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Abstract: Recently, reversible data hiding in encrypted images (RDHEI)
based on pixel prediction has been a hot topic. However, existing schemes
still employ a pixel predictor that ignores pixel changes in the diagonal
direction during prediction, and the pixel labeling scheme is inflexible. To
solve these problems, this paper proposes reversible data hiding in encrypted
images based on adaptive prediction and labeling. First, we design an adaptive
gradient prediction (AGP), which uses eight adjacent pixels and combines
four scanning methods (i.e., horizontal, vertical, diagonal, and diagonal) for
prediction. AGP can adaptively adjust the weight of the linear prediction
model according to the weight of the edge attribute of the pixel, which
improves the prediction ability of the predictor for complex images. At the
same time, we adopt an adaptive huffman coding labeling scheme, which can
adaptively generate huffman codes for labeling according to different images,
effectively improving the scheme’s embedding performance on the dataset.
The experimental results show that the algorithm has a higher embedding rate.
The embedding rate on the test image Jetplane is 4.2102 bpp, and the average
embedding rate on the image dataset Bossbase is 3.8625 bpp.

Keywords: Reversible data hiding; adaptive gradient prediction; huffman
coding; embedding capacity

1 Introduction

With the continuous development of digital media technology [1], the security problem of
information transmission is also becoming more and more serious. Information hiding plays a vital
role in information security as an essential information protection technology. Information hiding
refers to the stealthy embedding of information into a carrier without arousing suspicions [2], such as
steganography [3,4] and digital watermarking [5,6]. However, these methods will make certain changes
to the carrier, resulting in the receiver being unable to recover the original carrier after extracting the
secret information, which is terrible in the military and medical fields because the carrier’s original
information is also terrible essential. reversible data hiding (RDH) can effectively solve this dilemma
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and therefore has become a popular research direction, which can extract secret information accurately
and recover the original image without image quality degradation. Early proposed RDH techniques
are mainly implemented in the plaintext domain and can be classified into three categories depending
on the embedding ways: difference expansion [7,8], histogram shifting [9,10], and lossless compression
[11,12]. However, with the increasingly severe privacy leakage problem, coverless steganography [13],
information hiding technology in the ciphertext domain, and multimodality [14] have attracted more
and more attention.

Therefore, based on RDH, researchers have proposed reversible data hiding in encrypted images
(RDHEI), which additionally allows the data hider to hide additional information in the ciphertext.
As shown in Fig. 1, the existing RDHEI technologies are mainly based on RDH combined with two
mechanisms: vacating room after encryption (VRAE) [15–18] and reserving room before encryption
(RRBE) [19–25]. VRAE can hide data by the redundant space after image encryption, for example,
Zhang et al. [16] proposed an RDHEI scheme based on image block embedding in 2011, embedding
data by modifying a part of encrypted data and supporting the receiver to extract data and recover
the image in a separable manner, but the image block size limits its capacity; Zhang et al. [17] reserved
more space for auxiliary information and secret data by compressing the least significant bit (LSB)
of encrypted pixels; Hong et al. [18] proposed a new smoothness evaluation function to evaluate the
fluctuation of pixels, which effectively improves the low embedding rate in the case of small image
blocks. As seen, VRAE cannot achieve good embedding performance as the encryption operation
inevitably destroys the spatial correlation of the original image. On the contrary, RRBE makes full
use of the redundant information of image pixels to reserve space before image encryption and then
transfers it to the encrypted image with higher embedding capacity. Obviously, it makes more sense
for us to adopt RRBE as the research subject.

