424)

+ 1.7540
1 + e−( 1.3329y−1.7046)

+ 0.7232
1 + e−( 1.0330y−0.9743)

+ 2.0361
1 + e−( 0.2782y+2.1701)

.

(21)

The proposed numerical outputs are achieved in the Eqs. (18)–(21) using 0.05 step size in the
interval [0, 1] to present the numerical outcomes of IDS. These numerical values are graphically
presented based on the best weights in Figs. 2a–2d. The illustrations of the obtained output with the
reference performances are given in Figs. 2e–2h. The solutions of the IDS using the ANN procedures
and the optimization of the PSO-IPA and comparison are performed with the reference results. Fig. 3
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illustrates the performances of the AE to check the correctness of the procedures to solve the IDS. One
can find that the best AE for the respective classes of the IDS was found on 10−07–10−08, 10−07–10−10,
10−07–10−08, and 10−07–10−09. These classes’ mean performances were10−05–10−06, 10−06–10−08, 10−06–10−07

and 10−06–10−08. Fig. 4 indicates the EVAF, MSE, and TIC measures for the IDS, which were found
around 10−11–10−12, 10−09–10−10, 10−10–10−11 and 10−11–10−12 for the respective categories of the IDS,
10−14–10−15 for each category of the IDS and 10−11–10−12 for each category of the IDS. These best, most
precise, and accurate performances enhance the competence of the ANN procedures and optimize the
PSO-IPA for solving the IDS.

Figure 2: (Continued)
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Figure 2: Best weights and comparison for the mathematical model based on IDS

Figure 3: (Continued)
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Figure 3: AE for the mathematical model based on IDS

Figure 4: EVAF, MSE, and TIC measure performances for the mathematical IDS model

The MSE performances for these classes found around 10−11–10−15, 10−12–10−13, 10−11–10−14, and
10−11–10−13. Moreover, TIC performances for these classes calculate as 10−10–10−12, 10−10–10−11, 10−09–
10−11 and 10−09–10−12. These ideal performances indicate the correctness of the ANNs procedures and
the optimization of the PSO-IPA to solve the IDS.

To check more accurateness, validation, and precision of the scheme, the statistical performances
are tabulated in Tabs. 2–5 for the Minimum, Maximum, Mean, MSE, Median and SIR operators
to solve the IDS. The Minimum gages represent the best outcomes, calculated for each class of the
IDS 10−08–10−09, 10−08–10−11, 10−07–10−11, and 10−08–10−11. The worst results are indicated through
the Maximum performances for the respective classes of the IDS, which lie as 10−05–10−06, 10−06–
10−07, 10−05–10−07, and 10−06–10−07. Moreover, the Mean, Median and SIR operator performances
are calculated as 10−06–10−07 for each class of the IDS. These calculated performances signify the
importance of the ANNs procedures for the mathematical form of IDS. Through these measures the
proposed scheme is stable, accurate, and precise for solving the IDS.
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Table 2: Statistical operator performances for S(y)

y S(y)

