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Abstract: Facial expression recognition has been a hot topic for decades,
but high intraclass variation makes it challenging. To overcome intraclass
variation for visual recognition, we introduce a novel fusion methodology, in
which the proposed model first extract features followed by feature fusion.
Specifically, RestNet-50, VGG-19, and Inception-V3 is used to ensure feature
learning followed by feature fusion. Finally, the three feature extraction mod-
els are utilized using Ensemble Learning techniques for final expression clas-
sification. The representation learnt by the proposed methodology is robust
to occlusions and pose variations and offers promising accuracy. To evaluate
the efficiency of the proposed model, we use two wild benchmark datasets
Real-world Affective Faces Database (RAF-DB) and AffectNet for facial
expression recognition. The proposed model classifies the emotions into seven
different categories namely: happiness, anger, fear, disgust, sadness, surprise,
and neutral. Furthermore, the performance of the proposed model is also
compared with other algorithms focusing on the analysis of computational
cost, convergence and accuracy based on a standard problem specific to
classification applications.
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1 Introduction

As the major technique of processing for nonverbal intentions, Facial Expression Recognition
(FER) is a vital and vast branch of computer vision and machine learning, as well as one of the
symmetry subject areas. Emotions are unavoidable in human interactions. They can appear in various
ways and may not be visible to the naked eye. Therefore, we can use different tools to aid us in
the detection and recognition of them. Human emotion recognition is becoming more popular in a
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variety of domains, including medicine [1,2], human-machine interfaces [3], urban sound perception
[4], animation [5], diagnosis of autism spectrum disorder (ASD) in kids [6], and security [7,8] but the
recognition is not limited to these fields only. Several features that include EEG [9], facial expressions
[5,10,11], text [12], and speech are [7,13] used for the recognition of emotions. Face expression features
are one of the most famous methods among other methods of human recognition due to many reasons.
Some of the reasons are, i.e., (1) they are noticeable and visible, (2) large face datasets can be collected
easily by face expression features (3) they also contain many features for the recognition of emotions
[5,14,15]. By using deep learning, particularly CNN-based learnable image features [16] can also be
computed, learnt, and extracted to recognize facial expressions [17,18].

FER research will increasingly concentrate on in-the-wild spontaneous expressions as Deep
Learning technology advances and the need for applications grows in the age of big data. It is needful
to propose new FER solutions in complex environments, such as occlusion, multi-view, and multi-
objective. It is extremely important to give the classifier with the most relevant data under ideal
conditions to obtain a proper facial expression classification. In traditional FER techniques the first
stage is to pre-process the input image to accomplish this. Face detection is also a common pre-
processing step in most peer-reviewed papers. However, many facial expressions can be cued from
various regions of the human face, the region can be nose, mouth, cheeks, forehead, and eyes, while ears
and hairs play a minor role in detecting facial expressions [19]. As more expressions can be observed by
mouth and eyes, the computer vision deep learning model should emphasize these parts and overlook
the other details of the face.

The following are significant contributions in to the proposed work:

• A new features extraction block is developed, extracting robust invariant characteristics from
facial images using three state-of-the-art CNN models. The features extracted, through the
application of using the three models, are concatenated using a feature fusing method.

• Three deep learning classifiers are selected and trained to develop an accurate facial expression
predictive model. The three classifiers’ output is combined using an ensemble classification
approach by applying majority voting to upgrade the facial expression recognition accuracy.

• The results obtained from pre-trained models for feature extraction and ensemble classification
approach techniques are compared with other most presented methods.

• The experiments are carried out on two publicly available datasets, and it was discovered that
the suggested technique performs better in recognizing seven basic facial expressions.

2 Related Work

Zelier et al. [20] present a new visualization technique to understand the working of intermediate
feature layers along with the classifier’s operation. Paul Ekman et al. [21] identified the six primary
emotions, i.e., As the most typical study in this field of emotion recognition, the emotion of pleasure,
fear, hate, sorrow, disgust, and surprise (except neutral). Ekman et al. later used this concept to create
Facial Action Coding System (FACS) [22], which became the gold standard for emotion recognition
research. Neutral was later added to most human emotion recognition datasets; which results in seven
fundamental human emotions.