Figure 1: Two frameworks of RDHEI algorithm: (a) VRAE (b) RRBE

Yi et al. [22] proposed an RDHEI scheme based on parametric binary tree labeling (PBTL), which
proposed a PBTL pixel labeling scheme to ensure that the scheme can extract data and restore images
reversibly. Wu et al. [23] proposed an RDHEI scheme based on improved parametric binary tree
labeling (IPBTL), which improves upon scheme [22]. The IPBTL classifies and labels pixels according
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to the prediction error of the image, leaving space for data embedding and improving the embedding
rate of the scheme. However, its predictor and coding efficiency still affect the embedding performance.
Yin et al. [24] designed an RDHEI method based on multiple most significant bit prediction and
huffman coding (MMPHC), which compared the most significant bit (MSB) of the original pixel
with the predicted pixel, used the bits of the same sequence as a label, and marked the pixel with
a pre-defined huffman code. However, experiments show that predefined huffman encodings do not
perform markup well. To take advantage of the correlation of adjacent pixels, Yin et al. [25] proposed
an RDHEI scheme based on pixel prediction and bit-plane compression (PPBC) by utilizing the
correlation of neighboring pixels, which reserved more space for data embedding due to its better
compression effect. Despite the exemplary achievements of all the above-mentioned methods, they
share a common drawback: the used classifier median edge detector (MED) has a small receptive
field, its prediction form is too homogeneous to predict complex images. Besides, the existing codes
still have many shortcomings as an essential aspect. Most of the methods use the correlation between
pixels to generate the embedding space and achieve the reversible embedding and extraction of secret
information by establishing the mapping relationship between the prediction error of the pixel and the
marking code. While this coding approach has two drawbacks: 1. The sequence of labeling depends on
the set predefined parameters, and different parameter settings may yield different embedding rates,
which leads to instability of embedding rates. 2. It uses a uniform sequence for labeling different types
of images, so it has some limitations, e.g., it does not work well on large image datasets.

To solve the above problem, we design an adaptive gradient predictor (AGP) and use an adaptive
huffman coding labeling method to propose a new RDHEI algorithm. The proposed adaptive gradient
predictor uses eight adjacent pixels that combine four scanning methods (i.e., horizontal, vertical,
diagonal, and anti-diagonal) in prediction, whose weights can be adaptively adjusted to construct a
local linear prediction model based on the edge properties of the neighboring pixels. The adaptive
huffman coding tagging algorithm statistically analyzes the prediction errors of different images and
then adaptively generates the corresponding coding rules to achieve better results on multiple datasets.

The main contributions of this paper are as follows:

1. We propose a new and well-performing adaptive gradient prediction model, which can assign
different weights to the surrounding pixels according to the neighborhood complexity of the
target pixels in the prediction process, and consider the impact of pixel changes in different
directions on the prediction, which better characterizes the local features of the target pixels.

2. We further combine the proposed AGP with the adaptive huffman coding labeling method to
statistically analyze the prediction errors of different images and adaptively generate different
huffman codes for labeling.

3. Experimental results show that our scheme achieves higher embedding rates, especially on large
datasets, e.g., the average embedding rate of the BOSSbase dataset reaches 3.8625 bpp, which
exceeds other state-of-the-art algorithms.

The rest of this paper are organized as follows. Section 2 presents the proposed scheme proposed,
Section 3 presents the experimental evaluations, and Section 4 concludes the article.

2 Proposed Scheme

This section illustrates reversible data hiding in encrypted images based on adaptive gradient
prediction and code labeling method. The algorithm framework is shown in Fig. 2, which can be
divided into three parts. In the first part, the content owner first predicts and encrypts the original
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image using AGP and image encryption keys. Then, the huffman coding is adaptively generated
according to the prediction error, and the coding rules are embedded into the encrypted image. In
the second part, after obtaining the marked encrypted image, the data hider first extracts the encoding
rules to determine the position of the reserved room. Then the encrypted information is embedded
in the reserved room to form a marked stego image. In the third part, the receiver can perform
three operations. The original secret information can be extracted when the information hiding key is
obtained. The original image can be recovered when the image encryption key is obtained. The original
image and the secret information can be obtained simultaneously when both keys are received.

Figure 2: The framework of the proposed scheme

2.1 Image Preprocessing

Before embedding the information, the content owner preprocesses the original image to reserve
room for the embedded information. The preprocessing process of our scheme mainly includes two
parts. First, the prediction error is calculated according to the AGP, and then the prediction error is
statistically analyzed, and the huffman code is adaptively generated.

2.1.1 Adaptive Gradient Prediction

The proposed adaptive gradient predictor AGP is shown in Fig. 3, which can meet the multi-
directional requirements of natural images for texture attributes by perceiving pixel changes from four
directions: horizontal, vertical, diagonal, and anti-angle around the target pixel. Its weight distribution
of different gradient pixels is adjusted according to the position of the target pixel. The specific
prediction steps can be divided into two stages. The gradient strength of the predicted pixel is calculated
first. Then, according to the gradient environment where the target pixels are located, the weights are
adaptively adjusted to construct a local linear prediction model for prediction. The pixels in the first
row and the first column remain unchanged as reference pixels during the image prediction process.
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Figure 3: Predictive template used by AGP

Before calculating the local complexity, the gradient strength of the local pixel is estimated by
Eq. (1).

