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Abstract: Adolescent Idiopathic Scoliosis (AIS) is a deformity of the spine
that affects teenagers. The current method for detecting AIS is based on
radiographic images which may increase the risk of cancer growth due to
radiation. Photogrammetry is another alternative used to identify AIS by
distinguishing the curves of the spine from the surface of a human’s back.
Currently, detecting the curve of the spine is manually performed, making
it a time-consuming task. To overcome this issue, it is crucial to develop a
better model that automatically detects the curve of the spine and classify the
types of AIS. This research proposes a new integration of ESNN and Feature
Extraction (FE) methods and explores the architecture of ESNN for the AIS
classification model. This research identifies the optimal Feature Extraction
(FE) methods to reduce computational complexity. The ability of ESNN to
provide a fast result with a simplicity and performance capability makes this
model suitable to be implemented in a clinical setting where a quick result
is crucial. A comparison between the conventional classifier (Support Vector
Machine (SVM), Multi-layer Perceptron (MLP) and Random Forest (RF))
with the proposed AIS model also be performed on a dataset collected by an
orthopedic expert from Hospital Universiti Kebangsaan Malaysia (HUKM).
This dataset consists of various photogrammetry images of the human back
with different types of Malaysian AIS patients to solve the scoliosis problem.
The process begins by pre-processing the images which includes resizing and
converting the captured pictures to gray-scale images. This is then followed by
feature extraction, normalization, and classification. The experimental results
indicate that the integration of LBP and ESNN achieves higher accuracy
compared to the performance of multiple baseline state-of-the-art Machine
Learning for AIS classification. This demonstrates the capability of ESNN in
classifying the types of AIS based on photogrammetry images.
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1 Introduction

Scoliosis is a three-dimensional structural spine deformity characterized by more than ten degrees
of lateral curvature. It has been reported that around two to four percent of adolescents suffer from
Adolescent Idiopathic Scoliosis (AIS) [1]. Various methods for classifying scoliosis (invasive and non-
invasive) have been developed throughout the years. The current and well-known approach of invasive
classification is radiographic images. The widely used non-invasive technique is photogrammetry, an
alternative to radiographic images [2,3], which is reliable in assessing the shoulder and waist asymmetry
in idiopathic scoliosis patients [4,5]. The disadvantage of using radiographic images in classifying
scoliosis is that exposure to prolonged radiation can cause the growth of cancer cells [6]. Every patient
has a unique form, structure, size, and features [7]. The anthropometric or measurement of body
posture is an essential factor in AIS development [8]. Bodily proportions are different according to
ethnic diversity [9]. Since Malaysia is a multi-ethnic country, no publicly available Malaysian dataset
is present for scoliosis based on photogrammetry. Therefore, this research has created a new dataset
consisting of scoliosis images for Malaysia’s multi-ethnic population.

2 Related Work

Machine Learning (ML) approaches have been introduced in scoliosis research over the past
few years. A comparison between SVM and Deep Learning (DL) was conducted to classify and
distinguish between healthy and scoliosis patients from the raster-stereography images [10]. Twenty-
seven formetric features were extracted. Both ML models achieved an 80% accuracy rate. A Neural
network and SVM classifier were employed to classify normal, toe-in, toe-out, and flat gaits [11].
A hybrid between fast Fourier transform (FFT), principal component analysis (PCA), and linear
discriminant analysis (LDA) were applied for FE and dimension reduction. This research achieved
over 78% accuracy. SVM is also used to classify between mild and severe gait [12]. Seventy-two
gait features were extracted, achieving an 81% accuracy. This further increased to 85.7% using the
ReliefF features selection. Classification of the markerless 3D dorsal has been proposed by [13]. In
this research, nine shape features and SVM were used to classify the spine with and without deformity,
achieving an accuracy of 72.4% and 80%, respectively. RF was utilized to classify spine deformity into 3
classes [14]. Eight descriptors were extracted from the 3D images of spine curvature features, achieving
a log loss of 0.5623.