Minimum Maximum Mean Median SIR

0 1.8761573E−09 3.4051240E−06 8.4648558E−08 3.4281850E−09 5.4934687E−09
0.05 3.3717081E−09 4.6914251E−06 6.6627034E−07 3.2551150E−07 4.3405325E−07
0.1 2.0087117E−08 8.0418468E−06 1.0455052E−06 2.3112279E−07 4.1467823E−07
0.15 1.7101202E−08 8.6289909E−06 1.0185430E−06 6.6801150E−07 3.5312526E−07
0.2 5.5810510E−08 6.3854633E−06 9.9443035E−07 9.6956003E−07 8.1545835E−07
0.25 4.9420582E−08 5.3317787E−06 1.1830809E−06 1.3255238E−06 1.1300888E−06
0.3 1.5330920E−08 6.2464775E−06 1.4073413E−06 1.4479798E−06 1.2205105E−06
0.35 1.0400359E−07 6.2136431E−06 1.4143937E−06 1.4745579E−06 1.2123481E−06
0.4 1.1784362E−07 5.3392560E−06 1.4396134E−06 1.1775102E−06 1.1982062E−06
0.45 1.0130044E−09 4.2523749E−06 1.3833343E−06 6.3931494E−07 8.4152557E−07
0.5 5.3025001E−10 4.0623065E−06 1.2494630E−06 3.5044012E−07 6.7187877E−07
0.55 5.8320489E−08 5.2653930E−06 1.2153988E−06 2.1917970E−07 3.0712434E−07
0.6 4.7343557E−08 8.3810462E−06 1.2148355E−06 6.0208529E−07 3.0594690E−07
0.65 5.1670069E−08 1.1376317E−05 1.1185807E−06 8.6006347E−07 3.5513362E−07
0.7 1.0822113E−08 1.3952550E−05 1.0590984E−06 6.6372362E−07 3.6795589E−07
0.75 7.5091521E−08 1.5859392E−05 1.0841451E−06 3.6941334E−07 3.8419121E−07
0.8 1.8158495E−08 1.6899717E−05 9.9865503E−07 2.8166736E−07 3.2597347E−07
0.85 1.6512347E−08 1.6923546E−05 9.0067541E−07 7.3381875E−07 6.3711276E−07
0.9 5.1433705E−09 1.5829022E−05 9.3123784E−07 1.1391377E−06 8.4784511E−07
1 5.6303378E−08 1.3556507E−05 9.6522648E−07 1.2083685E−06 1.1308012E−06

Table 3: Statistical operator performances for I(y)

y I(y)

Minimum Maximum Mean Median SIR

0 5.4700716E−11 8.8215794E−07 5.3159978E−08 7.3330249E−09 9.4429495E−09
0.05 1.3226228E−08 2.3728463E−06 3.9289274E−07 3.0672381E−07 3.3197431E−07
0.1 1.2023386E−09 3.2227247E−06 2.7256042E−07 4.6345421E−07 4.7386831E−07
0.15 5.4786932E−08 5.4017328E−06 8.4872421E−07 4.3928466E−07 4.2790248E−07
0.2 4.6541365E−08 7.0609359E−06 1.4224343E−06 7.9354594E−07 6.7011863E−07
0.25 2.7961287E−08 7.1291903E−06 1.7462977E−06 7.9970081E−07 9.2189153E−07
0.3 4.0193108E−09 5.9004307E−06 1.8246635E−06 8.6151233E−07 1.3116047E−06
0.35 2.0003924E−08 6.7397612E−06 1.6373796E−06 6.1419648E−07 1.3116333E−06
0.4 8.5923615E−11 8.2870342E−06 1.2804252E−06 8.9730658E−07 1.1093256E−06
0.45 3.8544524E−08 9.0351544E−06 8.2961848E−07 5.9976682E−07 9.9779237E−07

(Continued)
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Table 3: Continued
y I(y)

Minimum Maximum Mean Median SIR

0.5 4.0914067E−08 8.9063619E−06 4.9780845E−07 3.5850174E−07 6.0797118E−07
0.55 1.1007176E−08 7.9165318E−06 4.9889559E−07 5.0004166E−07 5.4930028E−07
0.6 6.9016089E−10 6.1706545E−06 7.2855837E−07 6.9859916E−07 5.2249132E−07
0.65 3.3358430E−08 3.8518832E−06 9.1521265E−07 6.8391327E−07 5.0481865E−07
0.7 2.9122667E−08 3.2547953E−06 8.9588954E−07 5.3081635E−07 4.4638124E−07
0.75 5.5584699E−08 4.4433804E−06 7.0391565E−07 2.7145099E−07 3.7271851E−07
0.8 1.4218647E−08 5.1441569E−06 5.1572865E−07 3.5198065E−07 3.8648374E−07
0.85 8.0771792E−08 5.3130496E−06 8.3834191E−07 4.8200458E−07 5.2308507E−07
0.9 2.3063942E−08 5.7461716E−06 1.1389256E−06 6.2439509E−07 7.7955387E−07
1 1.0028581E−07 4.6251676E−06 1.2245017E−06 7.2189044E−07 5.9777971E−07

