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Abstract: In ground-based observations of the Sun, solar images are often
affected by appearance of thin clouds, which contaminate the images and
affect the scientific results from data analysis. In this paper, the improved
Pixel to Pixel Network (Pix2Pix) network is used to convert polluted images
to clear images to remove the cloud shadow in the solar images. By adding
attention module to the model, the hidden layer of Pix2Pix model can infer
the attention map of the input feature vector according to the input feature
vector. And then, the attention map is multiplied by the input feature map
to give different weights to the hidden features in the feature map, adaptively
refine the input feature map to make the model pay attention to important
feature information and achieve better recovery effect. In order to further
enhance the model’s ability to recover detailed features, perceptual loss is
added to the loss function. The model was tested on the full disk H-alpha
images datasets provided by Huairou Solar Observing Station, National
Astronomical Observatories. The experimental results show that the model
can effectively remove the influence of thin clouds on the picture and restore
the details of solar activity. The peak signal-to-noise ratio (PSNR) reaches
27.3012 and the learned perceptual image patch similarity (LPIPS) reaches
0.330, which is superior to the existed dehaze algorithms.
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1 Introduction

Study of solar activities depends on analyzing of observed time sequence solar images. Due
to the influence of weather, solar images are often polluted, resulting in the loss of solar activity
characteristics. At the Big Bear Solar Observatory (BBSO) in California, according to the site survey of
the Global Oscillation Network Group (GONG) [1], the observation days affected by clouds account
for 55% of the total observation days. At other observatories around the world, the percentage may
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be higher. If the clouds block the sun, the shadow of the cloud will reduce the quality of observed
image. Removing cloud pollution is of great significance for the study of solar activity. Huairou
Solar Observatory (HSOS) is one of the ground based solar observatories which provides full disk
observations in H-alpha, revealing the fine structure of solar chromosphere. In this paper, the cloud-
contaminated full disk images and normal full-disk images provided by HSOS are used to remove
cloud pollution.

Zhang et al., Feng et al. [2,3] proposed a method to remove pollution from the full-disk H-alpha
images using a low-pass filter. This method obtains cloud shadow image from cloud image by special
low-pass filter and corresponding clean image. The image shows the shape of the shadow created by
the clouds on the original image and the extent to which the shadow blocks the original image. Cloud
shadow images also represent cloud transmittance. Then the cloud image is corrected by the image
to obtain a cloudless image. This method has the following limitations: If serious cloud pollution is
eliminated by increasing the cut-off frequency of the filter, most solar features will also be removed.
The image has a large intensity gradient at the edge of the sun, resulting in some edge effects during
filtering. In this paper, the improved Pix2Pix network is used to convert cloud polluted images to
clean images, avoiding the loss of solar activity details caused by the above method using filters, and
achieving de-pollution effect.

The main technical components of this paper are as follows:

The loss function of Pix2Pix model adds perceptual loss, which improves the reconstruction ability
of the model for deep image features and spatial structure.

The Pix2Pix model is improved by using the attention module. It makes the model paying attention
to the polluted areas, and directly output the clean full-disk H-alpha images to restore the detailed
characteristics of solar activity.

From the perspective of subjective visual perception, LPIPS index is introduced to evaluate the
experimental results. The index uses the pre-training model to evaluate the depth characteristics of
the image. From the experimental results, the improved Pix2Pix model can more clearly restore the
solar activity characteristics affected by clouds in the full disk H-alpha images than the existed dehaze
algorithms.

2 Related Previous Work
2.1 Dehaze

In the study of solar cloud shadow, this paper draws lessons from a method of removing haze.
Methods for removing haze can be roughly divided into two categories: traditional methods based
on prior knowledge and modern methods based on deep learning. Most of the methods based on
prior knowledge are based on the atmospheric scattering model. For example, He et al. [4] proposed a
method to estimate image prior information through an image dark channel. Fattal [5] proposed a new
method to estimate the transport function from a single input image, adding surface shading variables
to the atmospheric transport model. By assuming that the surface shadow and the transfer function are
statistically independent, the author analyzes the atmospheric scattering model to obtain the transfer
function and dehazes the image. These methods can only approximate the global atmospheric light
and transmittance, and have great defects.

