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Abstract: Protein structure prediction is one of the most essential objectives
practiced by theoretical chemistry and bioinformatics as it is of a vital
importance in medicine, biotechnology and more. Protein secondary structure
prediction (PSSP) has a significant role in the prediction of protein tertiary
structure, as it bridges the gap between the protein primary sequences and
tertiary structure prediction. Protein secondary structures are classified into
two categories: 3-state category and 8-state category. Predicting the 3 states
and the 8 states of secondary structures from protein sequences are called the
Q3 prediction and the Q8 prediction problems, respectively. The 8 classes of
secondary structures reveal more precise structural information for a variety
of applications than the 3 classes of secondary structures, however, Q8 predic-
tion has been found to be very challenging, that is why all previous work done
in PSSP have focused on Q3 prediction. In this paper, we develop an ensemble
Machine Learning (ML) approach for Q8 PSSP to explore the performance of
ensemble learning algorithms compared to that of individual ML algorithms
in Q8 PSSP. The ensemble members considered for constructing the ensemble
models are well known classifiers, namely SVM (Support Vector Machines),
KNN (K-Nearest Neighbor), DT (Decision Tree), RF (Random Forest),
and NB (Naïve Bayes), with two feature extraction techniques, namely LDA
(Linear Discriminate Analysis) and PCA (Principal Component Analysis).
Experiments have been conducted for evaluating the performance of single
models and ensemble models, with PCA and LDA, in Q8 PSSP. The novelty
of this paper lies in the introduction of ensemble learning in Q8 PSSP
problem. The experimental results confirmed that ensemble ML models are
more accurate than individual ML models. They also indicated that features
extracted by LDA are more effective than those extracted by PCA.
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1 Introduction

Proteins are essential to life, as they perform an enormous range of functions. They act as enzymes
for catalyzing biochemical reactions. The collagen protein, for example, maintains the form of a cell as
it is the main component of human skin, while the actin-myosin protein complex plays an important
role in muscle contraction and thus macroscopic movement in living organisms. Proteins can function
as molecular switches, altering the state of another protein [1]. In short, proteins are of vital importance
to almost every biological process. Proteins are composed of linear chains of amino acids, which are
linked by peptide bonds. The levels of protein structures are: the primary, secondary, tertiary and
quaternary structures. The protein tertiary (native) structure is particularly interesting as it describes
the 3D structure of the protein molecule, which reveals the functions of proteins which in turn helps
in drug design and protein engineering.

Protein structure prediction (PSP) is very important in bioinformatics, medicine, theoretical
chemistry, biotechnology and more. From the early days of biochemistry, the biochemists crucial
concern was to know the protein structure (PS). In 1943, Fredrick has developed a way to spot amino
acid sequence present in insulin [2]. However, this significant discovery didn’t indicate whether an
individual protein has multiple structures. In 1954, Anfinsen has found that amino acid sequence of a
protein could fold into a 3D structure [3]. He has also investigated the amino acid sequence refolding
and noticed that protein unfolded under extreme chemical environment, could refold back to 3D
structure. Anfinsen has introduced a theory of folding, and said in his Nobel peace prize ceremony:
“The native structure of protein is decided by the whole interactions between atomics and thus by
the sequence of amino acids, in certain environment”. His theorem has provided an insight into the
dilemma of PSP. The PSP terminology can be divided into two groups: (1) If proteins within the protein
databank [4] have similarities in structure, then the target structure are often constructed by imitating
the framework of the solved protein. This method is named template-based modeling [5]. However,
this method cannot help in figuring out how proteins fold to their native structures. (2) If the protein
structure has no similarities in the databank, the structure might be constructed from the amino acid
sequence. This method is named ab initio [6], and it is the most difficult of all. This method depends
on two components: energy function, which calculates the level of energy of every structure, and an
enquiry procedure, which finds out the optimal structure with minimum energy within the search space.
By the end of 2013, about 52 million-protein sequence were added to the protein sequence databank
[7]. In addition, the amount of known PSs in the protein databank is about 90,000 [4].

