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Abstract: Motion time study is employed by manufacturing industries to
determine operation time. An accurate estimate of operation time is crucial for
effective process improvement and production planning. Traditional motion
time study is conducted by human analysts with stopwatches, which may
be exposed to human errors. In this paper, an automated time study model
based on computer vision is proposed. The model integrates a convolutional
neural network, which analyzes a video of a manual operation to classify work
elements in each video frame, with a time study model that automatically esti-
mates the work element times. An experiment is conducted using a grayscale
video and a color video of a manual assembly operation. The work element
times from the model are statistically compared to the reference work element
time values. The result shows no statistical difference among the time data,
which clearly demonstrates the effectiveness of the proposed model.
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1 Introduction

In the age of Industry 4.0, manufacturing companies implement digital technology such as
computer vision, Internet of Things (IoT), and big data to improve their ecosystem [1]. An important
essence of a company’s profitability is cost management. There are various ways that a company can
improve its cost management, and one of the most critical areas is production planning. An effective
production planning can reduce inventory, shortage, and operational costs. Many developed countries
started to implement some level of automation into their manufacturing processes, resulting in a
consistent and predictable processing time. However, many developing countries lack the resources
and knowledge to transform their manufacturing industry to automation and still rely on the human
workforce in their daily operations. Unlike machines, manual operations’ processing times by human
operators are naturally inconsistent. Therefore, time study is needed to find the standard time of
manual operation.

A processing time is the elapsed time between the start and finish of an operation. An operation
may consist of many work elements, each of which are defined either from the operator’s motion
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(i.e., holding, releasing, or grabbing an object) or changing in the shape of a workpiece from a
manufacturing operation (i.e., a lathe machine transforming an ingot into a rod). Once multiple cycles
of the operation are observed and processing times are recorded, the data can be used to determine
the standard time. Standard time is the time required by an average skilled operator that is working at
a normal pace to perform a manual operation. As the observed processing times can be different from
cycle to cycle due to natural variability and working condition, the standard time represents the average
time under a normal working condition. In addition, standard time calculation includes appropriate
allowances, expressed in percentage of the observed time, that takes into account human factors such
as rest to overcome fatigue, as well as performance rating factor that represents the relative working
speed of operators to a normal pace.

Accurate standard time is essential for effective production planning and process improvement.
If the standard times can be accurately determined, the production rate and resources can be
appropriately prepared and allocated to minimize the risk of over and under-production, as well as
overtime and idle time of human operators. Overproduction can result in excessive inventory and
underproduction can result in shortages, while overtime results in high labor cost and idle time reflect
over-staffing or unbalanced workload among operators. By comparing each operator’s processing time
to the standard time, the company can clearly identify potential areas of improvement. Work elements
of an operation that contributes the most to the overall processing time and its variability can be
identified and improved upon.

Traditionally, time study requires an analyst to manually observe, time, and record several work
elements comprising an operation using a stopwatch, which is naturally prone to errors. The errors may
be caused by the analyst’s boredom and loss of focus from monotonous timing, not enough sample size
(i.e., number of cycles to observe) of an operation, and operation disruption from various unavoidable
factors. As humans are susceptible to boredom, repetitive actions can cause an operator to lose focus
while performing the timing activity, which leads to inaccurate timing.

A long period of observing and timing can also lead to fatigue, which causes uncertainty and
inconsistency in each timing instance. External factors such as noises, the operator being interrupted,
or the operator switching to do other tasks during an operation cycle can also distract the analyst’s
timing activity. As it is not financially viable to time every cycle of an operation, analysts have to
observe the operation for an adequate number of cycles to carry out the time study. Observing an
operation in real-time may cause some bias and make the observed cycles unrepresentative of the
true operation. For example, operators may work unnaturally faster (or slower) when they are being
observed and timed to meet the working standard (or to make the work appear as if it requires
longer operation time). But when the timing is finished, the operators return to work at their normal
speed. Uncertain processing time data lead to ineffective production planning, as the planning and
management team cannot estimate the expected production output accurately.