With the development of artificial neural network models, they have been increasingly applied in
both thin cloud removal and mist removal. At the same time, the neural network model combined with
the method of calculating prior information has put forward more cloud removal models. For example,
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Sun et al. [6] proposed a cloud removal method combining image repair and image denoising, called
Cloud Aware Generation Network (CAGN). Multispectral remote sensing images are often polluted
by haze, resulting in poor image quality. Qin et al. [7] proposed a new method for haze removal of
multispectral remote sensing images based on a residual structure depth convolution neural network
(CNN). Firstly, multiple CNN individuals with residual structures are connected in parallel, and each
individual is used to learn the regression from the blurred image to the clear image. Then, the output
of the CNN individual is fused with the weight map to obtain the final dehaze result. Enomoto et
al. [8] proposed the cloud removal network based on the color information of visible images and the
high penetrability of longwave images, which can not only predict the fuzzy area from RGB images,
but also capture the predicted fuzzy areas from the longer wavelengths that partially or completely
penetrate the clouds. According to the atmospheric scattering model, the All-in-One dehazing network
(AOD-Net) [9] proposed using a lightweight CNN to estimate the parameters of the atmospheric
scattering model and directly generate haze-free images. Qin et al. [10] proposed an end-to-end feature
fusion attention network (FFA-NET) to directly recover haze-free images. Zhang et al. [11] proposed a
transmission image deep convolutional regression network (FT-DCRN) dehazing algorithm that uses
fine transmission image and atmospheric light value to compute dehazed image.

2.2 Generative Adversarial Network

Generative adversarial network (GAN) [12] is a generation model proposed in 2014. The model
structure includes a generator and a discriminator. The generator generates data with the same
distribution as the training set. The discriminator determines whether the input data distribution is
a real data distribution. The two play a dynamic game to generate data similar to the distribution of
training data. The proposal of wasserstein generative adversarial network (WGAN) [13], conditional
generative adversarial network (CGAN) [14] and deep convolutional generative adversarial network
(DCGAN) [15] has gradually improved the training instability of the GAN model, and the GAN
model has been used in an increasing number of image processing tasks, including image recognition
[16], multi-class detection [17], style transfer [18] and super resolution [19].

2.3 Attention Model

The attention mechanism is crucial in the human perceptual system. An important feature of
the human visual system is that people do not try to process the whole scene at once. To better
capture the structure of an image, the human visual system selectively focuses on a part of the
image. To make the model with the human attention mechanism, many people have carried out
this aspect of the attempt [20]. By modeling the correlation between feature channels, the important
features are given more weight in the subsequent calculation to improve accuracy. Self-attention [21]
determines the attention weight by focusing on all positions in the same sequence and calculating the
correlation coefficient between one position in the sequence and other positions. Vaswani et al. [22]
proved that machine translation models can achieve the most advanced results by using self-attention
models. Convolutional block attention module (CBAM) [23] inferences the attention map along two
independent dimensions (channel and spatial) and then multiplies the attention map by the input
feature map for adaptive feature refinement.

3 Method

It is difficult to estimate the global atmospheric illumination and transmittance of the full-disk
H-alpha images by appropriate methods. In this paper, the improved Pix2Pix model is used to convert
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the elimination of cloud shadow of the full-disk H-alpha images into the conversion between clean
image and cloud pollution image, so as to achieve the effect of removing cloud pollution.