The problem of the 3D structure prediction of a protein, based only on its primary structure
(linear sequence of amino acids), is vitally important because the determination of protein structure
experimentally is very expensive, while using the DNA sequencing to obtain protein sequences is cheap.
Protein secondary structure is the most commonly predicted one-dimensional structure of proteins
[8]. Protein secondary structure prediction (PSSP) has a significant role in the prediction of protein
tertiary structure, as it bridges the gap between the protein primary sequences and tertiary structure
prediction. There are three traditional experimental techniques employed to determine the secondary
structure of proteins. These techniques are: X-ray crystallography, Nuclear Magnetic Resonance
(NMR) spectroscopy, and Circular Dichroism spectrometry. As experimental methods are expensive
and the number of proteins with known sequence is growing than the number of experimentally
determined secondary structures, devising computational approaches for PSSP becomes increasingly
urgent [9]. The prediction of protein secondary structure from only its amino acid sequence is a very
difficult task. Protein secondary structures can be categorized into two classes: 3-state category, which
includes: helix (H), strand (E), and coil (C); and 8-state category, which has been proposed by the
DSSP (Define Secondary Structure of Proteins) program [10], includes: H (α-helix), G (310 helix), I
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(π-helix), S (bend), B (β-bridge), E (β-stand), T (β-turn), and L (loop or irregular). Protein sequence
normally includes 2 kinds of sequence information: long-range interdependencies and local context
[11,12]. The local contexts are essential for PSSP. Specially, the most valuable features to determine
the secondary structure of an amino acid are the information about the secondary structure category
of the neighbors of this amino acid. Also, long-range interdependency amongst different kinds of
amino acids shows essential indicators for the type of a secondary structure. Predicting the 3 states
and the 8 states of secondary structures from protein sequences are called the Q3 prediction and the
Q8 prediction problems, respectively. Most of the methods of PSSP have been heavily concentrated on
Q3 prediction. Although, Q8 prediction is complex and more challenging than Q3 prediction, in this
paper, we focus on Q8 prediction, because the 8 classes of secondary structures reveal more precise
structural information for a variety of applications than the 3 classes of secondary structures.

Ensemble learning (EL) techniques have shown great promise in improving the performance
of classifier models in areas such as ML, data mining and pattern recognition. They possess a
strength that has encouraged their use in several realistic classification problems. In fact, they
supersede conventional ML methods in several applications and they have drawn the attention as
a way to enhance the accuracy of prediction in highly complex problems. Many integration rules
have been explored for developing EL techniques, but it is argued that no particular rule is better
than others for devising an ideal decision [13]. EL has already been utilized in various applications
such as face recognition, optical character recognition, gene expression analysis, computer-aided
medical diagnosis, text categorization, etc. In fact, EL can be utilized anywhere ML methods can
be utilized [14]. Ensemble learning methods, which have been broadly used for building improved
classifier models, can be applied to PSSP [13,15–17]. In PSSP, the data (protein sequences) sequential
nature demands particular ensembles. The known ensembles that depend on resampling or injecting
randomness couldn’t be used since the order of amino acids in protein sequences is important for
consistent predictions and the success of prediction depends on the dependencies of amino acids. Thus,
special devotion must be given to simple aggregation rule-based ensembles to fully investigate their
ability to generalize in PSSP [13].

To this end, this paper presents a proposed ensemble ML approach for 8-state (Q8) PSSP. This
approach employs two different ensemble methods, namely Bagging and Boosting. The ensemble
members (base learners) considered for constructing the ensemble models are well known classifiers,
namely Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Decision Tree (DT), Naïve
Bayes (NB), and Random Forest (RF), with two feature extraction techniques, namely PCA (Principal
Component Analysis) and LDA (Linear Discriminate Analysis). Experiments have been conducted
for evaluating the performance of single models as well as ensemble models, with PCA and LDA,
in Q8 PSSP. To the best of our knowledge, the proposed approach is the first one to use EL for Q8
PSSP, as all the previous EL approaches have concentrated on Q3 prediction. This paper is organized
as follows: related work is given in Section 2. Section 3 introduces the proposed ensemble machine
learning approach for PSSP, and describes the methods and techniques employed in it, namely feature
extraction techniques: LDA and PCA, the 5 ML algorithms: KNN, SVM, DT, RF, and NB, the two
ensemble methods: Bagging and Boosting, and the models evaluation metrics. Section 4 presents the
results of experiments that have been conducted to evaluate the presented models performance. Section
5 provides the conclusion of the work presented in this paper. Finally, future work is given in Section 6.
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2 Related Work

Today, machine learning algorithms is integrated in almost every scientific discipline such as
networking [18–20], text analysis [21,22], image processing [23–30], cloud computing [31] and social
networks [32,33]. This broad range of machine learning application disciplines is due to their promising
predictive performance.

Since the 1950s, several techniques were developed for the prediction of secondary structure
from amino acid sequences. Techniques extend from fields such as physical chemistry and biology
to computer science and statistics [34–36]. This section presents a review of previous related work that
applied ensemble ML techniques in PSSP.

