
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.027974

Article

Truncation and Rounding-Based Scalable Approximate Multiplier Design for
Computer Imaging Applications

S. Rooban1,*, A. Yamini Naga Ratnam1, M. V. S. Ramprasad2, N. Subbulakshmi3 and
R. Uma Mageswari4

1Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram,
Guntur, 522502, Andhra Pradesh, India

2Department of EECE, GITAM (Deemed to be University), Visakhapatnam, AP, India
3Department of Electronics and Communication Engineering, Francis Xavier Engineering College, Tirunelveli, 627003,

Tamil Nadu, India
4Department of Computer Science and Engineering, Vardhaman College of Engineering, Shamshabad, Hyderabad,

501218, Telangana, India
*Corresponding Author: S. Rooban. Email: sroban123@gmail.com

Received: 30 January 2022; Accepted: 12 April 2022

Abstract: Advanced technology used for arithmetic computing application,
comprises greater number of approximate multipliers and approximate adders.
Truncation and Rounding-based Scalable Approximate Multiplier (TRSAM)
distinguish a variety of modes based on height (h) and truncation (t) as
TRSAM (h, t) in the architecture. This TRSAM operation produces higher
absolute error in Least Significant Bit (LSB) data shift unit. A new scalable
approximate multiplier approach that uses truncation and rounding TRSAM
(3, 7) is proposed to increase the multiplier accuracy. With the help of foremost
one bit architecture, the proposed scalable approximate multiplier approach
reduces the partial products. The proposed approximate TRSAM multiplier
architecture gives better results in terms of area, delay, and power. The
accuracy of 95.2% and the energy utilization of 24.6 nJ is observed in the
proposed multiplier design. The proposed approach shows 0.11%, 0.23%,
and 0.24% less Mean Absolute Relative Error (MARE) when compared with
the existing approach for the input of 8-bit, 16-bit, and 32-bit respectively.
It also shows 0.13%, 0.19%, and 0.2% less Variance of Absolute Relative
Error (VARE) when compared with the existing approach for the input of
8-bit, 16-bit, and 32-bit respectively. The proposed approach is implemented
with Field-Programmable Gate Array (FPGA) and shows the delay of 3.640,
6.481, 12.505, 22.572, and 36.893 ns for the input of 8-bit, 16-bit, 32-bit,
64-bit, and 128-bit respectively. The proposed approach is applied in digital
filters design which shows the Peak-Signal-to-Noise Ratio (PSNR) of 25.05 dB
and Structural Similarity Index Measure (SSIM) of 0.98 with 393 pJ energy
consumptions when used in image application. The proposed approach is
simulated with Xilinx and MATLAB and implemented with FPGA.

http://dx.doi.org/10.32604/cmc.2022.027974
mailto:sroban123@gmail.com


5170 CMC, 2022, vol.73, no.3

Keywords: Truncation rounding based scalable approximate multiplier; fore-
most one detector; field programmable gate array; peak-signal-to-noise-ratio;
structural similarity index measure

1 Introduction

Digital system requires binary arithmetic operations to realize any boolean function. Adders
are the key components in binary arithmetic, and they are used in all basic operations such as
addition, subtraction, multiplication, and division. Adders are used to implement increment, decre-
ment, and other similar operations in addition to arithmetic operations. As a result, at the micro-
architecture level of abstraction, adders are considered as the fundamental building blocks in digital
systems, particularly for data-intensive applications design. In computer arithmetic, addition and
multiplication are the commonly used operations. For addition, full-adder cells are investigated for
approximate computation. Approximate circuits are preferred over exact circuits because of their
reliability, in most of the cases approximate circuits are energy efficient also occupying less Look-Up
tables (LUT’s) [1]. In [2], compares various adders and provides several new measures for assessing
approximate and probabilistic adders. When two numbers of equal bit size are multiplied, the size of
the result is twice the bit size of the multiplicand or multiplier. Finite Impulse Response (FIR) filtering,
Fast Fourier Transform (FFT), and Discrete Cosine Transform (DCT) are used in digital signal
processing applications, and they are heavily relying on arithmetic operations. Arithmetic operations
like multiplication and division on binary number system are computationally demanding reduced
area, latency, and power. The fixed-point number system is suffered with overflow and scaling due to
its lack of precision, but the floating-point number system offers superior precision and scalability. In
[3], a method is proposed to derive an analytical correction term for reducing the error. A truncated
multiplication approach is used in majority of these designs. Power consumption is one of the most
significant qualities for any electronic equipment, particularly in battery-powered hand-held gadgets.