3.1 Improved Decontamination Pix2Pix Model

The Pix2Pix model is a classical image conversion model based on the GAN model. The model
structure is shown in Fig. 1. It mainly consists of generators and discriminators. The generator uses
the U-Net encoder-decoder structures. Encoder downsamples images through a series of convolution
operations and then restores the downsampled result image to the target image using a decoder
structure. At the same time, the encoder upsampling layer will combine its generated feature images
with those generated by the decoder convolution layer via jump connections to improve the quality of
the generated images. This model combines the CBAM module with the generator of Pix2Pix model
to improve the detail features of the generated haze free image. By inputting the feature map input by
the hidden layer into the channel attention module and the spatial attention module respectively, the
channel attention map and the spatial attention map are obtained. Then, the feature map output by
the hidden layer is multiplied with these two parts of attention map to obtain the refined feature map,
which is fed to the next hidden layer.

The discriminator of the Pix2Pix model uses the PatchGAN structure [24], which does not
discriminate the overall picture but discriminates the picture by discriminating each n × n patch of
the feature map of generated image and integrating the discrimination results of each image block.
Because smaller image blocks are used, the model adopts smaller parameters, and the speed of the
model is faster [25].
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Figure 1: (Continued)
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Figure 1: Improve Pix2Pix model structure

3.2 CBAM Model

CBAM [23] is a simple and effective attention module of a feedforward convolutional neural
network. Given an intermediate feature map, the module computes the attention map sequentially
along two independent dimensions (channel and space) and then multiplies the attention map by the
input feature map for adaptive feature refinement. The model structure is shown Fig. 2.
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Figure 2: CBAM model structure

The CBAM module consists of channel attention and spatial attention. For channel attention,
the average pooling and max pooling operations are firstly used to aggregate the spatial information
of the feature matrix and generate two different attention scoring matrices: Favg and Fmax. Then, the
two feature scoring matrices generate channel attention maps through a two-layer perceptron network.
The perceptron network consists of multi-layer perception (MLP) and a hidden layer. After applying
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the perceptron network to each attention score matrix, the two scores are added to obtain the channel
attention weight. The calculation of channel attention is as follows:

Ac (F) = σ (MLP (AvgPool (F))) + MLP (MaxPool(F))

= σ
(
M1

(
M0

(
Fc

avg

)) + M1

(
M0

(
Fc

max

))) (1)

Ac indicates channel attention map. Where F represents the feature graph output by the hidden
layer, σ represents the sigmoid function. M0 and M1 are multi-layer perception that share parameters.
The M0 and M1 layer are followed by the ReLU activation function.

For spatial attention, average pooling and maximum pooling are also used to aggregate channel
information of feature mapping, and two 2D maps are generated: Favg ∈ R1∗H∗W and Fmax ∈ R1∗H∗W .
Each vector represents the average and maximum pool characteristics in the channel. Then, they are
connected and convolved through a convolution layer to generate a 2D spatial attention diagram. The
calculation of spatial attention is as follows:

As (F) = σ (Conv[AvgPool(F) ⊕ MaxPool(F)])
= σ

(
Conv

([
Favg ⊕ Fmax

])) (2)

As indicates Spatial attention map. Where F represents the feature graph output by the hidden
layer, σ represents the sigmoid function, ⊕ represents the concat operation and Conv represents the
convolution operation with a convolution kernel size of 7 × 7.

3.3 Loss
3.3.1 GAN Loss

Pix2Pix model is a variant of CGAN. The original loss function consists of L1 loss and GAN loss.
The loss function of CGAN is shown as follows:

LCGAN (G, D) = EX,Y [logD (X, Y)] + EX,Z [log (1 − D (X, G (X, Z)))] (3)

where G represents the generator, D represents the discriminator, D(X, Y) represents the discriminant
result of the discriminator when the real picture is input, and D(X, G(X, Z)) represents the result
when the input is the picture generated by the generator. While generator G tries to minimize the
target function, discriminator D tries to maximize the target:

G∗ = arg min
G

max
D

LCGAN(G, D) (4)

3.3.2 L1 Loss

Mixing GAN losses with more traditional losses (such as L2 distance) is beneficial to model
training [26]. The generator’s job is not only to mislead the discriminator but also to be closer to
the real image distribution. Therefore, L1 loss is selected to be added to Pix2Pix model. Compared
with L2 loss, L1 loss reduces the blur effect of images [24].