Bittencourt et al. [15] have presented an empirical comparison of the performance of individual
ML techniques (SVM, NB, KNN, Neural Network (NN) and DT) and ensemble techniques (boosting
and bagging) in protein structural class prediction. They considered the prediction of the following
classes: all-α, all-β, α + β, and α/β in addition to a class for the proteins that do not belong to any of
the previous classes (small). The ensembles generated with bagging and boosting techniques utilized
as base classifiers the single ML techniques DT, SVM and NN, and excluded KNN and NB, as the
preliminary experiments showed that they are not suitable for the task. The experiments indicated
that the results of ensemble techniques that utilized DT as the base classifier have shown consistent
improvement.

Lin et al. [16] have applied a multi-SVM ensemble to improve the performance of PSSP. The
SVM ensemble consisted of 2 layers; the first layer consisted of 3 SVMs network, where the winner
is determined by winner-take-all; the second layer is a bagging ensemble network consisted of 5
classifiers, where its output is decided by majority voting. The classifiers were trained to predict three
classes of PSS, which are H (helices), E (strands) and C (coil). The 7-fold cross-validation test on RS126
dataset showed that the multi-SVM ensemble achieved better Q3 accuracy of 74.98%.

Bouziane et al. [13] have investigated the effect of combining M-SVMs (Multi-class SVMs),
KNNs, and ANNs to enhance globular proteins SSP. An ensemble technique that merges the outputs
of 3 M-SVM, 2 Fead Forword NNs (FFNNs), and KNN classifiers has been used. Ensemble members
are merged by 2 variations of the majority voting rule. To explore how much improvement the ensemble
method can provide compared to the single classifiers that form the ensemble, the authors have applied
the presented ensemble method on CB513 and RS126 datasets, by incorporating PSI-BLAST PSSM
profiles as inputs. The experimental results indicated, in terms of Q3 accuracy, that performance of
the proposed ensemble method was significantly better than that of the best single classifier. As can be
seen from the above review, all the previous EL approaches have concentrated only on Q3 prediction.

3 Proposed Approach

This section describes the proposed approach for Q8 PSSP that uses ensemble machine learning to
improve the accuracy of predicting protein secondary structures. The proposed approach to building
an ensemble ML model for PSSP encompasses the following phases: (1) Data Preprocessing, (2)
Features Extraction, (3) Data Splitting (Cross-validation method), (4) Ensemble Model Training, (5)
Model Evaluation, and (6) Classification, as shown in Fig. 1. The phases of the proposed technique
are explained in detail in the following subsections.
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Figure 1: System model

3.1 Data Preprocessing

Given a set of proteins, the first step in PSSP is to convert the set of sequences from strings of
alphabetic characters in capital letters, corresponding to the twenty naturally occurring amino acids,
into a feature-based representation. The training dataset used is CB6133, which is produced by PISCES
CullPDB server [37]. This dataset includes 6128 non-homologous sequences, each of 39900 features.
In the 6128 proteins, 500 proteins are training samples. The dataset is available for public use through
literature [11]. Protein sequences in CB6133 have a similarity less than 25%, a resolution better than
3.0Å and an R factor of 1.0. The redundancy with test datasets was removed using cd-hit [38]. The 500
proteins × 39900 features were reshaped into 500 proteins × 700 amino acids × 57 features. The test
dataset used is CB513, which is obtained from [11]. It is broadly used to evaluate the PSSP methods
performance. It consists of 26143 α-helix, 1180 β-bridge, 17994 β-strand, 3132 310 helix, 30 π-helix,
10008 Turn, 8310 Bend, and 17904 Coil.

3.2 Feature Extraction

The extraction of the important features is an essential phase because irrelevant features often
affect the classification efficiency of the ML classifier. The selection of features appropriately enhances
classification accuracy and reduces the training time for the model. In the proposed ensemble ML
approach for PSSP, features are extracted either by PCA (Principal Component Analysis) or LDA
(Linear Discriminate Analysis) methods. These two techniques are described below.
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3.2.1 Principal Component Analysis (PCA)

PCA is a multivariate technique. It is one of the most well-known techniques for the reduction of
linear dimensionality [39]. PCA obtains the principal components in data by utilizing the covariance
matrix and its eigenvectors and eigenvalues. These principal components are uncorrelated eigenvec-
tors; each represents some percentage of variance in the data [40]. Let X = {x1, x2, . . . , xm} denotes a
set of training data, xi represents a variable with dimensionality N, which stands for protein sequence
in this work. The aim of PCA is two-fold: (a) get the highly significant information from X , and (b)
reduce the dimensionality of X by preserving the significant information only. PCA is considered as
an orthogonal projection of the initial N-dimensional data onto a new r-dimensional space (r < N),
the projected data variance is the objective to be minimized [41]. The Initial letter of each notional
word in all headings is capitalized.