MLP is one of the branches of Artificial Neural Network (ANN) and the most popular neural
network model architecture [15]. However, it consists of too many parameters since it is fully
connected. Each node is connected to another in a very dense web, resulting in redundancy and
inefficiency [16,17]. SVM was first introduced by [18] who was inspired by the statistical learning
theory. However, its performance relies on the kernel function. It is crucial to select the appropriate
kernel function for a particular classification task to avoid overfitting [19,20]. Leo Breiman proposed
RF which is a group of un-pruned classification or regression trees made from the random selection
of training data samples [21]. However, the performance of RF can decrease when the data is highly
imbalanced. This algorithm takes a relatively longer processing time and is more complex than the
Decision Tree (DT) [22,23].
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The work of Spiking Neural Network (SNN) began from the observation of the MLP model in
which it processes binary spike-based information [24]. As a result, the creation of the SNN model is
based on how the MLP model processes information. The ESNN model is an SNN supervised learning
model designed to recognize visual patterns. The word “evolving” refers to a shifting repository of
output neurons, the weights of which synapses are formed through the network’s supervised learning
[25]. Unlike RF and SVM, ESNN trains neurons based on a spike that is only fired if it meets
the threshold criteria. If none of the neurons were fired, the extra neurons will evolve during the
training phase. The ESNN model demonstrates its simplicity and performance capabilities with
its fast one-pass learning algorithm where no data re-training is required. However, determining a
suitable parameter value is crucial for ESNN implementation, thus guaranteeing the best output [26].
A comparative study between ESNN, MLP, and SVM has been performed where ESNN achieved
a better accuracy of 97.1% on the VidTimit dataset [27–29]. ESNN also exhibited better results
compared to MLP, RF, and SVM on the anomaly intrusion dataset [30,31].

Photogrammetric images use the assessment of posture and spinal curvature based on surface
examination to determine whether or not a person is suffering from AIS [32]. The surface of the human
back consists of a combination of textures and shapes which are extracted from the spine’s curvature.
GLCM achieved an accuracy of more than 80% when determining the flexibility of the spine’s curve
[33]. LBP has been used to measure spine deformity on scoliosis patients with an accuracy ranging
between 84%–91% [34]. SURF identifies the image region (threshold) that shows precise monitoring
in the navigated surgery [35]. SIFT is used to automatically detect rib bones in chest X-ray images and
successfully addresses the rib-shape variance among patients [36].

From the literature, ESNN performs well compared to other conventional ML techniques. The
implementation of ESNN has not yet been conducted in scoliosis research. Due to the promising
ability of this ML model, this research proposes an AIS classification model using photogrammetric
images with the ESNN classification model. Additionally, the ESNN’s simplicity and performance
capabilities make it an ideal model for implementation in clinical settings that requires immediate
results. Since they are frequently applied in medical and scoliosis research, this research explores AIS
classification based on Malaysian dataset of photogrammetry images using the integration of ESNN
with LBP, SIFT, SURF, HOG, and GLCM FE methods.

3 Methodology

This research proposed a new classification integration of ESNN and a comparison between
five FE methods for the AIS classification model. This research will identify an optimal FE method
to improve the computational process. A comparison with the conventional ML model also will be
performed with the proposed AIS classification model.

For the ESNN integration, the process begins with the initialization of three important ESNN
factors: the modulation factor (Mod), proportion factor (C), and similarity value (Sim) and
Receptive Neuron (RN). The parameter value used in this research for Mod, C and Sim is within
intervals 0 and 1. Meanwhile, RN is an interval between 20 to 50 where the computational cost increase
if it higher. But if it too low, it will affect the performance of ESNN model. Mod is the firing time of
presynaptic neuron (j). The function order (j) is the spike rank of the neuron represented by 0, 1, 2,
and more, increasing with the firing time (j). The output neuron is produced by the training process
in which the similarity distance control by Sim between the weight vectors of the neuron is calculated
using Euclidean distance. If the weight vector similarity is high, the neuron will merge. The calculation
to merge the neuron is shown in Eq. (1), which includes modifying the weight pattern and the threshold
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to the average value. N represents the number of samples previously used to update neuron i. Neuron i
will be discarded, and the following sample will be processed. However, the neuron value will be added
to the repository if the weight vector is a low similarity as a new output neuron.

w = Wnew + w × N
N + 1

, θ = θnew + θ × N
N + 1

(1)

The Postsynaptic Potential (PSP) fires and becomes disabled only if the threshold value has been
reached. Thorpe’s neuron model used in ESNN consists of the one-pass learning algorithm. This stage
is important to produce a repository of neurons with a class label. One output sample is expected to
be produced by one input sample. However, the output sample is produced based on the weight vector
similarity with other output neurons. The PSP (Ui) of neuron i is shown in Eq. (2). Wj represents the
presynaptic neuron of j weight. The Ui fires a spike when its potential reaches a certain firing threshold
(ft). It is set to a fraction of 0 < C < 1 of a neuron’s maximum potential PSP umax reachable.