An approach of two-step machine learning was used in early work on emotion recognition.
The first stage involves extracting characteristics from the image, and the second involves applying
a classifier to detect emotions. Some of the most common use manual features for the recognition
of facial expressions are Gabor wavelets [23], Haar features [24], Texture features i.e., Local Binary
Pattern (LBP) [25], and Edge Histogram Descriptor [26,27]. The best sentiment is then assigned to
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the image by the classifier. These methods appear to work well on more specific datasets, but as
more challenging datasets (with more intra-class variation) become available, their limitations become
apparent. Figs. 1 and 2 had an image that we are referring to the reader, showing only the parts of
the face or the spectacles or the hand covered, to better appreciate some of the issues that images can
confront.

Based on deep education, various organizations have achieved huge successes in neural networks
and in deep learning, vision difficulties and image categorization, and have built facial expression
recognition (FERs). Khorrami et al. [17] demonstrated that CNN could achieve a higher accuracy
level for emotion recognition and on extended used zero-bias CNN’s Toronto Face Dataset (TFD)
and Cohn-Kanade dataset (CK+) for the achievement of state-of-the-art results. For modelling the
expression on humans’ faces, Clavel et al. [5] used deep learning to train a network and the other to
map human images to animated faces to create a novel model for human facial emotion recognition
of animated characters. Mollahosseini has suggested FER neural network with maximum layer of
pooling, two convolution layers, and four “initial” layers or subnetworks [10]. Liu [13] employs one
recurring network to combine the removal and classification of features, emphasizing the need for
input from the two components. The Boosted Deep Belief Network (BDBN) was used to deliver state
of the art CK+ and JAFFE accuracy.

On noisy labels of authentic images obtained through crowdsourcing, Barsoom et al. [25] used
a deep CNN. They employed ten taggers to re-enact each image to obtain acceptable precision,
by 10 tags in their dataset they used many costing functions for their Deep CNN. Han et al. [26]
to enhance spontaneous identification of face expression by increasing the discriminative neurons
that outperformed their best at the time technique introduced Incremental Boosting CNN (IB-
CNN). Meng [27] developed an identity-aware CNN that decreases variance in expression-related
information while learning identity by employing identity and expression sensitive contrast loss.
Finally, Fernandez et al. devised a network design called an end-to-end network architecture with
a focus model [28].

Want et al. [29] introduced a simple and effective self-repair technique to eliminate uncertainty and
avoid uncertain face images (due to labelling noise) from overfitting the deeper Self Cure Network
(SCN). In two dimensions, SCN minimizes uncertainty: (1) by the employment of a self-attention
mechanism to weight each sample of workouts on tiny batches with rank regularization; and (2) by a
meticulous rebellion process to alter these samples in the lowest rank set. An algorithm was developed
to recognize facial expressions by Wang et al. That is used for the occlusion changes and the resistance
of pose in the real world [30]. To capture the importance of pose variant FER and facial regions in
occlusion, they proposed a new network called Regional Attention Network (RAN). Some of the other
works for the recognition of facial expressions are deep self-attention networks for the recognition of
face emotion [31], multi-attention networks for the recognition of facial expression [32] and a new
review on emotion recognition using facial appearance [33]. In [34], a lightweight CNN is developed
that may effectively handle the problem of model overfitting caused by insufficient data while also
utilizing transfer learning.

All the works that are mentioned above have improved emotion recognition significantly com-
pared to previous work. Still, none of these works contains a simple method for identifying essential
face regions to detect emotions. This research proposes a new framework based on a further
attentiveness-coevolutionary neural network to concentrate on crucial facial areas to tackle this
challenge.
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3 Materials and Methods
3.1 Datasets and Pre-Processing

The Real-world Affective Faces Database (RAF-DB) [35] and AffectNet [36] are among the
benchmark datasets used in this work for facial expression recognition. Let’s take a short look at
these databases before we get into the findings.