Fortunately, with the emergence of machine learning, these mundane time study activities can
be automated using computers. In this paper, a computer vision-based time study (CV-TS) model
is developed to automate the time study process, thus eliminating the need for human analysts to
manually perform time study. We demonstrate that the proposed CV-TS model can effectively perform
this task and completely remove timing uncertainty, therefore, allowing the analysts to focus on other
non-mundane and creative tasks such as operation improvement.

Contributions of the paper are three-fold. First, we successfully develop a computer vision model
that can analyze the video of an operation and automatically detect and classify work elements that
comprise the operation. Second, we integrate the computer vision model to a time study model that
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takes the outputs from the computer vision model as input and performs time study automatically.
Finally, we demonstrate the effectiveness of the proposed model using video of a manual assembly
operation.

2 Background

Computer vision is a field of artificial intelligence that trains computers to interpret and analyze
the visual world through images. Computer vision algorithms allow computers to process visual data,
giving them the ability to identify objects in still and moving images (i.e., video). Many organizations
now collect data from a variety of sources, such as smart devices, industrial equipment, videos, social
media, and business transactions. The proliferation of available data accelerated artificial intelligence
development such as computer vision algorithms that allow computers to detect objects with higher
speed and accuracy.

Various research studies explore industrial applications of computer vision. The most prevalent
applications are measurement and quality control. An example of an application to quality control
is the study conducted by Kazemian et al. [2]. The authors built a system using computer vision
algorithms to control and monitor the quality of an extrusion process. By utilizing image binarization
and blurring for contour extraction, the computer vision system can produce reliable feedback.
The extrusion rate is then adjusted automatically to maintain the quality of the extrusion process.
Frustaci et al. [3] present another system using computer vision algorithms to check the assembly
processes’ quality. Their proposed system can detect potential geometrical defects. They can achieve
this by combining image processing techniques such as binarization and Region of Interest. An
application of measurement using computer vision is demonstrated by Gadelmawla [4]. The author
proposed a computer vision algorithm that can classify different types of threads and screws by
comparing the extracted features from the images to their corresponding labels.

In recent years, the development of artificial neural networks (ANN) has made the field of
computer vision popular. ANN models are capable of classifying images more accurately and quickly
by utilizing a large amount of available data. An example of a computer vision system using ANN is
shown in a study by Arakeri et al. [5]. A fruit grading system using computer vision is developed to
evaluate and classify tomatoes. The system extracted features from tomato images and input them into
an ANN model that determines if a tomato is ripe, unripe, or defective. The system can process up to
300 tomatoes per hour. The throughput of the image classification system was improved further by
Costa et al. [6]. The authors were able to increase the processing speed to 172,800 tomatoes per hour.
The introduction of a residual neural network (ResNet), a variant of convolutional neural network
(CNN), has been credited for the significant improvement of the processing speed. CNN has a similar
model structure to the classical ANN as they both contain self-optimize neurons through learning
[7]. CNN has become popular in recent years due to its effectiveness in object detection. Prominent
applications such as surveillance, self-driving cars, and object counters use CNN to detect objects.

The main difference between ANN and CNN is that CNN is mainly used for pattern recognition
in images. A CNN model can capture patterns and spatial features from images and encode the
features into the model architecture. This allows the model to perform better in image analysis
tasks and requires fewer parameters than ANN. An example of a use case of CNN is presented by
Raymond et al. [8], where the authors designed a system that manages electrical grid assets such as
transformers, insulators, switches, and supports by using Faster-RCNN, a variant of CNN. Drones
are used to take pictures of the assets and the images are input into the Faster-RCNN model. The
model counts the assets from the images and finally generates an inventory report. In the field of
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transportation, [9,10] utilized CNN to identify vehicles. As more studies and applications use CNN to
solve real-world problems, the evidence of CNN’s effectiveness is further solidified.

Although the use of computer vision in motion time study can be classified as one of the Industry
4.0 methods in improving process timing according to Liebrecht et al. [11], there is a limited number
of studies under this research area. Recently, Ji et al. [12] developed a computer vision algorithm that
can perform motion time study automatically. However, the work process in the video analyzed in the
study is simple and the procedure in developing the time study model lacks an in-depth description.
This paper is a significant extension of Ji et al. [12]. The discussion of the model’s parameters,
model development, and steps in automatically performing motion time study with computer vision is
expanded. Image augmentation is introduced to increase the model’s generalization. In addition, the
results from the model are further explained to strengthen the study’s contribution.