In [4], a static truncation-based technique that approximates the outcome by using the higher,
medium, or lower portions of the inputs. These techniques are with the drawbacks that they are
not easily scale to larger input widths, and their benefits are diminishing as the input size expands.
Rounding of operands to the nearest exponent in both signed and unsigned multiplications are
supported in [5], but hardware implementation is quite complex. In [6–8], to achieve high performance,
the core operations of the arithmetic processor, such as addition, and multiplication are critical. For
approximation computing, addition is intensively explored for power usage and latency reduction,
these techniques can be used in image processing application. In [9], symmetric bit stacking approach
multiplication is made easier by reducing the complexity of the wallace tree structure. A 4:2 compressor
with a low supply voltage is proposed in [10–12], this design achieves lower delay with high energy
efficiency, but worse normalized mean error.

In [13], Fin Field Effect Transistor (Fin-FET) is used to implement the ultra-efficient [14],
approximate 4:2 compressor at the transistor level. Reduced number of transistors shows low power,
low propagation delay and a shorter critical path avoids the capacitance effects. In [15], approximate
booth multiplier models with radix-4 modified booth encoding technique is proposed. Compared
with the existing approximate booth multipliers, shows significant increase in accuracy and hardware
performance error rate when the approximation factor increased. For 8-Bit use, three new approximate
4:2 multiplier compressors are designed in [16]. In addition, an Error Correction Module (ECM)
is included to improve the error performance in 4:2 compressors. The number of outputs of the
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approximate 4:2 compressor is reduced to one, and the energy efficiency is enhanced. In [17], new
metrics including error distance (ED), mean error distance (MED) and Normalized Error Distance
(NED) are proposed for evaluating the design of approximate adders.

In [18], a configurable architecture for implementing the FIR filter with low complexity is
proposed by using Constant Shifts Method (CSM) and Programmable Shift Method (PSM). This
approach is the combination of Shift and Add unit, Multiplexer unit, Final shifter unit, and Final
adder unit. The proposed methodology in [19], round off the operands to the nearest power of two. This
method works for both signed and unsigned augmentations and offer three approximate multiplier
executions, one for unsigned tasks and two for marked tasks. The Truncation and Rounding based
Scalable Approximate Multiplier (TOSAM) in [20], uses versatile approximated multiplier that reduce
the number of partial products by truncating all the operands based on their leading one-bit location.
In this structure, fixed-width result shows significant improvements in energy utilization and area when
compared to other multipliers. The input operands are modified to the nearest odd number to improve
the complete exactness. The method proposed in [21], relies on mathematical reasoning to separate the
polynomial of the multiplier.

The above discussed methods determine the correctness by the values of t and h parameters, where
the width of the input operands having no major impact. As a result, the proposed multiplier has a
scalability characteristic. The following are the main contributions of the proposed work.

1. A new scalable approximate multiplier using truncation and rounding technique is proposed
to increase the multiplier accuracy.

2. The combinations of different (h, t) parameters are examined in order to find a balance between
accuracy, delay, and energy usage.

3. A hardware implementation of the truncation and rounding-based scalable approximate
multiplier (TRSAM) for both signed and unsigned operations are presented.

The remainder of this work is organized as follows. Section 2 introduces the proposed approximate
multiplier and its hardware implementation. Section 3 compares the results along with error analysis.
The proposed approximate multiplier is used in image [6,7], processing applications, the parameters
delay, area, and power are also analyzed in Section 4. Section 5 concludes this article.