3.1.1 RAF-DB

RAF-DB is a publicly available dataset. The collection contains 30,000 pictures with a resolution
of 48 by 48 pixels, the majority of which were taken in the field. Each image has been given its own
label by nearly 40 annotators using crowdsourced annotation. Only images exhibiting basic emotions
were employed in our study, with 12,271 images used as training data and 3,068 images used as test
data. Six images are given in Fig. 1 from the dataset of RAF-DB.

Figure 1: For example, six images from the RAF-DB are shown

3.1.2 AffectNet

AffectNet is the world’s biggest publicly available collection of huma facial expressions, arousal,
and valence, which allow researchers to study automated facial expression identification in two
separate emotion models. The version of the AffectNet dataset we used for our experiments contains
291,651 training samples and 4,000 tests samples. They manually annotated the images with eight
different facial expressions Neutral, Happy, Surprise, Sad, Fear Disgust and Anger. These images are
cropped and resized to 224 × 224 pixels. Fig. 2 showed four images from the dataset.

Figure 2: Six images from the AffectNet dataset as examples

3.2 Methodology

The underlying strategy of our study is briefly outlined in this part, followed by an explanation of
DCNN models. Following that, we present the decision fusion strategies that we have implemented. As
shown in Fig. 3, the basic concept of our study is identical to any traditional human Facial Expression
Recognition technique. Direct training of deep networks on facial datasets is prone to overfitting.

The suggested methodology’s workflow consists of four steps: feature extraction using three state-
of-the-art CNN models, feature fusing, ensemble learning model, and finally applying the majority
voting scheme to the output of three classifiers. Two benchmark datasets of seven classes each are
loaded to the system, partitioning into two sub-data, i.e., trainset and validation. In the first step
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of the proposed methodology, three state-of-the-art CNN architectures are used to extract robust
and non-invariant features from the RGB images, i.e., Inception-V3, VGG-19, and Resnet50 extract
features from the training set image and validation set images. The second stage entails, feature fusion
is introduced to fully describe the rich internal information of image features from each model. In the
third stage for the emotion’s recognition task, the deep ensemble learning model is developed using
three state-of-the-art classifiers, i.e., CNN, Long short-term memory (LSTM), and Gated Recurrent
Unit (GRU). In the third and final stages, a majority voting scheme is applied to the output of three
classifiers. The output with maximum is selected as the final prediction of the proposed emotion
recognition model. A detailed explanation of each stage in the proposed model is described in the
following subsections.

Figure 3: Our proposed facial expression recognition model

3.3 Pre-Trained Convolutional Network Architectures

Below is a quick description of the three state-of-the-art DCNN models for deep feature extraction
that were chosen.

3.3.1 VGG-19

It is created by increasing the depth of the available CNN model to sixteen or nineteen, as
illustrated in Fig. 4. The visual geometry group (VGG) proposed VGGNet architecture for ILSVRC
2014 and won the challenge [37]. VGG-19’s architecture contains 144 million parameters, while VGG-
16 has 138 million. There are 13 convolutional layers in the VGG-16, five max-pooling layers (22),
and two fully-connected layers. ReLU activation is used in all convolution layers, while dropout
regularization is used in fully connected layers. We retrieved deep features from the final fully-
connected layers in our research.

3.3.2 ResNet-50

It is a deep convolutional network that solves the problem of vanishing gradients by identifying
convolutional blocks. As the gradient is back-propagated via a deep network, it may become incredibly
small. The identity block solves the problem of vanishing gradient by using shortcut connections,
which are another possible way for the gradient to travel. ResNet with 50 convolutions in five stages
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would be used in our methodology, as shown in Fig. 5. Each stage featured a convolutional and an
identity block, with three convolutions in each block, with 1 × 1, 3 × 3, and 1 × 1 filters, with the
1 × 1 kernel responsible for lowering and then increasing dimensions. For bottleneck architectures,
parameter-free identity shortcuts are especially crucial. The model size along with time complexity are
doubled when the identity shortcut is substituted with the projection, because the shortcut connects
the two high-dimensional endpoints. As a result, identity shortcuts lead to more efficient bottleneck
design models [38].