Certainly, there are various ways in detecting an operator’s motions. The use of sensors to
recognize activities has been reviewed by Wang et al. [13]. The authors explained how traditional
activity recognition methods mainly rely on manual heuristic feature extraction, which could impede
their generalization effectiveness. Some research studies found success using motion sensors to
recognize the activity. However, sensors can interfere and obstruct the operators’ movement or vice
versa, thus affecting their respective performance. Therefore, in our work, we choose to perform a time
study by utilizing cameras with computer vision algorithms instead of sensors as they do not interfere
with the operators’ movement and can detect objects with better accuracy and from further range. The
implementation cost and setup complexity of cameras tend to be significantly lower, as the equipment
needed is only a video camera and a computer to run the model’s algorithm. The specification of these
equipment depends on the complexity of the operation and desired accuracy of the time result. A
video camera with a higher specification can capture more pixels in a video frame, therefore, providing
more information to the model. A model that has been trained with a larger amount of data, in this
case, images with more pixels, is less susceptible to false-positive detections. A computer with higher
specifications can process videos faster and potentially can run the model in real-time.

In recent years, many research papers explore methods in detecting motion using computer
vision. Huang et al. [14] proposed a method based on pose estimation and region-based CNN. The
pose estimation is used to obtain the trajectory information of the human joints and the CNN is
used to predict whether the workbench is empty or not, increasing the accuracy. The method is
demonstrated on a hand sewing process video by counting the number of products. Sun et al. [15]
developed an automatic system to monitor and evaluate a worker’s efficiency. The authors used
generative adversarial networks with pose estimation to detect human body joints. The video of an
action performed by a worker is matched against a reference video performed by a teacher using pose
estimation and temporal action localization to obtain efficiency. Mishra et al. [16] proposed a Fuzzy
inference system with CNN for human action recognition. Ullah et al. [17] also proposed an action
recognition system that utilizes CNN, deep autoencoders, and quadratic support vector machines
algorithm to learn temporal changes of the actions in a video stream. From our findings, utilizing
CNN in action recognition has been popular. However, to the best of our knowledge, studies that
implement CNN in the motion time study applications are limited [18]. This study proposes a motion
time study model that utilizes CNN to automatically conduct a time study on a video of a manual
operation.
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3 Methodology

Computer vision is a field of artificial intelligence that trains computers to interpret and analyze
the visual world through images. Computer vision algorithms allow computers to process visual data,
giving them the ability to identify objects in still and moving images (i.e., video). Many organizations
now collect data from a variety of sources, such as smart devices, industrial equipment, videos, social
media, and business transactions. The proliferation of available data accelerated artificial intelligence
development such as computer vision algorithms that allow computers to detect objects with higher
speed and accuracy.

A manual manufacturing operation usually consists of several work elements, each of which is
further comprised of a sequence of motions. To determine each work element time, a time study analyst
observes and detects the element’s starting and ending conditions by using distinctive sound, sight,
and/or motions (i.e., movement of operator’s body parts). The analyst usually uses a stopwatch to
time each work element by observing the manufacturing operation in real-time or by viewing a video
clip of the operation. All work element times are combined to obtain the total observed operation
time. The observed time is then adjusted by allowance (i.e., percentage of additional operation time
required by human factor) and rating (i.e., the relative speed of operators to a normal pace) to
give the final standard time of the operation. The time study activity requires a well-trained analyst
observing a representative operator performing the operation for several cycles, followed by some
clerical calculation to obtain the standard time. Our proposed method aims to replace this tedious
time study process with a computer vision-based model that can automatically analyze video clip(s)
of an operation and return a more accurate standard time than a human analyst. The model is an
integration of two models: a computer vision model and a time study model.

3.1 Computer Vision Model

The computer vision model implements the CNN model to perform video frame (or image)
classification. As images are represented as pixel values, changes in the patterns of the pixel values
can be easily identified by the model. Grayscale images in Fig. 1 simply illustrate this idea.