LL1(G) = EX,Y ,Z [‖Y − G (X, Z)‖1] (5)

In the formula, Y is the real original image, and G( X, Z) is the target picture generated by the
generator corresponding to the conditional picture X.

3.3.3 Perceptual Loss

Perceptual loss (PLloss) [27] was first used in the literature of image style migration. It mainly uses
a specific network to extract the characteristic image output by the hidden layer for loss calculation.
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By adding this loss function, the model can learn the image detail information and the overall spatial
structure, and restore the solar activity characteristics of the polluted image. ϕ i(Y) is a pre-training
network ϕ output when processing image Y at layer i. ϕ i(Y) is a characteristic graph with the shape
c × h × w. The model uses the mean square error to calculate the perceptual loss between the generated
image and the target image:

Lϕ,i
P

(
Ŷ, Y

)
= E

[(
ϕi

(
Ŷ

)
− ϕi (Y)

)2
]

(6)

In the formula, Y is the real original image, Ŷ is the target image generated by the generator.

The function L of the model consists of three parts:

L = α1LCGAN + α2LL1 + α3LP (7)

In the formula, α1, α2 and α3 are hyperparameters.

4 Experiments

The method is performed on the TensorFlow framework and an NVIDIA GeForce RTX2080ti
GPU. During training, the Adam optimizer [28] is adopted with a batch size of 1, and set a learning
rate of 0.0002 is set. The discriminator tended to converge after 200 epochs on the training set.

4.1 Datasets

The dataset consists of two parts: the full-disk H-alpha images obscured by clouds and the full-
disk H-alpha images without clouds. 82 pairs of cloud-contaminated and clear H-alpha images were
selected as the original training set, and 15 pairs of H-alpha images were selected to test the model.
Data enhancement is also critical to the variance and robustness of the network. Flip, cut, scale, and
rotate were used to generate 2566 pairs of samples from 82 high-quality H-alpha global solar images.

4.2 Ablation Experiment

The CBAM module is combined with different structures of the original Pix2Pix model for
experiments. The experimental results are shown in Figs. 3 and 4.

(a) ground-truth (c) CBAM+encoder+PLloss
30.3014/0.8510/0.0308

(b) Haze image (d) CBAM+decoder+PLloss 
33.1683/0.8938/0.0114

Figure 3: (Continued)
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(e) CBAM+all+PLloss 
31.3943/0.8963/0.0193

(f) PLloss 
32.2388/0.8684/0.0136

(g) Pix2Pix
32.3899/0.8774/0.0248

Figure 3: Comparison of the ablation experiment in detail repair of solar activity. The PSNR, structural
similarity (SSIM) and LPIPS indexes of the picture are marked on the picture label

(a) real image (b) CBAM
+encoder
+PLloss

(c) CBAM
+decoder
+PLloss

(d) CBAM
+all+PLloss

(e) Plloss (f) Pix2Pix (g) cloud input

Figure 4: Results of the ablation experiment

The ablation experiment mainly considers the combination of CBAM module and the encoder
and decoder of Pix2Pix model, as well as the impact of perceptual loss on the final generated image.
PSNR, SSIM and LPIPS were selected to compare the experimental results quantitatively. The specific
experimental results are shown in Tab. 1.