2 Proposed Multiplier Approach

The proposed approach is an updated version of [20]. The proposed approximate multiplier
performs the rounding and truncation at the inputs which reduces the error rate and the variation
in MARE and VARE values to improve the overall circuit performance. In the proposed approach the
LSB’s are modified in such a way, so that the approximate value is nearly equal to the accurate value.
TRSAM modes based on height (h) and truncation (t) such as (h, t) in the architecture TRSAM (0, 2),
TRSAM (0, 3), TRSAM (1, 5), TRSAM (2, 6), TRSAM (3, 7), TRSAM (4, 8) TRSAM (5, 9). Fig. 1
shows the proposed approximate multiplier for implementing various combinations of (h, t) along
with bit lengths. There are few changes in the architecture and algorithm for different combinations
of (h, t).
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Figure 1: Block diagram of the proposed approximate multiplier

The proposed approximate multiplier consists of Approximate absolute unit (AAU), Foremost
one Detector bit (FOD), Truncation Unit (TU), Arithmetic Unit (AU), Shift Unit (SU) and Operand
Detector Unit (ODU). The AAU is applied with the inputs of A and B. If the input operand is negative,
the results are inverted; if the input operand is positive, the results are unchanged. This AAU can be
removed for unsigned multipliers. The operation in AAU is explained in detail through Fig. 2. The
output of AAU is denoted as (YA)APX and (YB)APX. FOD unit takes the input (YA)APX and (YB)APX,
values. By using these values, kA and kB are detected, which detects position of the bit value with ‘1’
from the MSB. These kA and kB are responsible for shifting operation. TU inputs are kA, kB, (YA)APX,
and (YB)APX. The approximation inputs are trimmed and converted to a fixed width operands and they
occupy the foremost position of the input operands. The output is obtained from the truncation unit
(YA)t and (YB)t are given as inputs to the arithmetic unit. The terms (YA)t and (YB)t acquired from the
truncated unit which is represented in Eq. (1).

TU = 10000000000 + ((YA)t + (YB)t + (YA)APX(YB)APX) (1)

The arithmetic unit performs addition on the truncated fixed width operands ((YA)t + (YB)t) and
multiply the approximation inputs ((YA)APX (YB)APX), result is enlarged to one bit by concatenating ‘1’
at the MSB. The MSBs of (YA)APX and (YB)APX are identical to those of (YA)t and (YB)t. The adders
and logic AND gates in the Arithmetic Unit use power gating, based on the operating mode. In TU,
the arithmetic unit’s output is left shifted by kA + kB times (kA and kB are the leading one-bit values
of A and B). The term (1000000000 + (YA)t + (YB)t + (YA)APX (YB)APX) is obtained by performing
the shifting operation. The maximum possible truncation ‘t’ and rounding ‘h’ values are (5, 9) where
h = 5 and t = 9.The output operand sign is determined by the sign of the input operands, and if at
least one of the inputs is zero, the output is set to zero. The AAU is eliminated, by the unsigned input
operands if ODU remains constant, in other words for unsigned operands this AAU is not producing
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any output, for signed operands. There are three cases for verifying the output they are i) both the
inputs are positive, ii) both inputs are negative and iii) either one of the inputs is positive.

Figure 2: Example of 16-bit TRSAM (3, 7) (Case 1: A, B are positive)

Fig. 2 is the example of 16-bit TRSAM approximate multiplier for the parameter (3, 7), the
rounding value ‘h’ is 3 and truncation value ‘t’ is 7. Considering A and B both are positive inputs,
assume A as 0010 1101 1111 0001 (binary of 11761) and B as 0000 1001 1011 0010 (binary of 2482). The
Foremost one detector unit (FOD) represents KA and KB values are 13 and 11 respectively. The values
of (YA)APX = 0111 and (YB)APX = 0011. These (YA)APX and (YB)APX are multiplied and gives the product
value as 0001 0101. The values of (YA)tare seven places from the KA and the LSB bit is considered
as 0, the (YA)t = 0110 1110 and in similar way (YB)t = 0011 0110. Next the product value of (YA)APX

and (YB)APX are to be added with the terms (YA)t and (YB)t Eq. (1), represents the product value. The
computed product value is 01 1011 1001. Here the shifting is based upon the addition of KA and KB

values. The final output is 0000 0001 1011 1001 1111 1111 1111 1111 (binary of 28 966 911), so the
value is (A × B)Proposed = 28 966 911, where the exact value is (A × B)Exact = 29 190 802, the difference
value is 223 891.