From Fig. 1, when the operator’s arm moves, the patterns of the pixel values also change, therefore,
a change in action or motion can be detected. A grayscale pixel value ranges from 0 to 255. The pixel
values closer to zero represent the darker shade, while the values closer to 255 represent the lighter or
the white shade. In Fig. 1a, the pixel values of 200 that are clustered at the center of the highlighted
area represent the operator’s left arm. Once the operator moves his arm to the center of the video as
shown in Fig. 1b, the pixel values of 200 that represent the operator’s left arm moves to the right of the
highlighted area (i.e., the center of the workbench). A colored image uses the same logic but with three
times the amount of pixel values as a grayscale image because of the three different color channels in
the image: red, green, and blue (see Fig. 2).

A CNN model has been proven to be appropriate for this role in detecting patterns in an image. The
CNN model in this study aims to detect the work element to which a motion in a video frame belongs.
That is, the output from the CNN model is the classification probabilities of each work element for a
given video frame. The time study model then analyzes the CNN output to record the time when there
is a change in the classified work element of a video frame to the next video frame. The CNN models
to process the grayscale and color images are trained and their results are compared to check whether
processing grayscale and color videos yield significantly different results.
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Figure 1: (a) Pixel values of a work element in a still image from a video of an operation; (b) Pixel
values of another work element in a still image from a video of the same operation

Figure 2: The pixel values of the highlighted area in the color image

Originally, our CNN model has a similar structure to the model developed by Goodfellow et al. [19].
However, since the CNN model analyzes each video frame (a single still image) independently, there
is a “flickering effect,” where the classification of work element changes often from multiple video
frames within the same work element. As a result, the element time cannot be recorded accurately. To
overcome this problem, we implement the rolling-prediction averaging [20] in the time study model to
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improve the work element classification accuracy of video frames. We referred to our implementation
as rolling-classification averaging.

Our model development consists of two steps. First, the CNN model is trained to classify the work
element of a video frame. Then, the time study model that implements rolling-classification averaging
is constructed to find each work element time based on the classification output of the CNN model.
The structure of the developed CNN models is summarized in Tab. 1. The CNN models to detect color
and grayscale images have the same model architecture, with a slightly different number of trainable
parameters. The two-dimensional (2D) convolutional layers apply filters to extract features. Batch
normalization normalizes the outputs of the preceding convolutional layers to avoid overfitting of the
model. The 2D max pooling layers then reduce the dimensionality of the network. Finally, the fully
connected layers take the information from previous layers and aim to classify the input image. The
outputs of the CNN model are the classification probability of each class, i.e., work element in this
application.

Table 1: CNN model summary

Layer Grayscale CNN model Color CNN model
Output shape Parameters Output shape Parameters

2D convolution (None, 224, 224, 128) 1,280 (None, 224, 224, 128) 3,584
Batch normalization (None, 224, 224, 128) 512 (None, 224, 224, 128) 512
2D max pooling (None, 112, 112, 128) 0 (None, 112, 112, 128) 0
2D convolution (None, 112, 112, 64) 73,792 (None, 112, 112, 64) 73,792
Batch normalization (None, 112, 112, 64) 256 (None, 112, 112, 64) 256
2D max pooling (None, 56, 56, 64) 0 (None, 56, 56, 64) 0
2D convolution (None, 56, 56, 32) 18,464 (None, 56, 56, 32) 18,464
Batch normalization (None, 56, 56, 32) 128 (None, 56, 56, 32) 128
2D max pooling (None, 28, 28, 32) 0 (None, 28, 28, 32) 0
Flatten (None, 25088) 0 (None, 25088) 0
Dense (None, 108) 2,709,612 (None, 108) 2,709,612
Batch normalization (None, 108) 432 (None, 108) 432
Dropout (None, 108) 0 (None, 108) 0
Dense (None, 5) 545 (None, 5) 545