Ui =
{

0 → fired
wfe ∗ Modorder(f )

e → otherwise
ft = C ∗ u max (2)

A comparison of five FE methods (GLCM, HOG, LBP, SURF, and SIFT) is performed to identify
the optimal FE methods for the classification of Lenke Type 1 (LT1) and Non-Lenke Type 1 (NLT1).
Based on the Scoliosis Research Society (SRS), a curve can be divided into two: structural and non-
structural. A structural curve bends more than 25 degrees, while a non-structural curve bends less than
25 degrees [37]. Three criteria should be examined regarding the curve of the spine: Proximal Thoracic
(PT), Main Thoracic (MT), and Thoracolumbar Lumbar (TL) [38]. This research focuses on Lenke
Type 1 (LT1) which consists of only one structural curve (the MT) and non-structural curves (TL
and PT). According to [39], LT1 is the most common case in AIS, therefore, this research focuses on
LT1. Tab. 1 presents the FE methods applied in this research, the adopted sources, and the number of
features produced by each FE method.

Table 1: FE methods details

FE methods Adopted from Number of features
produce

GLCM (contrast, correlation, energy, and homogeneity) [40,41] 4
SURF [42] 64
SIFT [43,44] 128
HOG [45] 972
LBP [46] 59

Therefore, this research proposes an AIS classification model to classify photogrammetry images
into LT1 and NLT1. Experimentation has been conducted on five FE methods. The comparison
between three conventional classification models is highlighted in the next subtopic.

4 Proposed Model

This research begins with data collection and pre-processing followed by AIS classification, which
is divided into two phases. The proposed model presented in Fig. 1 illustrates how the integration each
of the five FE methods with ESNN. Then, the comparison between proposed ESNN and FE methods
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and conventional classification models, the SVM and RF as in [47]. Meanwhile, second-generation
neural network (MLP) as adopted in [48,49].

1 0.16 0.07

0.35 1 0.37

1 0.16 0.72

1 0 0

0 1 1

1 1 0

Pre-processingInput Image

ESNN

Compared features techniques
GLCM, LBP, SURF, SIFT, HOG

Compared with 
conventional classifier 

(SVM, MLP, RF)

Lenke Type 1
(LT1)

LT2 LT3 LT4 LT6
Non-Lenke Type 1(NLT1)

LT5

normalization

Figure 1: Proposed model architecture for AIS classification based on photogrammetry images

4.1 Input Image

The photogrammetric image acquisition procedure is the pre-operative standard before surgery. In
this procedure, the image is of an unclothed human back, standing and facing the wall. In this research,
a digital camera is used to take posterior or back view images in a standard control environment.
These images were taken by an orthopedic physician from Hospital Universiti Kebangsaan Malaysia
(HUKM). Ten images were allocated as Lenke Type 1 and twenty as Lenke Type 2 to Lenke Type 6.
Fig. 2 displays some sample images from the dataset used in this research.

Figure 2: Photogrammetric and radiographic (a) Image of LT1 (b) Image of NLT1

4.2 Pre-Processing

Before further processing, the data must undergo a pre-processing stage where images are resized
to 227 × 227 pixels. This is due to the nature of the primary data since it may vary in size. Next, the
images are converted to gray-scale before the FE method is applied.
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4.3 Propose Integrated ESNN and FE Method

As shown in Fig. 1, the integration between the FE methods (GLCM, LBP, SURF, SIFT, and
HOG) has been perform where the optimal FE methods will be selected. This phase applies FE
methods to extract features from the coded gray-scale images. The five features produced a list
of vectors for each dataset. These features are then normalized to eliminate noise or unnecessary
attributes. This process significantly impacts classification performance. Normalization enhances data
quality where greater numeric feature values are unable to dominate smaller numeric values [50].
This experiment implements normalization with a range between 0 to 1, as shown in Eq. (3). The mn
denotes the normalized value, where max_m is the maximum value of m features. Meanwhile, min_m
it represents the minimum values of m features, as shown in Eq. (3).

mn = (m − min_m)/(max_m − min_m ) (3)

4.4 Comparison with Convention ML Model

After the normalization process, the normalized vectors are classified by integrating ESNN and
FE methods. Evaluation of the performance of the proposed AIS classification model, a comparison
between three conventional classifiers (SVM, MLP, RF) perform in this research. In this stage, finding
the optimal parameter is essential for each classification model to determine the suitable parameter
value used for the AIS classification model. The exploration on the parameter details are discussed in
the next subtopic, following the experimental results.