Fig. 3 follows the above algorithm, considering A is positive, and B is negative inputs, assume the
value of A as 0000 0001 1100 0000 (binary of 448) and B as 1100 0000 0000 0000 (binary of −16384).
Here the KA and KB values are 8 and 15 respectively. The values (YA)APX = 1101 and (YB)APX = 1001.
These (YA)APX and (YB)APX are multiplied and gives the product value as 0111 0101. The values of
(YA)t = 1100 0000, similarly (YB)t = 1000 0000. The Eq. (1), represents the product value as 10 1011
0101. Base on shifting the final output is 1111 1111 0101 1010 1111 1111 1111 1111 (binary of −10
813 441), so the value is (A × B)Proposed = −10 813 441, where the exact value is (A × B)Exact = −7 340
032, the difference value is 3 473 409.
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Figure 3: Example of 16-bit TRSAM (3, 7) (Case II: A is positive, and B is negative)

Figure 4: Example of 16-bit TRSAM (3, 7) (Case III: A, B are negative)

Fig. 4 is the example of 16-bit TRSAM approximate multiplier for the parameter (3, 7). Consider-
ing A and B are negative inputs, assume the value of A as 1111 1111 1100 0110 (binary of −58) and B
as 1111 1111 1110 1010 (binary of −22). Here the KA and KB values 15 and 15 respectively. The values
(YA)APX = 1111 and (YB)APX = 1111. These (YA)APX and (YB)APX are multiplied and gives the product
value as 1110 0001. The values (YA)tis considered to be seven places from the KA and the LSB bit is
considered as 0 in this case, so the (YA)t = 1111 1110 and in similar way (YB)t = 1111 1110. Next the
product value of (YA)APX and (YB)APX are to be added with the terms (YA)t and (YB)t and the Eq. (1),
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represents the final product the final value is 10 0001 1101. The final output is 0000 0000 0000 0000
0000 0010 0001 1101 (binary of 541), so the value is (A × B)Proposed = 541, where the exact value is (A ×
B)Exact = 1276, the difference value is 735. The existed approach having more difference value also the
error rate is more which is explained in [20]. We cannot say that the accuracy value is same or not for
all the combinations, it depends on the parameters of (h, t).

3 Performance Analysis

The proposed approximate multiplier is simulated in Xilinx Vivado. Several error metrics are used
in approximate computing to quantify the errors and accuracy. Error Distance (ED) is defined as the
arithmetic distance between a generated output and the correct one for every input. By considering
the average impact of many inputs and the normalizing of multiple-bit adders, the mean error distance
(MED) and the normalized error distance (NED) are determined. Because the NED is nearly invariant
with the size of an implementation, it is used to examine the reliability of the design.

Error Rate (ER): The percentage of approximate outputs among all outputs.

Error Distance (ED): The arithmetic difference between the exact and approximate result.

Mean Error Distance (MED): The average of EDs for a set of outputs obtained by applying a set
of inputs.

Relative Error Distance (RED): The ratio of ED to exact result.

Mean Relative Error Distance (MRED): The average value of all possible relative error distance
(RED).