Table 1: Ablation experiment results

Methods PSNR SSIM LPIPS

PLloss + CBAM + encoder 26.3014 0.8356 0.0398
PLloss + CBAM + decoder 27.3012 0.8369 0.0330
PLloss + CBAM + all 26.9278 0.8419 0.0421
PLloss 26.9250 0.8351 0.0319
Pix2Pix 26.7709 0.8415 0.0351
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It is difficult to evaluate the difference of ablation experimental results from the perspective of
visual effect. From the experimental indicators, perceptual loss improves the ability of the model to
restore deep features, and CBAM module improves the image quality generated by Pix2Pix model.
But the combination of the two is not a simple additive relationship. It can be seen from LPIPS
indicators that CBAM module will affect the restoration of deep features of the model to a certain
extent. Therefore, it is also necessary to consider the combination relationship between CBAM module
and different structures of the original model for finding the model with the best effect of removing
cloud shadow. From the above experimental results, it can be concluded that the structure of CBAM
combined with PLloss and decoder in Pix2Pix model generator has a good effect of removing cloud
shadow and restoring image detail features. Although the LPIPS and SSIM is not optimal, there is
little difference between the model and the optimal result of LPIPS and SSIM.

4.3 Comparison with Dehaze Methods

The method in this paper is qualitatively and quantitatively compared with the previous dehaze
methods. Methods include dark channel prior (DCP) [4], color attenuation prior (CAP) [29], enhanced
Pix2Pix dehazing network (EPDN) [30], FFA-net [10] and Pix2Pix [24], The experimental results are
shown in Figs. 5 and 6:

(a) real image (b) CAP (c) DCP (d) EPDN (e) FFA-net (f) Pix2Pix (g) Ours (h) cloud input

Figure 5: Comparison results of dehaze algorithms

(a) ground-truth
(c) CAP 

10.6775/0.2678/0.2065
(b) Haze image

Figure 6: (Continued)
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(d) DCP
9.5441/0.4764/0.1692

(e) EPDN
31.7856/0.8675/0.0499

(f) FFA-NET
30.7310/0.8597/0.0689

(g) Pix2Pix
32.3899/0.8774/0.0248

(h) ours
33.1683/0.8938/0.0114

Figure 6: Comparison of dehaze algorithms in detail repair of solar activity. The PSNR, SSIM and
LPIPS indexes of the picture are marked on the picture label

Fig. 6 shows the restoration of solar activity details by different haze removal models when
they remove pollution from the full-disk H-alpha images. According to the experimental results,
the traditional algorithm cannot remove pollution, and the shielding of pollution on solar activity
details is enhanced. Deep learning-based haze removal algorithm can remove the shadows brought
by thin clouds, but it cannot accurately restore the detailed features of solar activity. In addition,
according to the LPIPS index in Fig. 6h, the enhanced Pix2Pix model also achieves better results in
image deep feature restoration than other haze removal algorithms. Fig. 5 shows the performance of
different algorithms on the test set. In general, the Pix2Pix model has better restoration results than
other models. Tab. 2 shows the index performance of different haze algorithms in the test set. The
improved model is slightly lower than the depth learning dehaze model in SSIM index, which may be
because PLloss and CBAM module affect the overall image structure restoration. PSNR and LPIPS
are superior to other dehaze algorithms. According to the above results, the improved Pix2Pix model
can effectively enhance the recovery of solar activity details under the influence of thin clouds, and
improve the quality of the generated pollution-free image.
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Table 2: Comparison with dehaze model test results

DCP CAP EPDN FFA-net Pix2Pix Ours

PSNR 8.6247 9.9705 27.2328 26.1623 26.7709 27.3012
SSIM 0.4295 0.2431 0.8460 0.8414 0.8415 0.8369
LPIPS 0.1784 0.2065 0.0499 0.0784 0.0351 0.0330

5 Conclusion

Solar image analysis is an important part of the study of solar activity. Removing cloud pollution
from images is important for all Ground based observations. In this paper, Pix2Pix network is used to
convert polluted images to clear images, which has achieved the effect of removing the pollution from
the full-disk H-alpha images. In addition, the CBAM module and perceptual loss are used to improve
the model, so that the visual effect of the generated cloudless image is more realistic, and the purpose
of image cloud removal is realized. The experimental results show that compared with the traditional
mainstream depth learning image dehaze algorithm, the model can use the data set of the HSOS to
learn more effective solar image features and synthesize clearer cloudless images. The results of this
study will be deployed to solar physics community to improve the image quality of the full disk dataset
of solar images. Future work will focus on generating larger solar image data sets, obtaining data sets
with various solar activity conditions, making the network have better generalization ability.