5 Experimental Results

Experiment on integration between ESNN and FE methods perform where the optimal FE
methods are identified. A comparison between conventional ML model with propose AIS classifi-
cation model are evaluated. A few hyper parameters were fine-tuned to obtain optimal classification
performance for each ML model. The dataset was divided into 80% training and 20% testing using 10-
fold cross-validation. In this experiment, classification accuracy is computed by dividing the number
of correctly classified images with the total number of images.

5.1 Evaluation of Proposed Integrated ESNN and FE Methods

Four essential parameters are used: The Threshold (C), Modulation Factor (Mod), Similarity
value (Sim) and Receptive Neuron (RN), where various datasets will have different parameters. Tab. 2
lists the accuracy performances of fine-tuning integration of ESNN with FE methods. From the
table, shows the integration of ESNN and LBP achieve a higher accuracy of 86.67% on normalize
dataset. Therefore, deep analysis on the accuracy for integration of ESNN and LBP is discussed in
this subtopic.

Table 2: The accuracy of ESNN with fine-tuning of mod, c, RN and sim normalize for normalized and
un-normalized dataset

Un-normalized Normalize
Mod C Sim RN Acc (%) Mod C Sim RN Acc (%)

ESNN + LBP 0.95 0.1 0.05 40 76.668 ESNN + LBP 0.95 0.1 0.05 40 86.67

(Continued)
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Table 2: Continued
Un-normalized Normalize

Mod C Sim RN Acc (%) Mod C Sim RN Acc (%)

ESNN + SURF 0.95 0.2 0.05 20 72.834 ESNN + SURF 0.95 0.2 0.05 20 70.00
ESNN + HOG 0.85 0.3 0.3 40 66.67 ESNN + HOG 0.65 0.05 0.05 20 66.67
ESNN + GLCM 0.90 0.75 0.05 50 80.002 ESNN + GLCM 0.85 0.45 0.1 20 73.336
ESNN + SIFT 0.70 0.05 0.05 20 66.67 ESNN + SIFT 0.95 0.15 0.15 30 73.336

For the integration of ESNN with FE methods, the parameter selected is based on the highest
performance accuracy achieved after performing a 10-folds cross-validation. In this experiment, the
first parameter is C, where the firing time of the output neuron is observed with a range between
[0.05–0.95]. Fig. 3a shows a steady accuracy performance of threshold C from 0.05 until 0.9. The
highest performance for C is 0.1, 0.15, 0.25, and 0.3, where the accuracy is 86.67%. A higher value
indicates many spikes and a lengthy decision time. Thus, 0.3 is utilized for parameter C. The following
parameter is Mod, where the range between [0.05–0.95] has been observed. A better representation
of weight patterns according to their output class is obtained when the Mod parameter is set to a
high value. Fig. 3b presents an increment accuracy for Mod, where the highest is 0.95. The Mod value
should be small as the number of features increases. However, due to the essence of weight calculation,
if the Mod value is small, most connections are given the zero-weight value. High modulation signifies
that more features are used as input. In this research, features that can be considered small (a Mod
of 0.95) achieve the maximum accuracy. The third parameter is Sim, where a range between [0.05–
0.95] has been observed in this experiment. High values of the Sim parameter lead to better network
architecture. Sim’s value of 0.3 is the best parameter since it achieved the highest accuracy, as shown
in Fig. 3c. The number of RN corresponds with the number of firing times. As the number of RN
increases, the number of firing times decreases. During the experiment, the observation for RN is
between 20, 30, 40 and 50. The low number of neurons affect the performance accuracy. Thus, RN
with a value of 40 was utilized in this dataset. Therefore, selecting suitable parameters may influence
the achieved results. The experiment shows that 86.67% is achieved for integration of ESNN and LBP
by tuning Mod at 0.95, C at 0.3, Sim at 0.3, and RN at 40 for the proposed AIS classification model.
The next subtopic discusses the evaluation of FE methods with other conventional ML models.
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Figure 3: (a) Accuracy based on threshold for LBP + ESNN model, (b) Accuracy based on Modulation
Factor (Mod) for LBP and ESNN model and (c) Accuracy based on Similarity (Sim) for LBP and
ESNN