Normalized Mean Error Distance (NMED): The normalization of mean error distance (MED) by
the maximum output of the accurate design. This metric is used for comparing circuit of different
sizes.

maxARE is specified as maximum absolute relative error (considered from relative error RE)

MRE is specified as mean relative error

MARE is specified as mean absolute relative error

VARE is specified as variance of absolute relative error

NED is specified as normalized error distance

max_NED is specified as maximum normalized error distance

Tab. 1 shows the MARE and the variance of ARE (VARE) vs. the width of the unsigned multipliers
to demonstrate the scalability of the existing and the proposed approach. From the results it is
identified that the multiplier’s accuracy is greatly influenced by the h value (bit length of the multiplier).
It is observed that increasing h by one, virtually halves the MARE value. The proposed approximation
multiplier is implemented for 8-bit, 16-bit, 32-bit, 64-bit and 128-bits with the rounding and truncation
values of (3, 7). The simulated results are shown in Figs. 5–9. From the results it is observed that the
proposed approach gives better results than the earlier approaches.
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Table 1: MARE and VARE of the approximate multiplier with different widths and different h, t values

TOSAM architecture
(h, t)

8-bit [20] 16-bit [20] 32-bit [20]

MARE (%) VARE (%) MARE (%) VARE (%) MARE (%) VARE (%)

(0, 2) 10.12 43.73 10.91 46.55 10.90 46.63
(0, 3) 7.66 28.23 7.60 28.78 7.61 28.81
(1, 5) 4.06 8.38 3.95 7.61 3.95 7.60
(2, 6) 2.11 2.29 2.06 2.00 2.06 2.00
(3, 7) 1.12 0.65 1.05 0.51 1.05 0.52
Proposed (3, 7) 1.04 0.52 0.82 0.32 0.81 0.32
(4, 8) 0.62 0.20 0.53 0.13 0.53 0.13
(5, 9) 0.37 0.06 0.26 0.03 0.27 0.03

Figure 5: Results of 8-bit TRSAM (3, 7)

Figure 6: Results of 16-bit TRSAM (3, 7)

Figure 7: Results of 32-bit proposed approach TRSAM (3, 7)
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Figure 8: Results of 64-bit proposed approach TRSAM (3, 7) approximate multiplier

Figure 9: Results of 128-bit proposed approach TRSAM (3, 7) approximate multiplier

In Fig. 5 considering the value of A as 45 and B value as 27 the output is generated in the next
cycle. The exact output (A × B)Exact = 1215, the output obtained from the previous approach [20], is (A
× B)Existed = 714, and produce the error value of 501. For the same input case, the proposed approach
produces the value for (A × B)Proposed = 715, the error value is 500. In other cases, for the same inputs the
error value is gradually decreasing by using the proposed approach. Due to delay the first output value
is shown in second cycle. In Fig. 6 considering A value is 11761 and B value is 2482. The exact output
(A × B)Exact = 29 190 802, the output obtained from the previous approach [20], (A × B)Existed = 28 901
376, here the error value is 289 426. For the same input case using the proposed approach the value is
(A × B)Proposed = 28 966 911 here the error value is 223 891. In other cases, for the same inputs the error
value is gradually decreasing by using the proposed approach. Due to delay the first output value is
shown in second cycle.

The Fig. 7 input A value is 75563008 and B value is 1795686 exact outputs (A × B)Exact = 135 687
435 583 488, the proposed approach value (A × B)Proposed = 138 263 587 192 832 the difference value
is 2 576 151 609 344 is to be subtracted from the obtained output to get the exact value. Here in this
32-bit approximate multiplier approach for certain input values it is showing the same output value
because we are considering kA and kB values and using those values in shifting, but the output value
which is obtained from the proposed approach is so close to exact value, while the existing approach
[20], is far from the exact value.

The results of 64-bit are shown in Fig. 8. To calculate the error rate a multiplier is used which
shows the difference values in between proposed approach to exact value. For 128-bit the results are
shown in Fig. 9. Three cases, A and B are positive, A is negative value and B is positive, A and B both
are negative are considered for 64-bit and 128-bit simulations. The error rate is the difference value in
between the original output and A × Bapp. The bit length goes on increasing, to find the exact output
value it becomes so difficult, so for higher bit lengths original output block is used. The accuracy
depends on the difference in between exact value and obtained value.

Fig. 10 is the RTL schematic of TRSAM approximate multiplier with parameter (3, 7). RTL
schematic gives an overview of how the connections between one module to another module also, it
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explains the data path between the modules. The schematic is same for all the bit lengths and different
combinations of (h, t).