Acknowledgement: Authors are thankful to the Huairou Solar Observing Station (HSOS) which
provided the data. Authors gratefully acknowledge technical and financial support from CAS Key
Laboratory of Solar Activity, Media Computing Lab of Minzu University of China and New Jersey
Institute of Technology. We acknowledge for the data resources from “National Space Science Data
Center, National Science Technology Infrastructure of China” (https://www.nssdc.ac.cn).

Funding Statement: Funding for this study was received from the open project of CAS Key Laboratory
of Solar Activity (Grant No: KLSA202114), the crossdiscipline research project of Minzu University
of China (2020MDJC08).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] F. Hill, G. Fischer, S. Forgach, J. Grier, J. W. Leibacher et al., “The global oscillation network group site

survey,” Solar Physics, vol. 152, no. 2, pp. 321–349, 1994.
[2] N. Zhang, Y. Yang, R. Li and K. Ji, “A real-time image processing system for detecting and removing cloud

shadows on h-alpha full-disk solar (in Chinese),” Astronomical Research and Technology, vol. 13, no. 2, pp.
242–249, 2016.

[3] S. Feng, J. Lin, Y. Yang, H. Zhu, F. Wang et al., “Automated detecting and removing cloud shadows in
full-disk solar images,” New Astronomy, vol. 32, no. 4, pp. 24–30, 2014.

[4] K. He, J. Sun and X. Tang, “Single image haze removal using dark channel prior,” in Proc. of the 2009
IEEE Conf. on Computer Vision and Pattern Recognition, Miami, Florida, USA, vol. 32, pp. 1956–1963,
2009.

[5] R. Fattal, “Single image dehazing,” ACM Transactions on Graphics, vol. 27, pp. 1–9, 2008.

https://www.nssdc.ac.cn


6192 CMC, 2022, vol.73, no.3

[6] L. Sun, Y. Zhang, X. Chang and J. Xu, “Cloud-aware generative network: Removing cloud from optical
remote sensing images,” IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 4, pp. 691–695, 2020.

[7] M. Qin, F. Xie, W. Li, Z. Shi and H. Zhang, “Dehazing for multispectral remote sensing images based on
a convolutional neural network with the residual architecture,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 11, no. 5, pp. 1645–1655, 2018.

[8] K. Enomoto, K. Sakurada, W. Wang, H. Fukui, M. Matsuoka et al., “Filmy cloud removal on satellite
imagery with multispectral conditional generative adversarial nets,” in Proc. of the 2017 IEEE Conf. on
Computer Vision and Pattern Recognition Workshops (CVPRW), Hawaii, USA, pp. 1533–1541, 2017.

[9] B. Li, X. Peng, Z. Wang, J. Xu and D. Feng, “An all-in-one network for dehazing and beyond,” ArXiv
preprint arXiv:1707.06543, pp. 1–12, 2017.

[10] X. Qin, Z. Wang, Y. Bai, X. Xie and H. Jia, “FFA-net: Feature fusion attention network for single image
dehazing,” in Proc. of the AAAI Conf. on Artificial Intelligence, New York, USA, vol. 34, no. 7, pp. 11908–
11915, 2020.

[11] J. Zhang, X. Qi, S. H. Myint and Z. Wen, “Deep-learning-empowered 3d reconstruction for dehazed images
in iot-enhanced smart cities,” Computers Materials & Continua, vol. 68, no. 2, pp. 2807–2824, 2021.

[12] I. Goodfellow, J. P. Abadie, M. Mirza, B. Xu and D. Farley, “Generative adversarial networks,” Communi-
cations of the ACM, vol. 63, no. 11, pp. 139–144, 2014.