5.2 Evaluation for MLP with FE Methods

Multilayer perceptions (MLPs) are layered feed forward networks typically trained with static
back propagation. To build the MLP model, three hyperparameters are fine-tuned in this research: The
Learning rate (L), Momentum rate (M), and Number of hidden layers (H). These hyperparameters
are modified to achieve an optimal solution for the model [50]. The number of hidden layers represents
a trade-off between performance and the risk of overfitting. The Momentum rate is the value applied
to weights during updating, and the learning rate is the amount of weights updated. The accuracy
(Acc) was recorded as a benchmark to achieve optimal classification performance. The L and M
were adjusted between 0.1 and 1, with one hidden neural net layer. On the other hand, the number of
H was adjusted between 1 and 25 [50,51]. From this experiment, the highest accuracy can be listed with
the parameter value of H, L, and M. The results of the experiments are shown in Tab. 3 which lists
the performance of all FE methods with the MLP model for both the normalized and un-normalized
datasets. It can be seen that MLP with LBP presents outstanding results, followed by SURF, for both
normalized and un-normalized datasets.

Table 3: Evaluation of highest accuracy un-normalized and normalized data for all feature’s extraction
method

Un-normalized Normalize

Model H L M Acc (%) Model H L M Acc (%)

MLP + LBP 4 0.8 0.8 73.33 MLP + LBP 7 0.8 0.8 76.67
MLP + GLCM 7 0.7 0.4 68.89 MLP + GLCM 20 0.9 0.3 73.33
MLP + SURF 10 0.8 0.9 73.33 MLP + SURF 10 0.8 0.9 73.33
MLP + SIFT 1 0.1 1 62.22 MLP + SIFT 1 0.3 1 70
MLP + HOG 15 1 0.5 71.11 MLP + HOG 5 0.8 0.6 73.33

Figs. 4a and 4b display the accuracy for both LBP and SURF using MLP. It can be seen that an
increase in the number of hidden layers or number of hidden neurons leads to better classification rate
and lower error rate. In Fig. 4a, accuracy is high if the hidden layer is 7 with 0.8 learning rate and 0.8
momentum rate. Accuracy drops if the hidden layer increases. In Fig. 4b, the hidden layers 1, 4, and 6
achieved high accuracy, however, the value drops at layer 7 and beyond. It can therefore be concluded
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that the optimum values of the hidden layer, momentum rate, and learning rate that achieve the highest
accuracy for each FE methods for MLP have been obtained.
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Figure 4: Graphical representation of (a) Performance of MLP and LBP model for every hidden layer
with 0.8 learning rate and 0.8 momentum rate. (b) Performance of MLP and LBP model for every
hidden layer with 0.3 learning rate and 1 momentum rate

5.3 Evaluation for RF with FE Methods

Three bag sizes of RF (100, 75, and 50) were examined, as adopted in [52]. The bag size determines
the number of trees in RF. Bagging is a method of averaging the decision trees. It is in addition to the
number of iterations, which is the number of repetitions of the learning process where the previously
built model influences the newer model [53]. Fig. 5 illustrates the classification accuracy of RF with
three bag sizes. By looking at Fig. 5, we can see that the highest accuracy achieved by RF combined
with SURF is 70%.
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Figure 5: Accuracy results for RF model with different bag sizes based on five FE methods under
normalized and un-normalized dataset

5.4 Evaluation for SVM with FE Methods

The SVM algorithm has several kernels. This work used the following: normalized polynomial,
linear kernel, Pearson VII (PUK) kernel, and RBF kernel, as adopted in [54,55]. The selection of
adequate kernel function was initially made to determine appropriate model configuration. The model
that obtains better results is the polynomial kernel with LBP. Both SVM and SURF achieved higher
accuracy with normalized polynomial, followed by PUK and RBF. Fig. 6 summarizes the accuracy
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obtained by the SVM model with four kernels under the normalized and un-normalized datasets. The
model that obtained the best results is SVM with polynomial kernel and LBP with an accuracy of
70%. SVM and SURF achieved similar accuracy with normalized polynomial, PUK and RBF.
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5.5 Performance Summary of all FE Methods with SVM, MLP, RF and ESNN