Total parameters 2,805,021 2,807,325

The CNN training procedure is illustrated in Fig. 3. A video of a manufacturing operation is
recorded by a camera. After recording, the video file is converted into individual still images or frames.
A human modeler, with the knowledge of the conditions of the endpoint of each work element, then
watches the video to approximate the times in the video that the changes of work elements occur. The
video is rewatched on a frame-by-frame basis to accurately determine the timings of the endpoints
of the work elements. All video frames that precede an endpoint can, therefore, be accurately labeled
with the corresponding work element that they belong to. The manufacturing operation in this paper
consists of four work elements. Thus, there are five label classes: four work elements and one element
representing the operator being idle. After labeling all individual images, the images are separated into
training and test sets. The CNN model is trained until the accuracy of classifying the images stagnates
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or there are signs of overfitting. Finally, the classification performance of the trained CNN model is
evaluated using the test set.

Figure 3: CNN model training procedure

3.2 Computer Vision-based Time Study Model

The CV-TS model, which contains the previously trained CNN model in its architecture, is then
constructed. The flowchart of the CV-TS model is shown in Fig. 4. The training procedure of the model
starts by obtaining the video of the work process and initializing the following parameters: frame f ,
element i, cycle n, and timestamp of each element ti. The timestamp ti, obtained by the CV-TS model,
has the index i that indicates the work element index. That is, t0 is the start of the first element, t1 is
the end of the first element time and the start of the second element, and so on. Note that at the end
of the last element of each cycle, the index is reset to t0 again. The recorded values of the timestamps
are relative to the length of the video. It is the time of frame f at which the CV-TS model determines
that an element has ended. All frames f from the video are inputted into the trained CNN and are
sequentially processed to obtain the classification probability of each element.
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Figure 4: The procedure of the CV-TS model

Next, the rolling-classification averaging is applied to improve the work element classification
accuracy and eliminate the flickering effect that might occur if individual frames are independently
analyzed instead. The average probability of each element from K latest frames is calculated. K is a
hyperparameter that characterizes the sensitivity of classification. A high value of K makes the CV-TS
model less sensitive to the change in motions, which can lower the chance of incorrect classification.
Nevertheless, a too high value of K can result in an insensitive model that does not classify any
difference in work elements and ends up with the same classification for every frame, which makes the
CV-TS model ineffective. On the other hand, a low value of K makes the CV-TS model more sensitive
to the change in motions, resulting in higher timing accuracy, but more susceptible to the flickering
effect that leads to incorrectly classifying the work elements. Specifically, the flickering effect occurs
when the classification of the model incorrectly switches rapidly between two labels in the video on
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subsequent frames. The optimal value of K varies and depends on the complexity and time duration
of the work elements.

Moreover, a video with higher frame rate tends to show smoother motion from frame to frame. In
other words, two consecutive video frames are quite similar to each other, therefore, a higher value of
K may be needed. On the other hand, a video with lower frame rate tends to show less smooth motion
where two consecutive video frames are relatively different from each other. Therefore, a higher value
of K can yield inaccurate results. Finding an appropriate value of K for a given video with a specific
frame rate for an operation requires a tuning process to find the optimal K. In this process, various
values of K should be tested and the value that yields the most satisfactory results should be selected.
A comprehensive relationship between K and the video’s frame rate is not explored in this study. The
provided explanation is only a guideline on how to set the initial parameter K.

In this study, values of K in the range of 30 to 80 with an increment of 5 are tested to find a suitable
value of K. Time study is performed with 11 values of K and the obtained time (Ei ,n) of element i in cycle
n of each K is compared to the reference time (Ri ,n) of element i in cycle n to find the mean absolute error
(MAE), shown in Eq. (1). The reference time is obtained by an expert that manually times the operation
in the video in slow motion on a frame-by-frame basis to record the element times as accurately as
possible. In this case, the reference times represents the best possible values that an operator can obtain
when performing the time study. The MAE from different values of K are compared and the K that
results in the lowest MAE is chosen to be used in the final time study model. The MAE of each K
tested is plotted in Fig. 5. It is found that the K value of 60 frames results in the minimum MAE.