3.2.2 Linear Discriminant Analysis (LDA)

LDA is a method for reducing dimensionality. It is utilized as a pre-processing stage in ML and
pattern classification applications. LDA is primarily utilized in classification problems that have a
categorical output variable. It can be used in binary and multi-class classifications. The LDA goal is to
map the features in a high dimension space onto a low dimension space to overcome the dimensionality
problem and decrease dimensional and resources costs [42]. The LDA model is comprised of the
input data statistical attributes that have been computed for each class. In the case of having multiple
variables, the same attributes are computed over the multivariate Gaussian. The predictions are made
according to the probability that a new input dataset belongs to each class. The output class will be
the one with the largest probability and accordingly the LDA does a prediction [42].

3.3 Data Splitting

In data splitting phase, the cross-validation technique is used to split the training data set into
testing data and training data. Cross-validation is a standard method used to estimate the performance
of any ML algorithm on unseen data. One cycle of cross-validation includes splitting a sample of data
into disjoint subsets, doing the analysis on one subset (named the training set), then validating the
analysis on the other subset (named the testing set or the validation set). In our experiments, we have
used 9-fold cross-validation. In this case, the dataset is split into 9 subsets: the first 8 are utilized to
train the model, and the 9th is utilized to validate the model. This operation is repeated, allowing each
of the 9 subsets of the split dataset an opportunity to be the test subset.

3.4 Ensemble Model Training

The proposed ensemble machine learning approach for Q8 PSSP combines two of the widely
known ensemble techniques, namely Boosting [43,44] and Bagging [45], with five ML algorithms,
namely K-Nearest Neighbor (KNN) [45], Support Vector Machines (SVM) [46], Decision Tree (DT)
[47], Random Forest (RF) [48], and Naïve Bayes (NB) [49], as base learners.

EL is a ML technique in which several learners are trained to solve the same problem. Unlike
conventional ML techniques, which attempt to learn one hypothesis from training data, ensemble
techniques attempt to build hypotheses set and merge them for usage [49]. The two ensemble techniques
used in our approach, namely Boosting and Bagging, are described below.

Boosting: The term “boosting” refers to a group of techniques that can convert weak models to
strong models. The weak model is the one that has a considerable error rate, but the performance is not
random (causing an error rate of 0.5 in the case of binary classification). Boosting gradually develops
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an ensemble by training each model with the same dataset but with adjusting the instances weights
based on the last prediction error [38]. The basic concept is driving the models to concentrate on the
instances that are misclassified. Then, the ensemble technique improves its efficiency by merging the
trained weak models.

There are several variants of boosting. In this work, we use Adaptive Boosting (AdaBoost), which
is a very famous boosting algorithm. It is proposed by Freund and Schapire [43]. Let X be the instance
space, {–1, +1} be the set of class labels, and D = {(x1, y1); (x2, y2), . . . , (xN, yN)} is a given training
data set, xi ∈ X and yi ∈ {–1, +1} (i = 1, . . . , N), (i = 1, . . . , N). AdaBoost works as follows: Firstly,
it gives same weights to all the training instances. Let wt denotes the weights distribution at the t-th
learning round. From wt and the training data set, the algorithm creates a base learner ht: X → {–1,
+1} by invoking the base learner. Then, it utilizes the training instances to test ht, and increases the
weights of the misclassified instances. Thus, a modified weight distribution wt+1 is gained. By invoking
the base learner again with wt+1 and the training data set, AdaBoost creates another base learner. This
process is iterated for M times, each iteration is named a round. The final learner is obtained by using
weighted majority voting of the M base learners, where the learners’ weights are established during
the training process. Fig. 2 presents the pseudo-code of AdaBoost, which is adapted from [49].