Table 4: Statistical operator performances for R(y)

y R(y)

Minimum Maximum Mean Median SIR

0 6.2415462E−11 7.6431637E−07 6.6912296E−08 2.0298326E−09 5.6547205E−09
0.05 4.2813539E−08 9.5604797E−07 5.6383419E−07 3.8969861E−07 3.6896775E−07
0.1 4.9793566E−08 8.9748916E−07 7.1679937E−07 1.4966235E−07 5.6950208E−07
0.15 4.4023988E−08 2.1081236E−06 9.7673284E−07 6.8951399E−07 8.1115686E−07
0.2 1.5046431E−08 2.9902413E−06 1.2784906E−06 1.4499888E−06 4.4600034E−07
0.25 1.4313953E−09 3.7131060E−06 1.6420314E−06 1.8881601E−06 3.8368331E−07
0.3 2.4148743E−08 3.9563866E−06 1.9016950E−06 1.9871187E−06 5.1735055E−07
0.35 7.5202288E−08 3.8746909E−06 1.9540272E−06 1.7549407E−06 7.2786806E−07
0.4 4.8883568E−08 3.2499526E−06 1.7989158E−06 1.1710786E−06 8.4382878E−07
0.45 2.8182175E−08 2.2765397E−06 1.5448957E−06 6.2298957E−07 1.0208686E−06
0.5 4.3602932E−08 1.5704655E−06 1.2575592E−06 3.4273238E−07 9.1399165E−07
0.55 5.8390346E−09 1.5616175E−06 1.0873001E−06 4.3133546E−07 1.0020836E−06
0.6 4.8536164E−08 2.2926555E−06 1.1780199E−06 7.4099701E−07 9.5447845E−07
0.65 9.4632834E−08 2.7026198E−05 1.1735733E−06 9.6749770E−07 7.5919502E−07
0.7 1.2279055E−07 2.3354946E−05 9.8555036E−07 8.0444684E−07 3.9618774E−07
0.75 3.1076813E−08 2.3539541E−05 7.7931534E−07 5.0875798E−07 6.5084086E−07
0.8 2.2349290E−08 2.2931665E−06 8.3467335E−07 2.9299336E−07 5.8597252E−07
0.85 3.3664116E−08 1.6563969E−06 1.2169830E−06 8.4392814E−07 2.2345871E−07
0.9 8.1994062E−09 2.6499226E−06 1.5215737E−06 1.2342629E−06 5.2648073E−07
1 2.5311820E−08 3.1045818E−06 1.5603301E−06 1.3225010E−06 5.0752836E−07
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Table 5: Statistical operator performances for C(y)

y C(y)