Figure 4: Architecture of VGG-16 and VGG-19

Figure 5: Basic ResNet-18 and ResNet-50 architecture

3.3.3 Inception-V3

Fig. 6 shows Inception V3, it is a deep neural network having 42 layers which minimized emblem-
atic bottlenecks. Inception V3 had five stem convolutional layers which consists of a type-A reduction
block, three type-A Inception blocks, a reduction block, four type-B Inception blocks, two type-C
Inception blocks, an average pooling layer, and lastly the fully connected network. Factorization was
considered to minimize the size of a deep neural network. To minimize overfitting, several factorization
modules were inserted in the convolutional layers to lower the size of the model. The performance of
neural networks was better when convolutions did not drastically reduce the size of the input, causing
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information loss. Splitting 5×5 convolutions into two 3×3 convolutions was one factorization (type-
A inception block). Furthermore, factorization of the n × n filter to a mixture of 1 × n and n × 1
asymmetric convolutions (type-B inception block) was discovered to significantly reduce computing
costs. It has been discovered that while on early layers, this factorization does not function well, this
performs admirably on middle grid sizes [39]. The high-dimensional representations were the last
factorization considered, which involved replacing two of the 3 × 3 convolutions with asymmetric
1 × 3 and 3 × 1 convolutions.

Figure 6: Basic inception-V3 architecture

3.3.4 Feature Fusing

Feature fusion allows us to fully describe the rich internal information of image features from
each model, and after dimensionality reduction, we can obtain compact representations of integrated
features, resulting in lower computational complexity and better face detection performance in an
unconstrained environment [40]. After, all the feature sets are combined to generate a new one.

Let the three features retrieved from VGG19, ResNet-50, and Inception V3 be X ,Y , and Z,
respectively. Let � be the pattern sample space, and ϕ be a randomly selected sample in �. In addition,
α, β, and γ are the feature vectors of ϕ, where α ε X , β ε Y and γ ε Z respectively.

A combined feature’s definition can be found in Eq. (1), where δ represent the serial combined
feature. If the dimensions of α, β and γ are n1, n2 and n3respectively, then the dimension of δ is given
as n1 + n2 + n3.

δ =
⎡
⎣

α

β

γ

⎤
⎦ (1)

The complex vector given in Eq. (2) can be used to define the parallel feature fusion approach of
ϕ, where j and k denote imaginary units. In case the dimensions of α, β, and γ are not equal, lower-
dimensional features should be padded with zero’s, such that before being joined, all of the features
have the same dimension.

δ = α + jβ + kγ (2)

In the proposed technique, we adopt a weighted serial feature fusion methodology to integrate
three feature vectors, which alters the serial feature fusion strategy. After normalization, the global,
appearance, and texture feature vectors are denoted by the letters f 1, f 2, and f 3, respectively. After
then, the fusion feature F can be obtained, as shown in Eq. (3), where the weights of f1, f2 and f3 are
w1, w2 and w3 respectively.
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F =
⎡
⎣

w1f1

w2f2

w3f3

⎤
⎦ (3)

The single recognition rate of f1, f2 and f3, which are indicated by A1, A2 and A3, respectively,
determines the values of weights w1, w2 and w3. We calculate the values of w1, w2 and w3 using Eq. (4)
to Eq. (6).

w1 = A1

A1 + A2 + A3

(4)

w2 = A2

A1 + A2 + A3

(5)

w3 = A3

A1 + A2 + A3

(6)

3.4 Deep Ensemble Learning Model

Ensemble learning techniques are proposed to get the final fusion predictions [41,42]. For this
purpose, three state-of-the-art classifiers, i.e., CNN, LSTM, and GRU, are used. Fig. 7 depicts the
suggested method’s deep ensemble module’s detailed operation.

Figure 7: Ensemble learning module

3.4.1 CNN with Softmax Classifier

The CNN model has four layers where; the first layer is features input layers, which are connected
to a fully connected layer; similarly, the Softmax layer relates a fully connected and classification
output layer [43,44]. The architecture used in this paper can be shown in Fig. 8.