Figure 2: AdaBoost algorithm

The function h : R → {0, 1} utilized in Algorithm 1 to calculate errm, the weight error rate of the
mth classifier, is the Heaviside function, which is defined as:

h (x) =
{

1 if x ≥ 0
0 if x < 0

(1)

Accordingly, since both hm(x_i) and yi take values in {–1, +1}, we have that

h (−yihm (xi)) =
{

1 if yi �= hm (xi)

0 if yi = hm (xi)
(2)

It is possible to utilize any ML algorithm as a base classifier with boosting, if it allows weights on
the training set.
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Bagging: Bootstrap Aggregation, which is referred to as Bagging [43], is a method that utilizes
bootstrap sampling to decrease the variance and/or enhance the accuracy of some predictor. It may
be utilized in regression and classification. It trains a number of base learners each from a distinct
bootstrap sample by invoking a base learning algorithm. A bootstrap sample is found by subsampling
with replacement the training data set, where the sample size equals to the training data set size.

Consider a size-N dataset Z = {z1, z2, . . . , zN}, where zi = (xi, yi), xi ∈ X and yi is a class label,
in classification problems, or a real number, in regression problems. The main idea of bagging is to
learn a set of B predictors (each from a bootstrap sample Z∗

b ⊆ Z, for b = 1, . . . , B), then generate
a final predictor by merging (majority voting, in classification, or by averaging, in regression) this
group of predictors. The merging of several predictors reduces the expected error as it decreases the
variance component of the bias-variance decomposition. The decrease of this variance component is
proportionate to the classifiers number employed in the ensemble. The algorithm in Fig. 3 presents the
bagging algorithm pseudo-code for binary classification, which is adapted from [49].

Figure 3: Bagging algorithm

It should be noted that, in the above description of bagging and boosting methods, binary
classification is considered for simplicity, but in this work, they are applied to Q8 PSSP, which is a
multi-class classification problem. The Q8 secondary structure classes are: 310 helix (G), α-helix (H),
π-helix (I), β-stand (E), β-bridge (B), β-turn (T), bend (S), and loop or irregular (L).

3.5 Model Evaluation

To assess the Q8 prediction performance of the presented ensemble models, we have used the
following evaluation metrics: Accuracy, Recall, Precision, F-score, and AUC-ROC (Area Under the
Curve - Receiver Operating Characteristics) curve.

4 Experiments

This section presents the results of the experiments that we have conducted to evaluate the
performance of the 5 individual predicting models, constructed using the 5 ML algorithms, KNN,
SVM, DT, RF, and NB, and the ensemble models, constructed by combining each of the ensemble
ML methods, bagging and boosting with each of the 5 ML algorithms, and the two feature extraction
techniques, PCA and LDA, using cross validation tests, in Q8 PSSP. The individual predicting models
and the ensemble models are applied to both CB6133 training dataset and CB513 test data.
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4.1 Features Extracted by PCA and LDA

The number of important features that were extracted by both PCA and LDA equal 56 features
for each amino acid (see Tab. 1).

Table 1: Features extracted by both PCA and LDA with their scores. (Note that Feature 47 is not
extracted among the 57 features of each amino acid, which represents the absolute solvent accessibility

Feature no. PCA score LDA score Feature no. PCA score LDA score

Feature: 0 89.32225 94.32225 Feature: 29 90.15872 90.15872
Feature: 1 90.23555 93.23555 Feature: 30 84.36941 90.36941
Feature: 2 91.42222 93.42222 Feature: 31 84.8651 90.8651
Feature: 3 88 94 Feature: 32 89.2156 89.2156
Feature: 4 87.02111 94.02111 Feature: 33 89.32651 89.32651
Feature: 5 89.83333 94.83333 Feature: 34 89.96847 89.96847
Feature: 6 91.52344 93.52344 Feature: 35 89.75486 89.75486
Feature: 7 90.44331 93.44331 Feature: 36 89.21548 89.21548
Feature: 8 84.11222 94.11222 Feature: 37 89.66325 89.66325
Feature: 9 93.91335 93.91335 Feature: 38 87.56981 91.56981
Feature: 10 93.33581 93.33581 Feature: 39 85.86547 91.86547
Feature: 11 92.5478 94.5478 Feature: 40 86.67891 91.67891
Feature: 12 92.15872 94.15872 Feature: 41 87.65874 91.65874
Feature: 13 92.20075 94.20075 Feature: 42 90.00001 90.00001
Feature: 14 92.22368 93.22368 Feature: 43 85.0021 91.0021
Feature: 15 92.13212 94.13212 Feature: 44 89.01203 89.01203
Feature: 16 92.91234 93.91234 Feature: 45 89 96
Feature: 17 90.36941 94.36941 Feature: 46 87.32015 95.32015
Feature: 18 86.81444 93.81444 Feature: 48 88.89521 88.89521
Feature: 19 88.98741 92.98741 Feature: 49 86.32104 88.32104
Feature: 20 89.66621 93.66621 Feature: 50 89.00021 89.00021
Feature: 21 90.75841 93.75841 Feature: 51 88.33215 96.33215
Feature: 22 90.89213 92.89213 Feature: 52 90.56841 90.56841
Feature: 23 90.32154 94.32154 Feature: 53 86.38749 90.38749
Feature: 24 88.55521 93.55521 Feature: 54 86.21213 90.21213
Feature: 25 86.68749 92.68749 Feature: 55 86.68749 91.68749
Feature: 26 85.75846 92.75846 Feature: 56 86.87932 91.87932
Feature: 27 84.21354 92.21354 Feature: 57 0.300121 0.984712
Feature: 28 90.23651 90.23651

