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Abstract: In recent times, sixth generation (6G) communication technologies
have become a hot research topic because of maximum throughput and low
delay services for mobile users. It encompasses several heterogeneous resource
and communication standard in ensuring incessant availability of service. At
the same time, the development of 6G enables the Unmanned Aerial Vehicles
(UAVs) in offering cost and time-efficient solution to several applications like
healthcare, surveillance, disaster management, etc. In UAV networks, energy
efficiency and data collection are considered the major process for high quality
network communication. But these procedures are found to be challenging
because of maximum mobility, unstable links, dynamic topology, and energy
restricted UAVs. These issues are solved by the use of artificial intelligence (AI)
and energy efficient clustering techniques for UAVs in the 6G environment.
With this inspiration, this work designs an artificial intelligence enabled
cooperative cluster-based data collection technique for unmanned aerial vehi-
cles (AECCDC-UAV) in 6G environment. The proposed AECCDC-UAV
technique purposes for dividing the UAV network as to different clusters and
allocate a cluster head (CH) to each cluster in such a way that the energy
consumption (ECM) gets minimized. The presented AECCDC-UAV tech-
nique involves a quasi-oppositional shuffled shepherd optimization (QOSSO)
algorithm for selecting the CHs and construct clusters. The QOSSO algorithm
derives a fitness function involving three input parameters residual energy of
UAVs, distance to neighboring UAVs, and degree of UAVs. The performance
of the AECCDC-UAV technique is validated in many aspects and the obtained
experimental values demonstration promising results over the recent state of
art methods.
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1 Introduction

Sixth generation (6G) communication system is an advanced technology which provides high
speed heterogeneous service access to clients. This technique aims to allow higher throughput and
latency less service for various applications user ranges in cloud to small sensor device [1,2]. Also,
the combination of artificial intelligence (AI), machine type communication (MTC), blockchain, and
smart machine learning based resolution assists for enhancing the service consistency for diverse
classes of users and applications from the 6G framework [3]. Communication and information
relevant decisions, resource sharing, and allocation with access control are flexible from 6G platform.
Particularly, the optical wireless, terahertz communication, network slicing [4], blockchain, massive
multiple output, and input, are the most important enabling technology for 6G.

The 6G network requires advanced AI techniques to resolve several problems that exist in the 6G
network. Indeed, in the perspective of various scientists, the 6G network must be an “AI-empowered”
network, which means AI in both driver and important characteristics [5,6]. Unmanned aerial vehicles
(UAVs) is generally recognized as drones, plays a significant role in an extensive scenario and use cases
that could exceed 5G and 6G [7,8]. It is widely utilized in several applications when providing novel
business chances in the following years.

The UAV is generally called a drone that is a classification of robotic vehicles which is either self-
governed/remotely managed via remote control device using wireless transmission [9]. This guarantees
wireless connection that is cost effective to device which aren’t establishing framework coverage. The
UAV mostly consists of sensors to give data regarding the state of aerial vehicles and for detecting
targets in an effective manner. It consists of computing devices like UAV software, transmission system,
actuators, analog controls, and micro controllers. With respect to terrestrial transmission system, UAV
wireless system is on demand and fly at lower altitude that is quicker to place [10]. It is designed flexibly
and appears to have well-functioning transmission channel attributed to Line of Sight (LOS) relations
which is short ranged. Primarily, the UAV was implemented in military applications, now, it can be
accepted from a variation of civilian applications like precision agriculture, weather monitoring, urban
planning, rescue, and search processes. The information gathered from applied UAV was significant
in the implementation of emergency operations. A multi UAV system (several smaller UAV placed in
analogous) conquers energy and coverage constraint and have the capacity of observing information
from different viewpoints. The combined task of UAV enhances system efficiency and decreases
operation cost. Because of the fault tolerance ability, the mission was accomplished in an efficient
and quick manner. For productive and effective mission accomplishment, several UAVs are utilized
as an outcome of their flight time, abilities, and limited payload [11]. To effectively arrange various
UAVs, appropriate cooperation is needed by effective networking and communication.

Communication is the main proposal factor in Many UAV systems. But, it has a specific aspect of
FANETs like limitation in the available battery resource, higher mobility of the UAV nodes, and sparse
placement, which could obstruct the efficient and stable communications between UAVs [12]. The
high mobile nature of UAV leads to recurrent modification in the topology. This would need recurrent
transmission of the novel position between UAV nodes, results in consumption of energy based on
overheads [13]. The sparse placement of UAV needs relatively high energy to communicate because
of the significantly high distance between UAVs. The intelligent clustering method could perform a
major part in improving the energy effectiveness of a network. Clustering is the procedure of separating
the UAV nodes placed in a geographical position, have specific comparisons in attaining a specific
objective for various groups. In cluster, all nodes are selected as cluster head (CH). The CH node is
allowed with the task of relaying and coordinating the information of its cluster member (CM) to
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their end. The requirement and scalability of minimal overheads in clustering play an important part
in enhancing the effectiveness of the ad-hoc network. In recent times, bio inspired techniques have
been generally employed for solving the clustering problems in UAV networks. Due to their easiness,
efficiency in resolving difficult optimization problems, and local minimum evasion. Major techniques
are stimulated by evolutionary concepts, physical phenomena, and animal behavior. Because of their
easiness, scientists have attempted to propose and develop novel bio inspired methods.