Gh =
1∑

t=0

|I(i−1,j+1−t) − I(i−1,j−t)| +
1∑

t=0

|I(i−t,j−1) − I(i−t,j−2)|

Gv =
1∑

t=0

|I(i−2,j+1−t) − I(i−1,j+1−t)| +
1∑

t=0

|I(i−1,j−1−t) − I(i,j−1−t)|
Gd = |I(i−1,j−2) − I(i,j−1)| + |I(i−2,j) − I(i−1,j+1)|
Ga = |I(i−1,j−1) − I(i,j−2)| + |I(i−2,j+1) − I(i−1,j)|

(1)

where Gh, Gv, Gd, and Ga represent the gradient strengths of the predicted pixels from the horizontal,
vertical, diagonal, and anti-diagonal directions, respectively.

The predicted value of the pixel in our scheme is obtained according to the weighting of the domain
pixels. According to the texture properties of the pixels, the prediction cases are divided into sharp
edges and non-sharp edges. Sharp edges indicate significant changes in surrounding pixels, and non-
sharp edges indicate regular or minor changes in surrounding pixels. When the pixel is at a sharp edge,
the weight distribution of the scanning mode is shown in Fig. 4.

As shown in Fig. 4, to adapt the scheme to images with complex textures, this scheme adjusts the
scanning mode’s weight according to the neighborhood complexity of pixels. When the target pixel
is on a sharp horizontal edge, its predicted value is mainly affected by the pixels in the horizontal
direction, so the weight of the horizontal scanning method is larger. The weight of the diagonal
direction is also divided into strong edges and weak edges, which are determined according to the
surrounding gradient strength. When the pixel is on a sharp edge, the predicted value is obtained by

I ′
(i,j) = �γt + ω�t� ,t =

{
0 Gv − Gh>T1

1 Gh − Gv ≥ T1
ω =

{
1 |Gd − Ga| > T2

1
2

|Gd − Ga| ≤ T2

�0 = 1
32

(
2(I(i−1,j−1) − I(i−1,j−2)) + (I(i−1,j−2) − I(i,j−1)) + (I(i−1,j+1) − I(i−2,j))

)
�1 = 1

32

(
2(I(i−1,j+1) − I(i−2,j+1)) + (I(i−2,j+1) − I(i−1,j)) + (I(i−1,j−1) − I(i,j−2))

)
γ0 = I(i,j−1) + I(i,j−1) − I(i,j−2)

2
, γ1 = I(i−1,j) + I(i−1,j) − I(i−2,j)

2

(2)



3618 CMC, 2022, vol.73, no.2

where γ0, γ1 represent the dominant values when predicting pixels at sharp horizontal and vertical edge
locations. �0, �1 represent the influence of pixels in the diagonal and anti-diagonal directions on the
predicted value during prediction, respectively. t is used to judge that the predicted value is mainly
affected by the pixels in the vertical or horizontal direction. ω represents the weight of the scanning
mode of different gradient strengths.

Figure 4: Weight assignment of scan mode for sharp edges

When the pixels are on sharp horizontal and diagonal edges, the vertical and diagonal pixels vary
greatly. The predicted pixels are mainly affected by the horizontal and nearest diagonal pixels. When
the pixels are on sharp vertical and diagonal edges, the horizontal and diagonal pixels vary greatly.
The predicted pixels are mainly affected by the vertical and nearest diagonal pixels. When the pixels
are on a non-sharp edge since the pixels from all directions do not change much, a prediction operator
θ is calculated by Eq. (3). Then the prediction value is fine-tuned according to the prediction operator
and the pixel’s position.

Non-sharp edges are divided into ordinary edges and weak edges according to the gradient
strength around the pixel. When the pixels are on a non-sharp edge, the weight distribution of the
scanning mode is shown in Fig. 5.

where the red and blue lines in Fig. 5 represent the pixels participating in the prediction when
the pixels are on non-sharp horizontal and vertical edges, respectively. Pixel predictions on non-sharp
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edges are calculated by Eq. (4).