MAE =
∑I

i

∑N

n

∣
∣Ei,n − Ri,n

∣
∣

I × N
(1)

Figure 5: The MAE of each hyperparameter K

The work element with the largest average probability is chosen as the classification of the current
frame that is analyzed, hence, the so-called rolling-classification averaging. Finally, the classification
of the current frame that has been obtained from the rolling-classification averaging is compared to
the previous frame’s classification. If both classifications are the same, then it is considered that the
current classified work element is still ongoing and the timing continues. Otherwise, it is considered
that the previous work element has ended and a new work element has begun, at which point the
timestamp ti is recorded. The timestamp ti is the cumulative time of the processed video, with the
initial timestamp t0 = 0. Once a cycle ends, t0 is set to the current timestamp when the cycle ends. The
time (Ei ,n) of element i in cycle n is calculated by taking the difference between the current timestamp ti

and the previous timestamp ti−1, shown in Eq. (2). A new cycle starts when the time of the last element
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in the cycle has been calculated. Every frame of the video is processed sequentially until the last frame
of the video has been analyzed, all work element times are then recorded and a data file is generated.

Ei ,n = ti − −ti−1 (2)

4 Experiment

In this section, the CV-TS model’s performance is evaluated using a 352 × 288 pixel video footage
of an extension joint assembly operation (see Fig. 6). The video was originally recorded to teach
undergraduate students how to conduct a time study. The extension joint assembly operation contains
four work elements. The start conditions of each element are defined in Tab. 2.

Figure 6: A frame of each work element from the extension joint assembly operation video

Table 2: Start condition and description of work element in the extension joint assembly operation

Element Start condition Description

1 When the operator’s hands reach the joint
storage bin.

Grab the joint and place it at the center of
the workbench.

2 When the operator’s hands reach the
rubber ring storage bin.

Grab the rubber ring and assemble it with
the joint.

3 When the operator’s hands reach the
plastic core storage bin.

Grab the plastic core and assemble it with
the sub-assembly from Element 2.

4 When the operator’s hands reach the joint
cover storage bin.

Grab the joint cover and assemble it with
the sub-assembly from Element 3.
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The video of the extension joint assembly operation contains 10 cycles. The operator performs
each cycle in the same manner. The video has a resolution of 352 × 288 pixels and a frame rate of 25
frames per second. The length of the video is 2 min and 22 s. The video is converted into individual
frames (images). It is not required to convert every frame in the video into an image, since doing so
will produce many identical images and add unnecessary computation to the CNN model training
process. Instead, video frames can be converted into images in an interval, for example, every 10th

frame in the video. In this experiment, every 5th frame in the video is converted into an image, resulting
in 710 images in total. To further demonstrate the applicability of the CNN model, the images from
the video are modified so that they appear to the CNN model as if there are variations in the recording
conditions, e.g., lighting, operator, etc. The image modification is performed by image augmentation,
a technique to increase the diversity of the training set by applying random transformations [21].
Using this technique, the images are randomly cropped, rotated, and their brightness and contrast
modified. The transformations were not drastic as the conditions in the manufacturing settings are
usually consistent. After all the images are transformed, the images are split into the training and test
sets, using the common 80/20 split. 80 percent of the images (568 images) are randomly assigned to the
training set and the remaining 20 percent (142 images) to the test set and used to evaluate the trained
CNN model. The implementation of image augmentation and train/test split is demonstrated in Fig. 7.
The experiment was carried out on an Intel Core i7-9700K 3.60 GHz personal computer with 16 GB
of RAM and NVIDIA GeForce RTX 2060 SUPER 8 GB GPU.

A stochastic gradient descent (SGD) optimizer [22] is used in the model training. According to a
survey done on optimization methods by [23], SGD is one of the most popular optimization methods
used in machine learning. It is used to find the model parameters that correspond to the best fit between
actual and predicted outputs of the model. The training of the grayscale and color CNN models was
performed for 50 epochs, at which point the training accuracies start to stagnate and both models’
training time was approximately five minutes (see Fig. 8). The accuracy of the grayscale and color
CNN models on the image test sets were 86 and 89 percent, respectively. The classification evaluation
metrics of the trained models are shown in Tab. 3.