Tab. 4 illustrates the performance comparison of the proposed integration of ESNN and FE
methods with convention ML models based on the normalized and un-normalized datasets. The
results indicate that the proposed integration of ESNN and LBP has the highest accuracy with 86.67%
with a normalized dataset compared to the conventional ML model. This is due to the ability of ESNN
to carry visual stimuli information at a single spike [56]. Additionally, the ESNN is capable of adapting
to changes in the environment, and its performance is highly dependent on parameter tuning to achieve
high accuracy. Besides, the powerful LBP methods based on grayscale and rotation invariant texture
operator merge well with ESNN to stimulate a high accuracy result.

Table 4: Evaluation performances integration of ESNN and FE methods with MLP, SVM and RF

Un-normalized Accuracy (%) Normalized Accuracy (%)

ESNN + LBP 76.67 ESNN + LBP 86.67
ESNN + SURF 72.83 ESNN + SURF 70.00
ESNN + HOG 66.67 ESNN + HOG 66.67
ESNN + GLCM 80.00 ESNN + GLCM 73.34
ESNN + SIFT 66.67 ESNN + SIFT 73.34
MLP + LBP 83.33 MLP + LBP 76.67
MLP + SURF 80.00 MLP + SURF 73.33
MLP + HOG 71.11 MLP + HOG 73.33
MLP + GLCM 68.89 MLP + GLCM 73.33
MLP + SIFT 62.22 MLP + SIFT 70.00
SVM + LBP 56.67 SVM + LBP 70.00

(Continued)
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Table 4: Continued
Un-normalized Accuracy (%) Normalized Accuracy (%)

SVM + SURF 70.00 SVM + SURF 43.33
SVM + HOG 53.33 SVM + HOG 56.67
SVM + GLCM 62.22 SVM + GLCM 53.33
SVM + SIFT 55.56 SVM + SIFT 50.00
RF + LBP 66.67 RF + LBP 60.00
RF + SURF 63.33 RF + SURF 66.67
RF + HOG 60.00 RF + HOG 60.00
RF + GLCM 57.78 RF + GLCM 53.33
RF + SIFT 51.11 RF + SIFT 56.67

Tab. 5 reveals that the proposed AIS classification model outperforms the conventional ML
utilized in scoliosis research. Furthermore, it demonstrates that the research is reliable enough to be
employed in clinical settings. The deep learning proposed by [3] achieves 75% accuracy and shows
a complex architecture consisting of many layers and requires high computational complexity to
process data. The other conventional ML model achieves an accuracy between 83% and 85%. A
comparison done on the ESNN model with different ML models shows the ESNN’s ability to achieve
high classification accuracy, as mentioned in the literature.

Table 5: Performance for ML in scoliosis detection

Author Model Accuracy

[3] Faster-RCNN and ResNet 75%.
[12] SVM 85.7%
[57] MLP 83.3%
[58] RF 84%
Proposed model LBP + ESNN 86.67%.

6 Conclusion and Future Work

In this research, an AIS classification model based on photogrammetry images was proposed uti-
lizing image processing and a biological plausible algorithm. This is a feasibility study to investigate the
FE methods and classification of AIS patients using photogrammetry images. Experimental findings
presented an accuracy of 86.67% with the integration of LBP and ESNN models for classification.
Comparison between state-of-the-art FE methods (LBP, GLCM, HOG, SURF, and SURF) with
conventional ML models (SVM, MLP, and RF) exhibit the potential of the proposed integration of
ESNN and LBP for AIS classification. This can complement conventional radiographic techniques
since they contribute to cancer, thereby affecting AIS patients. The proposed model classifies the
Lenke type at high accuracy to assist orthopedic physicians in choosing the appropriate treatment.
In future, more data on photogrammetry images of the human back will be obtained from hospitals
throughout Malaysia. Currently, there are a few hospitals that actively provide scoliosis treatment.
More experiments will be conducted to develop AIS classification model using photogrammetry
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images by enhancing the integration of LBP-ESNN with the introduction of the feature reduction
algorithm to improve the current accuracy, as adopted in [59].
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