Figure 10: Schematic of proposed TRSAM (3, 7) for 16-bit approximate multiplier

In the Tab. 2, comparison consists of parameters like Slice register, Slice LUT, IOB, Fan-out,
Power, Delay of 8-Bit, 16-Bit, 32-Bit, 64-Bit, and 128-Bit for the parameter (h, t) in FPGA family [22],
of Vertex 7FPGA (XC7VX330T-2FFG1761). Fig. 11 shows how the parameters are varying against
all the bit lengths. The proposed structure is energy efficient because it consumes the power from 12.8
to 84.5 for various bitlengths.

Table 2: Comparisons for 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit in vertex 7FPGA

Parameters TRSAM (3, 7) vertex 7FPGA (XC7VX330T-2FFG1761)

8-BIT 16-BIT 32-BIT 64-BIT 128-BIT

Slice
Register

12 15 17 19 21

Slice LUT 114 236 524 1071 2619
IOB 34 66 130 258 514
Fan-out 3.41 3.63 3.83 3.81 4.59
Power (W) 12.843 19.933 29.03 47.978 84.594
Delay (ns) 3.640 6.481 12.505 22.572 36.893

Figure 11: Graphical representation of parameters of TRSAM (3, 7) approximate multiplier



CMC, 2022, vol.73, no.3 5179

4 Image Processing Application

This section discusses the proposed approximation multipliers in image processing application.
Gaussian filter in image processing uses the proposed multiplier to decrease the Gaussian noise.
Convolution of the original image with the defined Gaussian mask is used for filtering [6]. Image
multiplication is one of the most important operations in image processing which is used to evaluate the
efficiency of the proposed approximate multipliers through real-world applications. Image processing
with the proposed approximate multipliers is simulated with MATLAB. To analyze the precision of
the output images, Peak Signal to Noise Ratio (PSNR) is calculated and is used as the metric for image
quality assessment [23–26]. Convolution is performed through this approximate multiplier for an input
picture of size 8 × 8 with 2D 3 × 3 Gaussian mask. Figure of merit PSNR is calculated using the
mean-square error between the original and filtered images. The proposed truncated approximation
multiplier is compared with various previous [22,27–30], multipliers to validate the quality through
the errors. Testing of the proposed multipliers is performed with sharpening and JPEG compression
image processing applications. The various benchmarks for sharpening and JPEG compression are
Baboon and Lena. The PSNR block calculates the peak signal-to-noise ratio between two images in
decibels. This ratio is used to compare the quality of the original and the compressed images. Higher
PSNR shows the better quality of the compressed or reconstructed image.

The PSNR ratio and Structural Similarity Index Measurement (SSIM) of approximate outcomes
are calculated in the sharpening application using MATLAB simulations and compared with the
precise output images. Additionally, the Multiplier and Accumulator (MAC) module is included to
construct a sharpening unit, and the MAC energy consumption with various multipliers are calculated.
Image multiplication is performed through pixel-by-pixel, where the two input images are combined
and produces the output of one image. Along with the PSNR, SSIM is also utilized to measure the
structural similarity of the approximation and exact images. SSIM is considered as accuracy and
consistent with image quality in human perception. It can be used to implement video applications
and recent image applications techniques with few architecture changes. With some changes in the
algorithm and inserting some new blocks there is possibility for usage in small object detection [31,32].

Tab. 3 compares the PSNR, SSIM and energy consumed by the various approximate multipliers
which are obtained using MATLAB. Figs. 12–15 represents the exact and the output images which are
produced by the proposed architecture. There is possibility for some modifications in the structure in
case we want to use the Blocked RAM, as each multiplier can be associated with individual BRAM,
or we can use alone based on the modifications which has to be done in the project.