The time study model is then constructed to automatically time the work elements by analyzing
the classification outputs from the CNN model. After the two models are integrated, the video of
the extension joint assembly operation is analyzed and the resulting element times are obtained in a
format of a .csv data file. The processing times of the grayscale and color video are both approximately
six minutes. The result is then compared with the reference time. In an ideal case, the work element
times from the model should be the same as those of the reference time. A statistical test, analysis
of variance (ANOVA), is performed to check whether there is a significant difference between the
reference element times and the times obtained by the CV-TS model.
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Figure 7: The procedure of image augmentation and train/test split

Table 3: Classification evaluation metrics of the trained CNN models

CNN model Accuracy Precision Recall F1-score

Grayscale 0.86 0.82 0.84 0.84
Color 0.89 0.89 0.85 0.86
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Figure 8: (a) Accuracy of the CNN model trained to detect the grayscale image; (b) Accuracy of the
CNN model trained to detect the color image

5 Results

The video of the extension joint assembly operation is analyzed by the proposed CV-TS model,
which generates two output files. The first output is the same video with additional work element time
data annotated in the video frames. The annotation can help a human analyst to evaluate whether
there are any misclassifications or timing errors (see Fig. 9). The video can be found in the “Data
Availability Statement” section at the end of the paper.

Figure 9: A sample frame of the video output from the model

The annotations display the following information: The classified work element of the current
frame, most updated work element times and cycle time, and the cumulative number of cycles
completed. The annotations allow the analyst to pinpoint the cause of the problem when irregularities
are found in the time study data. For example, if the recorded time of Element 4 in Cycle 2 is found
to be shorter than average, the analyst can view the video and see if the model correctly classified the
work element by looking at the annotations. This may be caused by the camera view being obstructed
or the operator accidentally dropping the workpiece, which leads to misclassification by the model.
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Although the annotations are the only display of the output (i.e., not a part of the model’s analysis),
the annotations can help with the result verification and debugging process.

The other output is a .csv data file that contains the element times of each work cycle, along with
each work element’s average time and standard deviation. The .csv data file is automatically generated
by the time study model, which makes the time study process more convenient and removes the risk
of human errors from manual data entry by the analyst. Tab. 4 contains the work element times from
the model using color video and grayscale video as input files. In addition, the reference work element
times of each cycle are shown in Tab. 4. The reference times are obtained by a human analyst watching
the operation in the video in slow motion. Thus, the reference times represent the completely accurate
time study results, where the start and the end of each work element are correctly identified. These
results are otherwise, impossible to obtain if the time study were conducted in real-time, especially in
the case where the motions are fast, which makes the timings difficult to accurately record.

Table 4: Records of the element times using color input, grayscale input, and reference time

Cycle Color video input Grayscale video input Reference time

Element Cycle Element Cycle Element Cycle

1 2 3 4 Time 1 2 3 4 Time 1 2 3 4 Time
1 1.96 1.48 3.44 4.12 11.00 1.80 1.84 2.92 4.44 11.00 2.08 1.92 2.09 5.39 11.48
2 1.76 1.68 2.64 4.52 10.60 1.68 1.88 2.36 4.68 10.60 1.99 1.91 1.94 5.23 11.07
3 2.20 1.88 2.16 5.16 11.40 2.04 2.08 1.88 5.44 11.44 1.82 2.18 1.81 5.43 11.24
4 2.00 2.32 2.52 7.44 14.28 1.92 2.52 2.12 7.64 14.20 2.08 2.47 2.02 7.85 14.42
5 4.00 1.76 2.96 7.04 15.76 4.00 1.88 2.40 7.48 15.76 3.95 1.87 1.84 8.34 16.00
6 1.92 1.80 2.64 5.88 12.24 1.84 2.04 2.28 6.08 12.24 1.89 1.69 2.12 6.80 12.50
7 2.12 1.60 2.64 5.96 12.32 2.04 1.72 2.56 6.04 12.36 1.96 1.97 2.30 6.13 12.36
8 2.28 1.76 2.28 8.88 15.20 2.08 2.04 2.16 8.88 15.16 2.32 1.98 2.08 8.92 15.30
9 2.40 2.00 9.96 6.40 20.76 2.36 1.64 10.20 6.60 20.80 2.46 2.06 9.28 7.38 21.18
10 2.40 2.48 4.72 4.48 14.08 2.16 1.88 5.36 4.64 14.04 2.32 2.77 3.84 5.09 14.02