Tab. 1 shows the scores given to every feature, by PCA, according to the projected features
variance, and by LDA, based on the distance between features. Among these 56 features, 22 represent
the primary structure (20 amino acid, 1 unknown or any amino acid, 1 ‘NoSeq’ - padding), 22 represent
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the Protein Profile (same as primary structure), 2 represent N- and C-terminals, 1 represents relative
solvent accessibility and 9 represent the secondary structure (8 possible states, 1 ’NoSeq’ - padding).

4.2 Experimental Results

We have conducted 6 different experiments: In the first two experiments, we have applied the 5
ML algorithms to features extracted by PCA and LDA, respectively. In the next two experiments, we
have applied the ensemble models, constructed by combining the bagging technique with each of the
5 ML algorithms, to features extracted by PCA and LDA, respectively. In the last two experiments,
we have applied the ensemble models, constructed by combining the boosting technique (AdaBoost)
with each of the 5 ML algorithms, to features extracted by PCA and LDA, respectively.

4.2.1 Experiment 1: Applying the ML Algorithms to Features Extracted by PCA

In the first experiment, the 5 ML algorithms have been applied to PSSP, utilizing the features
selected by PCA. Tab. 2 displays the results of this experiment. Tab. 2 indicates that DT has the highest
performance with accuracy = 64.00%, precision = 0.6970, Recall = 0.4647, F-score = 0.5576 and AUC
= 0.80, while NB has the worst performance with accuracy of 63.50%, recall of 0.3939, and precision
of 0.7105. The KNN technique has been applied with various number of nearest neighbors k = 1, 2,
3, 5, and 9. The best value was k = 1 that achieved accuracy of 63.80%, recall of 0.4527, precision
of 0.7119, and AUC of 0.77. It is obvious from Tab. 2 that DT with PCA technique outperforms the
other ML techniques, followed by KNN.

Table 2: Results of applying ML techniques using features extracted by PCA

Techniques Accuracy Precision Recall F-score AUC

KNN 63.80 0.7119 0.4527 0.5535 0.77
SVM 63.70 0.6801 0.4316 0.5281 0.70
DT 64.00 0.6970 0.4647 0.5576 0.80
RF 63.77 0.6853 0.4313 0.5294 0.76
NB 63.50 0.7105 0.3939 0.5066 0.73

4.2.2 Experiment 2: Applying the ML Algorithms to Features Extracted by LDA

In the second experiment, features have been selected by LDA. Tab. 3 shows that DT, KNN (k =
1), and RF have the best performance with accuracy = 64.31%, precision = 0.6970, recall = 0.4647,
F-score = 0.5576, and AUC = 0.82. The results shown in Tab. 3 indicate that DT, KNN, and RF with
LDA technique outperform both SVM and NB.

4.2.3 Experiment 3: Applying the Bagging Technique to Features Extracted by PCA

In the third experiment, the ensemble models, constructed by combining bagging with each of the
5 ML algorithms, with 9-fold cross-validation method, have been applied to PSSP, utilizing features
extracted by PCA. Tab. 4 shows that DT has reached the best accuracy of 65.81%, recall of 0.4647,
AUC of 0.84, and F-score of 0.5576, but KNN (k = 1) has reached the best precision 0.7119. NB has
reached the worst accuracy of 64.00%, recall of 0.3939, AUC of 0.72 and F-score of 0.5066, while SVM
has reached the worst precision of 0.6801. These results indicate that DT outperforms the other ML
techniques when applying the bagging technique with them using features extracted by PCA.
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Table 3: Results of applying ML techniques using features extracted by LDA

Techniques Accuracy Precision Recall F-score AUC

KNN 64.31 0.6970 0.4647 0.5576 0.82
SVM 63.70 0.6801 0.4316 0.5281 0.75
DT 64.31 0.6970 0.4647 0.5576 0.82
RF 64.31 0.6970 0.4647 0.5576 0.82
NB 63.55 0.7105 0.3939 0.5066 0.77