Minimum Maximum Mean Median SIR

0 7.3971856E−11 1.4466890E−06 1.9336049E−07 3.6722143E−09 1.4459062E−09
0.05 2.8818513E−09 4.6714084E−06 6.8321599E−07 3.2529822E−07 1.8204088E−07
0.1 4.8394666E−10 6.3073328E−06 7.4485883E−07 1.5454228E−07 1.7587655E−07
0.15 2.4340539E−08 3.9906829E−06 9.3257430E−07 3.8289915E−07 3.5320412E−07
0.2 5.0046388E−08 4.4317787E−06 1.2957442E−06 5.2894601E−07 7.2889851E−07
0.25 5.3947741E−08 5.6749707E−06 1.5708270E−06 9.9847214E−07 8.1735224E−07
0.3 5.2680106E−08 6.6668082E−06 1.6637886E−06 8.6872263E−07 7.6044315E−07
0.35 3.7215330E−08 7.2725480E−06 1.7139434E−06 1.1249917E−06 6.9951923E−07
0.4 4.6122306E−08 7.4069260E−06 1.5388593E−06 1.0301818E−06 6.6877779E−07
0.45 6.5909896E−08 7.0325621E−06 1.2170433E−06 6.3002718E−07 4.2693616E−07
0.5 4.5502571E−08 6.1571703E−06 1.0052558E−06 4.9078622E−07 2.8351805E−07
0.55 4.4439081E−08 4.8324242E−06 9.5716990E−07 4.3771742E−07 2.4563899E−07
0.6 1.0720581E−08 4.0498453E−06 1.2140557E−06 7.7362302E−07 3.2675070E−07
0.65 7.7371947E−08 5.8418271E−06 1.4522717E−06 1.0007349E−06 4.8910849E−07
0.7 2.3057843E−08 7.1780092E−06 1.4840015E−06 9.7585488E−07 5.7226228E−07
0.75 8.9105991E−08 7.5083454E−06 1.3320531E−06 5.6150516E−07 3.9749524E−07
0.8 1.5094755E−08 6.5881049E−06 1.2776754E−06 2.9999843E−07 3.1263654E−07
0.85 5.2385472E−08 4.8289902E−06 1.6091788E−06 7.2069717E−07 2.9403684E−07
0.9 2.3033508E−08 4.7306475E−06 1.9002986E−06 1.0130044E−06 5.6704802E−07
1 1.8682285E−08 3.4020006E−06 1.8661524E−06 8.6642544E−07 7.6074117E−07

The global MSE, TIC, and EVAF operator performances using the 40 executions to solve the IDS
through the ANNs procedures, along with the optimization of the PSOIPA for solving the IDS, are
provided in Tab. 6. These global presentations for the Minimum values were 10−11–10−12, 10−10–10−11,
and 10−07–10−09. At the same time, these performances for the SIR are calculated as 10−12 to 10−13, 10−11–
10−12, and 10−08–10−10. These obtained ideal performances through these global operators indicate the
correctness, precision, and accuracy of the ANNs procedures and the optimization of the PSOIPA for
solving the IDS.

Table 6: Global MSE, TIC, and EVAF performances for the mathematical IDS

Class MSE TIC EVAF
Minimum SIR Minimum SIR Minimum SIR

S(y) 1.05737E−12 5.40834E−13 6.32901E−11 3.49280E−11 1.70564E−09 8.06997E−10
I(y) 2.28432E−11 9.50006E−13 7.13296E−10 4.30034E−11 1.47244E−07 6.45761E−08
R(y) 4.49115E−12 1.14432E−12 9.06258E−11 3.70372E−11 6.97793E−08 1.77665E−08
C(y) 2.45672E−12 1.06979E−12 8.36500E−11 2.01424E−11 7.34925E−09 3.08139E−09
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5 Concluding Remarks

This work aims to design a swarming computational paradigm for the influenza disease system.
The mathematical form of the influenza disease system is dependent upon four classes, susceptible
individuals, infected people, recovered individuals, and cross-immune people. The numerical perfor-
mances of the influenza disease system are presented by using the artificial neural networks together
with the swarming computational paradigms and interior-point scheme, which are the global and
local search approaches. To find the numerical performances, a merit function is constructed based
on the differential form of the influenza system and then optimization is performed by using the
hybrid competency of the PSOIPA. The curve fitting log-sigmoid is used as a merit function along
with ten numbers of neurons or 30 variables as well as the whole process is used for 20 trials to solve
the nonlinear system. The achieved performances are based on the ANNs and the hybrid computing
framework of PSOIPA. Furthermore, the AE is performed in suitable measures for each class of the
model, which is found as 10−04 to 10−06 as well as the performance measures are also calculated in
suitable measures. Finally, the exactness of the stochastic scheme is performed by using the comparison
of the obtained and reference solutions. The precise statistical EVAF, MSE, TIC, and MAD operator
performances, along with the global operators, signify the solver reliability in solving the influenza
model. Moreover, the statistical Minimum, Maximum, Mean, MSE, Median, and SIR operators
further endorse the correctness of the ANNs-PSOIPA procedure.

Future Research Directions: In the future, the designed stochastic procedure can be executed to solve
the higher order systems [47–53] and biological population systems [54,55].
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