Average 2.30 2.04 2.97 6.61 13.78 2.26 2.22 2.91 6.38 13.77 2.29 2.08 2.93 6.66 13.96
Standard
deviation

0.63 0.31 2.35 1.50 3.04 0.66 0.24 2.58 1.47 3.04 0.62 0.32 2.31 1.41 3.07

For example, the timestamps of the color video input are obtained as follows: at the start of the
video (initial timestamp t0) is set to 0. When the first element of the first cycle ends, the timestamp
t1 records the current time in the video, t1 = 1.96. The timestamping repeats until the last element
of the first cycle has ended with a cycle time of 11.00 s, t0 is reset to the current timestamp of the
video (t0 = 11.00 s). The work element time is estimated from the difference between two adjacent
timestamps, e.g., the element time of element 1 is equal to t1 − t0 = 1.96 s.

To test the performance of the proposed CV-TS model, the element times obtained from the
model are compared to the reference times. To evaluate the CV-TS model, we check if the element
times obtained from the model are statistically different from the reference times. If the results are not
statistically different, it is inferred that the CV-TS model can adequately perform an accurate time
study. An ANOVA is performed to test whether there are statistical differences among the estimate
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times from the model and the reference times (see Tab. 5). The p-value from the ANOVA is used to
check for the statistical significance. From the ANOVA, there are no significant differences between
the average work element times obtained from the CV-TS model using color and grayscale inputs
and those of the reference element times, p-value = 0.74. This indicates that the CV-TS model can
accurately and adequately record the element times, which can lead to the correct standard time of
the assembly operation. Note that the ANOVA is performed while taking into account the significant
effects of the differences in the work elements and cycles. Naturally, different work elements require
significantly different times to carry out, and the operator performance from one cycle to other cycles is
not the same. Finally, Fig. 10 illustrates the correlation between the element times of the two methods,
all pairs of correlation coefficients are at 0.997, indicating very high consistency between them.

Table 5: ANOVA table

Source DF Adj SS Adj MS F-value P-value

Method 2 0.06 0.03 0.30 0.74
Element 3 348.69 116.23 1086.04 0.00
Cycle 9 62.66 6.96 65.06 0.00
Element ∗ Cycle 27 162.56 6.02 56.26 0.00
Error 78 8.35 0.11
Total 119 582.32

Figure 10: Correlation between element times from the two methods

6 Conclusions

A computer vision-based time study model that automatically records work element times,
which are differentiated by operator’s motions, from a video is proposed in this paper. Based on
the experiment, the model’s estimated work element times from grayscale video and color video
are compared with the reference time. ANOVA result indicates no statistically significant difference
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among them. Therefore, it can be concluded that the proposed CV-TS model can perform a time
study indistinguishably from the reference value. In addition, the computational power required to
process color and grayscale videos is indifferent as the video size is small. The accuracies of the color
and grayscale CNN are also relatively the same since the video of the operation has good contrast
between the operators’ body parts and the surroundings. However, the computational requirement
and accuracy can be significantly different in videos of other operations. Increasing the complexity
of the operation or random noises in the video may reduce the model’s effectiveness, therefore other
advanced variants of CNN may be required.

As future work, these issues will be further investigated. Random, unrelated, incorrect motions
and less contrast background and surroundings will be deliberately introduced to the video of the
operation. This is to test whether the model can accurately classify these motions and time the work
elements. The complexity of the operation can also be increased, such as increasing the number of
motions, work elements, and adding multiple operators.

The CV-TS model can yield accurate work element times that can be used to determine the
standard time. Accurate standard time is essential for production planning and process improvement.
Implementing the model can help companies eliminate the need for analysts to perform time studies
manually. This allows the analysts to work on other creative tasks, such as identifying rooms
for improvement, implementing solutions to improve the operations. In addition, the data can be
integrated with other data obtained from IoT devices to perform further analysis to improve the
system. Finally, there are numerous potentials and benefits from applying the proposed model to
various manual operations in both service industries and labor-intensive manufacturing industries.
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