θ =
⌊

I(i−1,j+1)

2
+ 2I(i−1,j) − I(i−2,j)

8
+ 2I(i,j−1) − I(i,j−2)

8

⌋
(3)

I ′
(i,j) =

{
εt, (|Gv − Gh|>T4)
εt + θ

2
, (|Gv − Gh|<T4)

, t =
{

0 Gv − Gh>T3

1 Gh − Gv > T3

ε0 = θ + I(i,j−1)

2
+ I(i,j−1) − I(i,j−2)

8
+ I(i,j−1) − I(i−1,j−2)

16

ε1 = θ + I(i−1,j)

2
+ I(i−1,j) − I(i−2,j)

8
+ I(i−1,j) − I(i−2,j+1)

16

(4)

where ε0, ε1 represent the dominant values when predicting pixels at non-sharp horizontal and vertical
edge locations. t is used to judge that the predicted value is mainly affected by the pixels in the vertical
or horizontal direction.

Figure 5: Weight assignment of scan mode for ordinary edges and weak edges

The above prediction coefficients and thresholds are selected according to an exhaustive algo-
rithm. A threshold selection experiment is set up in Section 3.1, which verifies that our scheme can
achieve the best embedding rate under the selected threshold. After calculating the predicted value of
the pixel, the prediction error of the pixel can be calculated by Eq. (5).

E(i,j) = I(i,j) − I ′
(i,j) (5)

2.1.2 Generation of Adaptive Huffman Codes

Our scheme adopts an adaptive huffman coding [26] for pixel marking to ensure that the scheme
achieves a better coding effect. For different pictures, the scheme first performs statistical analysis on
the prediction error and then adaptively generates huffman coding according to the probability of the
error occurrence. The following will introduce the adaptive huffman coding marking process in detail
with an example.

First, count the frequency of prediction errors. Since the length of the huffman code used for
marking is no longer than 8 bits, the average frequency of each codeword is 1/256. This feature can
be used as a threshold for dividing the frequency of prediction errors. Pixels with prediction error
frequency within the average frequency range are classified as embeddable pixels, and those not within
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the range are non-embeddable pixels. Therefore, the scheme divides the remaining pixels except for the
reference pixels into two parts: embeddable pixels and non-embeddable pixels. Taking the 6 × 6 block
of the Lena image as an example, the adaptive huffman coding generation process shown in Fig. 6 is
performed.

Figure 6: Adaptive huffman coding generation

The blocks selected in Fig. 6 do not contain non-embeddable pixels for the convenience of
representation. The scheme uses the same code for marking for non-embeddable pixels whose error
frequency is less than 1/256.

2.1.3 Image Encryption

After obtaining the prediction error of the original image I and huffman encoding, the original
image is encrypted using a stream cipher. First, a pseudo-random matrix P of size m × n is generated
using the key. Then, convert I and P into binary form and encrypt them by bitwise XOR:

Ik
E(i, j) =Ik(i, j) ⊕ Pk(i, j) k = 1, 2, · · · , 8 (6)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Ik
E(i, j), Ik(i, j), and Pk(i, j) represent an encrypted image IE, original image

I , and the kth bit of the (i, j)th pixel in the error matrix P, respectively.

2.1.4 Labeling with Adaptive Huffman Codes

After adaptively generating the huffman code, the pixels can be labeled. All pixels are divided into
reference pixels, embeddable pixels, and non-embeddable pixels. The reference pixel is not labeled, and
its room is used to embed the huffman coding rule, that is, Correspondence between prediction error
and huffman code. The original value of the reference pixel is stored in the reserved room as part of
the auxiliary information. The bits of the non-embeddable pixels replaced by the huffman code are
also stored as auxiliary information. The remaining room of the embeddable pixels is used to embed
auxiliary information and secret information. Taking the 4×4 block of the Lena image as an example,
the pixel labeling process is as shown in Fig. 7.

To prevent the generated huffman code from being the same as the original bit of the labeled part
of the pixel, resulting in the leakage of image information. As shown in Fig. 7c, the scheme adopts
sorting in reverse order. This method ensures that the resulting marked encrypted image has a higher
level of security. The part marked in red in Fig. 7d represents the labeled bit, and ‘-’ represents the
reserved room for data embedding.
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Figure 7: Pixel labeling process

2.2 Information Embedding

Before data hiding, the huffman coding rules are extracted from the reference pixels of ÎE, and then
the position of the reserved room is determined. To ensure the security of the embedded information,
the secret information needs to be encrypted by the information hiding key kD before embedding.
Finally, the information is embedded in the reserved room by bit replacement.