Table 4: Bagging with the 5 ML techniques using features extracted by PCA

Techniques Accuracy Precision Recall F-score AUC

KNN 64.77 0.7119 0.4527 0.5535 0.80
SVM 64.7 0.6801 0.4316 0.5281 0.79
DT 65.81 0.6970 0.4647 0.5576 0.84
RF 65.00 0.6853 0.4313 0.5294 0.82
NB 64.00 0.7105 0.3939 0.5066 0.72

4.2.4 Experiment 4: Applying the Bagging Technique to Features Extracted by LDA

Tab. 5 shows the results when LDA is used, it can be seen that DT, KNN (k = 1) and RF have
reached the best accuracy of 66.00% and F-score of 0.5294, while NB has reached the best precision
of 0.7105, SVM has reached the best recall of 0.4316, and KNN (k = 1) has reached the best AUC of
0.84.

Table 5: Bagging with the 5 ML techniques using features extracted by LDA

Techniques Accuracy Precision Recall F-score AUC

KNN 66.00 0.6853 0.4313 0.5294 0.84
SVM 65.21 0.6801 0.4316 0.5281 0.80
DT 66.00 0.6853 0.4313 0.5294 0.82
RF 66.00 0.6853 0.4313 0.5294 0.79
NB 65.00 0.7105 0.3939 0.5066 0.72

4.2.5 Experiment 5: Applying the Boosting Technique to Features Extracted by PCA

In the fifth experiment, the ensemble models, constructed by combining boosting with each of the
5 ML algorithms, with 9-fold cross-validation method, have been applied to PSSP, utilizing features
extracted by PCA. From Tab. 5, we can see that RF achieved the best accuracy = 66.50%, recall =
0.4647, F-score = 0.5576, and AUC = 0.85, while DT achieved the best precision of 0.7119. In addition,
Tab. 5 showed that SVM reached the lowest accuracy, precision, and AUC of 64.00%, 0.6801, 0.75,
respectively, while NB reached the lowest recall and F-score of 0.3939 and 0.5066, respectively.
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Table 6: Boosting with the 5 ML techniques using features extracted by PCA

Techniques Accuracy Precision Recall F-score AUC

KNN 65.80 0.6853 0.4313 0.5294 0.79
SVM 64.00 0.6801 0.4316 0.5281 0.75
DT 65.71 0.7119 0.4527 0.5535 0.83
RF 66.50 0.6970 0.4647 0.5576 0.85
NB 64.70 0.7105 0.3939 0.5066 0.80

4.2.6 Experiment 6: Applying the Boosting Technique to Features Extracted by LDA

In the sixth experiment, the ensemble models, constructed by combining boosting with each of the
5 ML algorithms, with 9-fold cross-validation method, have been applied to PSSP, utilizing features
extracted by LDA. Tab. 7 shows that RF achieved the best accuracy = 66.52%, recall = 0.4647, F-score
= 0.5576, and AUC = 0.85, while DT achieved the best precision of 0.7119. In addition, Tab. 7 showed
that SVM reached the lowest accuracy, precision, and AUC of 63.50%, 0.6801, 0.75, respectively, while
NB reached the lowest recall and F-score of 0.3939 and 0.5066, respectively.

Table 7: Boosting with the 5 ML techniques using features extracted by LDA

Techniques Accuracy Precision Recall F-score AUC

KNN 65.80 0.6853 0.4313 0.5294 0.79
SVM 64.00 0.6801 0.4316 0.5281 0.75
DT 65.71 0.7119 0.4527 0.5535 0.83
RF 66.50 0.6970 0.4647 0.5576 0.85
NB 64.70 0.7105 0.3939 0.5066 0.80

4.3 Discussion

Tab. 8 summarizes the best values of the evaluation metrics: accuracy, recall, precision, F-score,
and AUC, obtained in the presented experiments.

Table 8: The best evaluation metrics values obtained by the ML ensemble learning techniques

Techniques Accuracy Precision Recall F-score AUC

PCA + Bagging DT 65.81 DT 0.4647 KNN 0.7119 DT 0.5576 DT 0.84
LDA + Bagging DT, KNN, RF

66.00
SVM 0.4316 NB 0.7105 DT, KNN, RF

0.5294
KNN 0.84

PCA + Boosting RF 66.50 RF 0.4647 DT 0.7119 RF 0.5576 RF 0.85
LDA + Boosting RF 66.52 RF 0.4647 DT 0.7119 RF 0.5576 RF 0.85
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Fig. 4 shows a comparison between accuracy values of applying ML algorithms with and without
ensemble learning using features extracted by PCA. This comparison indicates that, in general, the
accuracy of the ML techniques has been improved by using ML ensemble learning as follows:

• The accuracy of KNN, RF and NB, were better with boosting than with bagging
• The accuracy of SVM and DT, were better with bagging than with boosting.