Table 3: Comparison of PSNR (Decibel), SSIM and energy of JPEG encoder for 16-bit

Benchmark Baboon Lena Energy (pJ)
PSNR SSIM PSNR SSIM

Exact [20] 26.21 0.913 32.27 0.973 836
TOSAM [20] 25.56 0.901 30.88 0.967 187
DRUM (4) [23] 25.48 0.904 30.84 0.966 339
DRUM (5) [23] 26.07 0.912 32.01 0.972 440
RoBA [19] 26.00 0.910 31.86 0.972 319
LETAM (3, 4) [24] 26.19 0.912 32.21 0.973 388

(Continued)
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Table 3: Continued
Benchmark Baboon Lena Energy (pJ)

PSNR SSIM PSNR SSIM

LETAM (4, 5) [24] 26.21 0.912 32.26 0.973 395
Kulkarni et al. [29] 25.63 0.915 32.24 0.965 398
Proposed TRSAM 25.05 0.989 28.03 0.998 393

Figure 12: Baboon (a) exact image, (b) by using existed TOSAM, (c) by using proposed TRSAM

Figure 13: Lena (d) exact image, (e) by using existed TOSAM, (f) by using proposed TRSAM

Figure 14: Eyes (g) input image, (h) image by using the proposed approach
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Figure 15: Voice (i) input image, (j) image by using the proposed approach

The PSNR is the expression for the ratio between the maximum power of a signal and the power
consumed by the distorting noise which affects the quality. The SSIM ratio is calculated by measuring
the quality between the original input image and the output image. Higher PSNR value gives the better
quality of the compressed or reconstructed output image. By using SSIM quality of a digital television
and pictures can be predicted. This is used for measuring the similarity between the two images.
Generally, the SSIM values ranges from 0 to 1, 1 means perfect match of reconstructed image with
original one. The values 0.97, 0.98, 0.99 are for a good quality reconstruction image. The PSNR and
SSIM of different image values are tabulated in Tab. 4. The Accuracy for the respective architecture is
tabulated in Tab. 5.

Table 4: PSNR and SSIM by using the proposed approach for 32-bit TRSAM

Benchmark PSNR of output image SSIM

Baboon 44.0926 0.999
Cartoon 44.1494 0.998
Dog 44.1423 0.998
Eyes 44.0828 0.999
Lena 44.0635 0.999
Penguin 44.3095 0.998
Voice 46.2662 0.998
Flowers 44.1552 0.999

Table 5: Accuracy and energy comparison for 16-bit approximate multipliers

Architecture Accuracy (%) Energy (nJ)

Wallace [17] 94.9 64.3
TOSAM [17] 93.8 14.9
DRUM (4) [19] 94.7 29.7
LETAM (3, 4) [20] 94.5 25.0
RoBA [16] 94.1 26.2
Noorbasha et al. [22] 93.2 25.6
Proposed TRSAM 95.2 24.6
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5 Conclusions

A novel method to reduce the error in approximation truncation multiplier is proposed. This
proposed multiplier is scalable and outperformed when compared with other approximate multipliers
in terms of area, delay, and power. The proposed 32-bit TRSAM multiplier improves the average
energy utilization by 2% when compared to the exact ROBA, Wallace Tree, LETAM, DRUM, DSM,
and DQ4:2C4 multipliers. This proposed approximation TRSAM (3, 7) multiplier shows an efficient
result in three cases of inputs; they are i) both the inputs are positive, ii) one input is positive and
another is negative and iii) both the inputs are negative. The accuracy for this approach is 95.2% and
the energy utilized is 24.6 nJ. The proposed design shows 0.11%, 0.23%, and 0.24% less MARE for the
input of 8-bit, 16-bit, and32-bit and also shows 0.13%, 0.19%, and 0.2% less VARE for the input of
8-bit, 16-bit, 32-bit respectively. This proposed method can be used in image processing, digital signal
processing, and classification-based applications. Rounding of the patterns are optimized based on
the level of precision required and the compression techniques used. The proposed approach in image
applications shows better performance than the existing approaches in terms of PSNR and SSIM.
The future scope of the proposed work is combining the approximation approach with high efficiency
video coding to improve the efficiency. By incorporating few changes in the proposed techniques there
is a possible way for acquiring high PSNR values and the SSIM values of closer to ‘1’. Modern-day
computing with increasing power and sophistication, the concept of computation can be expanded
beyond to approximate computation in future to reduce the power consumption and delay.
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