CMC, 2022, vol.73, no.3 4473

Figure 8: CNN with softmax classifier

3.4.2 LSTM

The second model in the deep ensemble learning module is the LSTM classifier with layers
{‘Sequence Input’, ‘LSTM Layer’, ‘Fully Connected’, ‘Softmax’, ‘Classification’} as shown in Fig. 9.

Figure 9: LSTM classifier layers

3.4.3 GRU

In contrast, the last model in the module is the GRU classifier in which the layer arrangement is
as shown in Fig. 10, {‘Sequence Input’, ‘GRU Layer’, ‘Fully Connected’, ‘Softmax’, ‘Classification’}.

Figure 10: GRU classifier layers

3.4.4 Voting

A majority voting scheme is applied to the output of three classifiers. We select the best flavor
(plurality voting) out of three from the majority voting. In this flavor, the output with maximum is
selected as the final prediction, which is emotion recognition in our proposed model. A detailed and
reasonable examination of the majority voting procedure is employed in the proposed methodology.
Mathematically plurality voting can be defined by the following equation,

F∑
f =1

df ,c∗ = maxc

F∑
f =1

df ,c (7)
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where F is the number of classifiers and C represents the number of classes. Here in our case, f = 1,2,
and 3 are CNN Softmax classifier, LSTM, and GRU, respectively, while C = 0,1 . . . 6 represents seven
classes in each classifier, i.e., Anger, Happiness, Fear, Disgust, Surprise, Sadness, and Neutral.

4 Experiments and Results

This part of the article will go through how the proposed work was implemented, and the results
produced employing the proposed method. Furthermore, using state-of-the-art FER methodologies
with full comparative study of the suggested approach is carried out, analyzing both quantitative and
qualitative assessments. Two benchmark datasets are used, and each database in the proposed system
is split into training and testing sets. MATLAB R2021a was utilized for all simulations in the suggested
technique which was running on a work station PC with dual xeon CPUs, a 48 GB DDR4 Ram and
Invidia 2080Ti 11GB GPU on windows 10 operating system. The detailed explanation of each of
the two databases used in the experiments i.e., RAF and AffectNet, are described in the subsequent
sections.

4.1 Datasets

We appraised our suggested framework on the two well-known FER datasets, RAF-DB and
AffectNet, to verify the proposed facial expression recognition technique.

4.2 Splitting Data

The dataset is split into two parts: the initial phase utilizes the training data set, which has a size of
70%, and the following step uses the test data set, which has 30% (holdout splitting). We have carried
out several performance studies using the most widely used deep learning models in the industry.

4.3 Evaluation Metrics

We compared and assessed the performance in automatically identifying facial expressions in
terms of efficacy and efficiency.

4.3.1 Effectiveness Metrics

Formulas (8)–(11) represent the Accuracy (A), Precision (P), Recall (R), and F1, respectively, to
examine the effectiveness of the suggested approach.

A = TP + TN
TP + TP + FP + FN

(8)

P = TP
TP + FP

(9)

R = TP
TP + FN

(10)

F1 = 2 × P × R
P + R

(11)

4.3.2 Efficiency Metrics

We also consider execution time for comparing the presented methodology using three different
classifiers. In the coming section, we elaborate on different experiments and the results on said datasets.
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4.4 Results
4.4.1 Experiments on RAF Dataset

Experiments on the RAF dataset are performed using holdout (70/30%) splitting. 12,271 (70%)
images are used as a training set in the first step, and 3068 (30%) images are used for testing. Three
state-of-the-art classifiers, i.e., CNN, LSTM, and GRU, are trained on a 70% trainset consisting
of concatenated CNN features and their labels. For performance analysis of the three classifiers,
the models are evaluated using the 30% image features data. A detailed quantitative analysis is
performed using accuracy, precision, recall, and f-measure, as performance evaluation metrics. An
average accuracy achieved by the CNN model on the RAF dataset is 91%, the accuracy achieved by
LSTM is 94%, and similarly, the GRU accuracy is 91%. The fourth accuracy is the output of three
classifiers based on ensemble learning and a voting scheme. After applying the majority voting on the
three predicted labels vector, a new label vector is created, consisting of deep ensemble classification
results. The accuracy achieved by the deep ensemble model is 91.66%.