Figure 4: Accuracy values of applying ML algorithms with and without Ensemble Learning using
features extracted by PCA

Fig. 5 shows a comparison between AUC values of applying ML algorithms with and without
ensemble learning using features extracted by PCA. This comparison indicates that, in general, the
AUC values of the ML techniques have been improved by using ML ensemble learning, as follows:

• The AUC values of RF and NB, were better with boosting than with bagging
• The AUC values of KNN, SVM and DT, were better with bagging than with boosting.

Figure 5: AUC values of applying ML algorithms with and without Ensemble Learning using features
extracted by PCA

Fig. 6 shows a comparison between Accuracy values of applying ML algorithms with and without
ensemble learning using features extracted by LDA. This comparison indicates that, in general, the
accuracy of the ML techniques has been improved by using ML ensemble learning, as follows:

• The accuracy of KNN, SVM, DT and NB, were better with bagging than with boosting.
• The accuracy of RF was better with boosting than with bagging.



3964 CMC, 2022, vol.73, no.2

Figure 6: Accuracy values of applying ML algorithms with and without Ensemble Learning using
features extracted by LDA

Fig. 7 shows a comparison between AUC values of applying ML algorithms with and without
ensemble learning using features extracted by LDA. This comparison indicates that, in general, the
AUC values of the ML techniques have been improved by using ML ensemble learning, as follows:

• The AUC values of DT, RF, and NB, were better with boosting than with bagging
• The AUC values of KNN and SVM were better with bagging than with boosting.

Figure 7: AUC values of applying ML algorithms with and without Ensemble Learning using features
extracted by LDA

5 Conclusion

This paper presented a proposed ensemble machine learning approach to improve the perfor-
mance of Q8 PSSP. In this approach, ensemble models for PSSP are constructed by combining two
ensemble methods, namely Bagging and Boosting, with 5 ML algorithms, namely KNN, SVM, DT,
RF, and NB, as ensemble members (base learners), and two feature extraction techniques, namely PCA
and LDA.

We have conducted experiments for evaluating the performance of the 5 individual predicting
models, constructed using the 5 ML algorithms, KNN, SVM, DT, RF, and NB, and the ensemble
models, constructed by combining each of the ensemble ML methods, bagging and boosting, with
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each of the 5 ML algorithms, and the two feature extraction techniques, PCA and LDA, using cross
validation tests on CB6133 training dataset and CB513 test data, in Q8 PSSP.

The experimental results indicated that:

• The best of all accuracy values, 66.52% and 66.50%, were obtained by Boosting with RF using
features extracted by PCA and LDA, respectively.

• With features extracted by PCA, the accuracy of KNN, RF and NB, were better with boosting
than with bagging, while the accuracy of SVM and DT, were better with bagging than with
boosting.

• With features extracted by LDA, the accuracy of KNN, SVM, DT and NB, were better with
bagging than with boosting, while the accuracy of RF was better with boosting than with
bagging.

• The ML techniques KNN, DT, RF and NB achieved better accuracy when using features
extracted by LDA than those extracted by PCA, while SVM achieved same accuracy when
using both PCA and LDA.

• All bagging ensemble models achieved better accuracy when using features extracted by LDA
than those extracted by PCA.

• Boosting with DT and NB achieved same accuracy when using both PCA and LDA, while
boosting with KNN and RF achieved a little bit higher accuracy when using LDA than PCA
and boosting with SVM achieved better accuracy when using PCA than LDA.

• For individual models, the best accuracy value was 64.31%, achieved by KNN, DT, and RF
algorithms, when using features extracted by LDA.

• For bagging ensemble models, the best accuracy value was 66.00%, achieved with KNN, DT,
and RF algorithms, when using features extracted by LDA.

• For boosting ensemble models, the best accuracy values were 66.52% and 66.50%, achieved with
RF algorithm, when using features extracted by LDA and PCA, respectively.

These results clearly confirm that ensemble ML models are more accurate than individual ML
models. They also indicate that features extracted by LDA are more effective than those extracted
by PCA.
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