[13] M. Arjovsky, S. Chintala and L. Bottou, “Wasserstein GAN,” ArXiv preprint arXiv:1701.07875, pp. 1–32,
2017.

[14] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” ArXiv preprint arXiv:1411.1784, pp.
1–7, 2014.

[15] Y. Yang, Z. Gong and P. Zhong, “Unsupervised representation learning with deep convolutional neural
network for remote sensing images,” in Proc. of the 9th Int. Conf. on Image and Graphics, Shanghai, China,
10667, pp. 97–108, 2017.

[16] W. Fang, F. H. Zhang, V. S. Sheng and Y. W. Ding, “A method for improving CNN-based image recognition
using DCGAN,” Computers Materials & Continua, vol. 57, no. 1, pp. 167–178, 2018.

[17] X. Hao, X. Meng, Y. Zhang, J. Xue and J. Xia, “Conveyor-belt detection of conditional deep convolutional
generative adversarial network,” Computers Materials & Continua, vol. 69, no. 2, pp. 2671–2685, 2021.

[18] T. Zhang, Z. Zhang, W. Jia, X. He and J. Yang, “Generating cartoon images from face photos with cycle-
consistent adversarial networks,” Computers Materials & Continua, vol. 69, no. 2, pp. 2733–2747, 2021.

[19] K. Fu, J. Peng, H. Zhang, X. Wang and F. Jiang, “Image super-resolution based on generative adversarial
networks: A brief review,” Computers Materials & Continua, vol. 64, no. 3, pp. 1977–1997, 2020.

[20] J. Hu, L. Shen, S. Albanie, G. Sun and E. Wu, “Squeeze-and-excitation networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011–2023, 2020.

[21] H. Zhang, I. Goodfellow, D. Metaxas and A. Odena, “Self-attention generative adversarial networks,” in
Proc. of the 36th Int. Conf. on Machine Learning, Long Beach, California, USA, pp. 7354–7363, 2019.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. U. Szkoreit, L. Jons et al., “Attention is all you need,” in Proc. of the
Neural Information Processing Systems, Long Beach, California, USA, pp. 5998–6008, 2017.

[23] S. Woo, J. Park, J. Park and J. Lee, “CBAM: Convolutional block attention module,” in Proc. of the
European Conf. on Computer Vision (ECCV), Munich, Germany, pp. 3–19, 2018.

[24] P. Isola, J. Zhu, T. Zhou and A. Efros, “Image-to-image translation with conditional adversarial networks,”
in Proc. of the 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Hawaii, USA, vol.
12, pp. 5967–5976, 2017.

[25] C. Li and M. Wand, “Combining markov random fields and convolutional neural networks for image
synthesis,” in Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, USA, pp. 2479–2486, 2016.

[26] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell and A. A. Efros, “Context encoders: Feature learning
by inpainting,” in Proc. of the 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, USA, pp. 2536–2544, 2016.



CMC, 2022, vol.73, no.3 6193

[27] J. Johnson, A. Alahi and F. Li, “Perceptual losses for real-time style transfer and super-resolution,” in Proc.
of the European Conf. on Computer Vision (ECCV), Amsterdam, Netherlands, vol. 9906, pp. 694–711, 2016.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization, compute,” in Proc. of the 3rd Int.
Conf. for Learning Representations, San Diego, CA, USA, vol. 26, pp. 14–17, 2015.

[29] Q. Zhu, J. Mai and L. Shao, “A fast single image haze removal algorithm using color attenuation prior,”
IEEE Transactions on Image Processing, vol. 24, no. 11, pp. 3522–3533, 2015.

[30] Y. Qu, Y. Chen, J. Huang and Y. Xie, “Enhanced Pix2Pix dehazing network,” in Proc. of the 2019 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, pp. 8152–8160, 2019.


	Solar Image Cloud Removal based on Improved Pix2Pix Network
	1 Introduction
	2 Related Previous Work
	3 Method
	4 Experiments
	5 Conclusion