Tab. 1 illustrates the model’s accuracy achieved by the proposed model for the RAF dataset.
Figs. 11 to 13 represents the confusion matrix for the CNN Softmax, LSTM, and GRU models and
Figs. 14 to 16 represent the accuracy/loss graphs for RAF Dataset.

Table 1: Obtained accuracies for RAF dataset

Classifier model Accuracy

Softmax classifier 91%
LSTM 94%
GRU 91%

Figure 11: CNN Softmax Classifier
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Figure 12: LSTM Classifier

Figure 13: GRU Classifier
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Figure 14: CNN Softmax Classifier

Figure 15: LSTM Classifier

Figure 16: GRU Classifier
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Figs. 15–17 demonstrate the training accuracy and loss curves achieved using this method after
training 100 epochs for CNN Softmax and 120 epochs for LSTM and GRU. The accuracy curve is
observed, and the training and testing accuracy of the model are stable at more than 91 percent after
100 epochs for CNN Softmax, and steady at 94 percent and 91 percent for LSTM and GRU after 120
epochs, respectively, showing that the model has strong classification results.

4.4.2 Ensemble Classification Results for RAF Dataset

After applying the majority voting on the three predicted labels vector, a new label vector is
created, consisting of deep ensemble classification results. The confusion matrix obtained for the
ensemble classifier is also shown in Fig. 17. The two most perplexing expressions are Disgust and
Fear, with Surprise being readily confused with Fear owing to facial similarities, and Disgust being
mostly confused with Neutral due to the subtlety of the face. The confusion matrix demonstrates that
the suggested method’s overall performance is excellent.

Figure 17: Ensemble confusion matrix for RAF dataset

Tab. 2 provides the effectiveness assessment findings from ensemble classifier models in terms of
accuracy, precision, recall, and F-1 score for the basic seven emotions.

Table 2: Accuracy, precision, recall, and f1 score for the RAF dataset

Emotions Accuracy (A) Precision (P) Recall (R) F1-score

Happiness 94.88% 0.9 0.96 0.93
Anger 98.07% 0.96 0.75 0.84
Fear 98.40% 0.9 0.61 0.73
Disgust 98.27% 0.91 0.79 0.84

(Continued)
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Table 2: Continued
Emotions Accuracy (A) Precision (P) Recall (R) F1-score

Sadness 97.32% 0.88 0.95 0.91
Surprise 97.91% 0.93 0.88 0.91
Neutral 98.37% 0.95 0.98 0.96

4.4.3 Experiments of AffectNet Dataset

The AffectNet dataset was subjected to the same procedures as the RAF dataset. The only
difference is the number of images utilized in the first step is that 291,651 images are used for training,
while 4000 images are used for testing. CNN, LSTM, and GRU are three state-of-the-art classifiers that
are trained on a 70% trainset of concatenated CNN features and labels. The models are assessed using
the 30% image features data for performance analysis of the three classifiers. Various performance
assessment indicators, including accuracy, precision, recall, and f-measure, are used to conduct a
complete quantitative examination. On the AffectNet dataset, the CNN model has an average accuracy
of 89%, LSTM has an accuracy of 65%, and GRU has an accuracy of 61%, as clearly mentioned in
Tab. 3. The output of three classifiers based on ensemble learning and a voting mechanism yields the
fourth accuracy. Following the application of majority voting to the three predicted labels vectors, a
new label vector including deep ensemble classification results is formed. The deep ensemble model
achieves a level of accuracy of 71.6%. Figs. 18 to 20 represents the confusion matrix for the CNN
Softmax, LSTM, and GRU models for AffectNet Dataset.