2.3 Information Extraction and Image Recovery

After receiving the marked stego image, the receiver implements different operations according to
the key type obtained.

2.3.1 Information Extraction

The receiver who obtains the data hiding key kD can extract the data: the receiver first extracts
the coding rules from the reference pixels of ÎE−D and determines the position of the reserved room.
Then, the embedded secret data and auxiliary information are extracted. The encrypted data can be
decrypted to recover the original secret information according to the key kD. Fig. 8 shows the process
of extracting secret information.

Figure 8: The process of extracting secret information
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2.3.2 Image Recovery

The receiver who obtains the image encryption key kI can recover the original image: after
extracting the auxiliary information, the encrypted reference pixels and the labeled bits of the non-
embeddable pixels can be restored according to the auxiliary information. The original reference
pixels and non-embeddable pixels can be recovered according to the key kI . Then, the prediction
error corresponding to the embeddable pixel can be determined according to the huffman coding rule.
Finally, since the prediction process of AGP is reversible, the prediction value of the embedded pixel
can be obtained from the reference pixel. The original embeddable pixels can be recovered by summing
the prediction error and the predicted value. Fig. 9 shows the process of image recovery.

Figure 9: The process of image recovery

3 Experimental Results and Analysis

Experimental environment: MATLAB R2019a; Experimental setup: we test the effect of different
thresholds on the performance (see in Section 3.1), the comparison and analysis with other schemes
[22–25] (see in Section 3.2), the security analysis of our scheme (see in Section 3.3).

Metrics: the embedding rate (ER, expressed in bits per pixel (bpp)), the average embedding rate,
Point Signal Noisy Ratio (PSNR), and Structural Similarity (SSIM).

3.1 Threshold Selection Experiment

From Section 2.1.1, we know that AGP needs to adjust the threshold according to the edge case
where the pixel is located. Therefore, to verify the effectiveness of the threshold, we take the Lena
image as an example and conduct the threshold selection experiments shown in Tab. 1.
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It can be seen from Tab. 1 that when the predicted pixel is at a sharp edge, the embedding rate is
optimal when T1 is 80 and T2 is 80. Similarly, when it is on a non-sharp edge, the scheme’s performance
is optimal when the threshold T3 is 8 and T4 is 32.

Table 1: ER under different threshold selection

T1 ER T2 ER T3 ER T4 ER

70 3.4707 70 3.4717 8 3.4718 8 3.4698
80 3.4718 80 3.4718 16 3.4579 16 3.4661
90 3.4709 90 3.4718 32 3.4326 32 3.4718
100 3.4702 100 3.4718 64 3.4326 64 3.4504
110 3.4699 110 3.4718 128 3.4326 128 3.4432

3.2 Analysis of Embedding Performance

To verify the embedding performance of our scheme, we first select six standard grayscale
images of Lena, Man, Jetplane, Baboon, Tiffany, and Airplane shown in Fig. 10 for embedding
rate experiments. To further verify the generality of the scheme, we conduct average embedding rate
experiments on UCID [27], BOSSbase [28], and BOWS-2 [29].

Figure 10: Six standard grayscale images

The comparison results of our scheme and different methods on six images are shown
in Fig. 11. Our scheme outperforms other schemes [22–25]. Taking the Jetplane image as an
example, the embedding rate of our algorithm is 1.5525, 0.9679, 0.6102, 0.2385 bpp higher than
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[22–25], respectively. Since Wu et al. [23] uses MED with a smaller receptive field for prediction, the
perception ability of complex images is insufficient, thus affecting the overall embedding performance
of the scheme. Yin et al. [24] use the predefined huffman coding, but for different images, the unified
huffman coding is not the best coding rule, which leads to a decrease in the embedding rate. Our
algorithm utilizes the pixel correlation of the whole image. It improves the prediction accuracy of the
predictor for pixels in the texture area of the image through four scanning methods. At the same time,
adaptive huffman coding is used to generate huffman codewords for different images adaptively, so
the embedding rate is higher.

Figure 11: ER (bpp) comparison of different methods on six test images

In Fig. 12, we compare the average embedding rate of our scheme with different methods on three
datasets. The average embedding rate of our scheme is higher than [22–25]. Specifically, our scheme
achieves an average embedding rate of 3.5160 bpp on three datasets. While the literatures [22–25] are
1.808, 2.4497, 3.0983 and 3.3397 bpp respectively, we have an increase of 94.5%, 43.5%, 13.5% and
5.3%.