Figure 18: CNN softmax classifier
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Figure 19: LSTM classifier

Figure 20: GRU classifier

Table 3: Obtained accuracies for AffectNet dataset

Classifier model Accuracy

Softmax classifier 89%
LSTM 65%
GRU 61%
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Fig. 21 shows the plot for training and validation accuracy/loss phase for the CNN softmax
model. The accuracy obtained is 89%. Similarly, training and validation graph for LSTM classifier are
shown in Fig. 22. It is proven in Fig. 23 that the loss values for GRU Classifier converge to 0.0047 and
0.0299, in the training and validation loss curves respectively. Furthermore, the training and validation
accuracy scores converge to 60.8 percent and 61 percent, respectively. The loss curve drops quickly
at first and then progressively saturates. Accuracy tends to saturate beyond a particular epoch, thus
increasing the epoch no longer improves accuracy.

Figure 21: CNN softmax classifier

Figure 22: LSTM classifier

4.4.4 Ensemble Classification Results for AffectNet Dataset

Following the application of majority voting to the three predicted labels vectors, a new label
vector including deep ensemble classification results is formed. Fig. 24 also depicts the ensemble
classifier’s confusion matrix of prediction results of seven basic emotions for the AffectNet dataset. It
can be seen that our methodology consistently improves the categories of “surprise,” “happiness,” and
“sadness.”
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Figure 23: GRU Classifier

Figure 24: Ensemble confusion matrix for AffectNet dataset

Tab. 4 provides thorough information on the classification performance of ensemble classifier
model for individual expression on AffectNet dataset.

Table 4: Accuracy, precision, recall, and f1 score for the AffectNet dataset

Emotions Accuracy (A) Precision (P) Recall (R) F1-score

Happiness 91.71% 0.72 0.71 0.71
Anger 91.86% 0.71 0.72 0.71

(Continued)
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Table 4: Continued
Emotions Accuracy (A) Precision (P) Recall (R) F1-score

Fear 92.06% 0.73 0.72 0.72
Disgust 92.14% 0.73 0.72 0.73
Sadness 91.57% 0.68 0.72 0.7
Surprise 92.14% 0.74 0.72 0.73
Neutral 92.57% 0.74 0.74 0.74

4.4.5 Comparison of Accuracy with different Methods

Tabs. 5 and 6 depicts the accuracy achieved by our model, when compared to the most powerful
competitive approaches. One or two datasets from RAF and AffectNet, respectively, are used to
verify most of the presented procedures. The highest new state-of-the-art results were achieved by
the proposed method, which were 91.66% and 72.06% on the test for RAF dataset and validation on
AffectNet dataset respectively.

Table 5: Test set accuracy on RAF dataset

Method Average accuracy

ResiDen [45] 76.54%
ResNet-PL [46] 81.97%
PG-CNN [47] 83.27%
Center Loss [48] 83.68%
DLP-CNN [35] 84.13%
ALT [49] 84.50%
gACNN [50] 85.07%
OADN [51] 87.16%
Proposed model 91.66%

Table 6: Validation set accuracy on AffectNet dataset

Method Average accuracy

VGG16 [37] 51.11%
GAN-Inpainting [52] 52.97%
DLP-CNN [35] 54.47%
PG-CNN [47] 55.33%
ResNet-PL [46] 56.42%
gACNN [50] 58.78%
OADNN [51] 64.06%
Proposed model 72.06%
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5 Conclusion

Aiming at the research problem of human facial emotion recognition, we propose a recognition
method based on two wild datasets for facial expression recognition. The varied model structures
of RestNet50, VGG-19, and Inception-V3 ensure that feature learning followed by feature fusion
is diverse. The complementarity of the three feature extraction models was utilized using Ensemble
Learning techniques for final expression classification. Based on the performance analysis of pre-
trained deep networks, the proposed deep ensemble model with a combination of CNN Softmax,
LSTM, and GRU have produced a better accuracy of 91.66% and 72.06% presented in section 4.4.2
and 4.4.3 for RAF and AffectNet Dataset, respectively. The findings demonstrate that compared to
the classic technique for FER, the division of FER into several phases, namely feature extraction by
state-of-the-art CNN models, feature fusing, classification with deep ensemble model, and then using
the techniques of Majority Voting increases the facial expression recognition effect significantly and
improve the accuracy rate even more.

We believe the deeper model and inclusion of vision modality in the proposed scheme will further
enhance the efficiency of the proposed model.
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