To further verify the advantages of our scheme, we test the embedding rate (bpp), PSNR (dB), and
SSIM of different schemes in three datasets, results are shown in Tab. 2. Since scheme [22] is older and
scheme [23] is an improvement of the scheme [22], we only compare this scheme with schemes [23–25]
in detail. Where PSNR = +∞, SSIM = 1 means that the recovered image has the same structure as
the original image, and our scheme can recover the original image losslessly. Since AGP can combine
the edge features of the predicted pixels and achieve better prediction results, the worst embedding
rates on the three datasets are significantly improved. The scheme has better embedding performance
on complex images.
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Figure 12: Average ER (bpp) comparison of different methods on three datasets

Table 2: Test results on three datasets

Datasets Index Best case Worst case Average

[23] [24] [25] Proposed [23] [24] [25] Proposed [23] [24] [25] Proposed

UCID ER 2.9759 5.010 5.2344 6.4267 0 0.397 0.2563 0.8451 2.2683 2.688 2.8990 2.9581
PSNR +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
SSIM 1 1 1 1 1 1 1 1 1 1 1 1

BOSS
base

ER 2.9883 5.898 7.8305 6.7850 0.0713 0.674 0.7416 0.9588 2.5613 3.361 3.6248 3.8625
PSNR +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
SSIM 1 1 1 1 1 1 1 1 1 1 1 1

BOWS-2 ER 2.9883 5.622 7.0190 6.4080 0.0484 0.628 0.6239 0.8350 2.5194 3.246 3.4948 3.7273
PSNR +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞ +∞
SSIM 1 1 1 1 1 1 1 1 1 1 1 1

3.3 Safety Performance Analysis

This section first shows the stage image of the original image in the process of reversible data
hiding, then compares the distribution of image histogram before and after encryption, and finally
gives the results of common security indicators to illustrate the algorithm’s security. Fig. 13 shows the
results of Peppers after encrypting, embedding data, and recovering.
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Figure 13: The results of peppers after encrypting, embedding data, and recovering

The histogram distribution of each stage of Peppers is shown in Fig. 14. The histogram containing
the original image information is displayed in Fig. 14a. The histogram after stream cipher encryption
is shown in Fig. 14b. The pixels are uniformly distributed, and the feature information of the image
cannot be obtained. The histogram after embedding the data is shown in Fig. 14c. The content of the
original image cannot be obtained from the encrypted image. The above experiments verify that the
algorithm has good security performance and can resist standard cryptographic attack methods, such
as statistical analysis attacks.

Figure 14: Histogram distribution of each stage of peppers

To further verify the algorithm’s security, Tabs. 3 and 4 shows the PSNR and SIM of the scheme
on six standard grayscale images.

Table 3: PSNR and SSIM of original and encrypted images

Encrypted image Lena Man Jetplane Baboon Tiffany Airplane

PSNR 9.2255 7.9937 8.0077 9.5108 6.8839 8.9521
SSIM 0.0341 0.0681 0.0346 0.0299 0.0389 0.0403

As shown in Tabs. 3 and 4, the PSNR of both the encrypted and marked encrypted images are
very low, and their SSIM are almost 0. Therefore, the information of the original image cannot be
obtained from the encrypted version image, which means that the proposed method safely protects
the privacy of the original image and can be applied to RDH in the encrypted domain.
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Table 4: PSNR and SSIM of original and marked encrypted images

Marked encrypted
image

Lena Man Jetplane Baboon Tiffany Airplane

PSNR 9.7857 8.9257 6.9484 9.3547 6.2359 8.3739
SSIM 0.0507 0.1183 −0.0090 0.0113 0.0554 0.0584

4 Conclusion

In this paper, we propose an RDHEI algorithm based on adaptive gradient prediction (AGP) and
code labeling. An adaptive gradient predictor is proposed to aim at the multi-directional requirement
of texture attributes in natural images. AGP can adaptively adjust the weights of the four scanning
methods to predict the target pixel according to the texture features around the pixel. This method
combines the advantages of AGP and adaptive huffman coding and reserves more space for data
embedding. Compared with existing RDHEI schemes, our scheme provides a higher embedding rate
while ensuring that the receiver can accurately extract the secret information and recover the original
image without image quality degradation.
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