This paper designs an artificial intelligence enabled cooperative cluster-based data collection tech-
nique for unmanned aerial vehicles (AECCDC-UAV) in 6G environment. The proposed AECCDC-
UAV technique purposes for dividing the UAV network as to different clusters and allocate a CH to
each cluster which is responsible for effective cooperative data collection and data transmission. The
presented AECCDC-UAV technique involves a quasi-oppositional shuffled shepherd optimization
(QOSSO) algorithm to elect the CHs and construct clusters. The QOSSO algorithm is derived by
the combined of quasi oppositional based learning (QOBL) with the SSO method to achieve better
convergence rate. For validating the improved performance of the AECCDC-UAV approach, a series
of simulations were implemented and the outcomes are investigated under varying measures.

The rest of the paper is organized as follows. Section 2 offers related works, Section 3 provides
proposed model, Section 4 gives performance validation, and Section 5 draws conclusion.

2 Literature Review

Arafat et al. [14] developed bio inspired clustering (BIC) and localization (BIL) systems in UAV
networks for detecting and observing wildfire. The authors proposed a grey wolf optimization (GWO)
based compressive sensing (CSGWO) method for transmitting information from CH to the BS. Gul
et al. [15] emphases on an energy-efficient data gathering issue via UAV In Kumar et al. [16], a Crow
Search based clustering system is introduced for tackling above mentioned problems to enhance the
entire performance and network lifespan of the flying adhoc network (FANET). The system considers
the distance between residual energy, UAV nodes, and delay constraint for the creation of optimum
cluster and its concurrent selection of CH. Noh et al. [17] proposed an ellipse clustering method
to increase the client coverage probability of UAV and evades inter-cell interference with minimum
transmission powers.

Yu et al. [18] proposed new modularity based dynamic clustering based on modified Louvain
technique for UAV supported mobile communication., they proposed 2 kinds of processes for
modularity based dynamic clustering, such as differential and recurring operations. Arafat et al.
[19] proposed swarm intelligence (SI) based localization and clustering systems in UAV network for
emergency communication. Initially, they proposed a novel 3D SI based localization (SIL) method
according to particle swarm optimization (PSO) algorithm.

Na et al. [20] presented a synergetic system for UAV trajectory planning and sub slot allocation.
While the established problems suffer non-convexity and difficulty, an effectual iterative method is
presented to tackle the situation. Poudel et al. [21] proposed an hybrid path planning (HPP) technique
for effective data collection by guaranteeing the shorter collision free path to UAV in an emergency
condition. In presented method, the Probabilistic Roadmap Method (PRM) method is utilized for
designing the shorter trajectory map and the enhanced artificial bee colony (ABC) technique for
improving various path constraints in a 3D platform. Yin et al. [22] employ nonorthogonal multiple
access (NOMA) in UAV assisted wireless caching networks (WCN) for serving various clients on a
similar spectrum consecutively and proposed cross layer Drone Reconfigurable Architecture (DRA)
approach comprising allocation of power, scheduling of UAV, and grouping of users. Initially, the ρ–K
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means method was presented for assigning clients to several clusters and place UAVs based on distance
from UAV to BS in the UAV placement layer. Later, the BS transmissions the common file for UAV
through NOMA in the content deployment layer. Lin et al. [23] developed a 6G enabled massive IoT
framework which assists DRA. Later, a dynamic nested NN was created to alter the nested learning
module structure online for meeting trained needs of DRA.

3 Proposed Model

The workflow involved in the presented AECCDC-UAV technique is depicted in Fig. 1. Primarily,
the UAVs are placed arbitrarily from the interested region and the initialized procedure is carried
out. Then, the AECCDC-UAV technique gets performed to define the optimum number of CHs for
cooperative data collection and transmission in the network. Besides, the selection of CHs resulted in
the sharing of neighboring UAVs to construct clusters. The detailed working of the AECCDC-UAV
technique is given in the following subsections.

Figure 1: Working process of AECCDC-UAV model
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3.1 System Model

Consider a UAV network, consisting of multiple UAVs. The UAVs employed are small to medium
sized drones. Besides, a simpler collision approach is employed to avoid collision where the altitude of
the UAVs gets changed. Besides, the UAVs move at a speed of 30 m/s. Every UAV is based on certain
location aware elements and the characteristics of location aware model enable effective and accurate
clustering process. In general, the location data is generally attained from external systems such as
GPS. Every UAV knows about its location, location of the neighboring UAV, and location of the
ground station. In addition, in UAV based mobile communication, it can be practical to purpose at
an explicit data rate Rb with a predefined modulation technique and quadrature phase shift keying
(QPSK).

3.2 Algorithmic Design of QOSSO Technique

In this section, the QOSSO algorithm is designed and the processes involved in it are explained
clearly. The SSO algorithm is based on the behavior of shepherds [24]. Fig. 2 illustrates the flowchart
of SSO method. Primarily, the SSO technique initiates with the arbitrarily make primary member of
community (MOC) from the searching space by the succeeding equation:

MOC0
ij = MOC min + rand × (MOCmax − MOCmin) ;

i = 1, 2, . . . , m and j = 1, 2, . . . , n (1)

nMC = m × n (2)

Figure 2: Flowchart of SSO
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The shuffling procedure is executed in n time autonomously till MC matrix is created by:

MC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

MOC1,1 MOC1,2 · · · MOC1,j · · · MOC1,n

MOC2,1 MOC2,2 · · · MOC2,j · · · MOC2,n

...
...

...
...

...
...

MOCi,1 MOCi,2 · · · MOCi,j · · · MOCi,n

...
...

...
...

...
...

MOCm,1 MOCm,2 · · · MOCm,j · · · MOCm,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The scientific equation of the step size is demonstrated by:

stepsizei,j = stepsizeWorse
i,j + stepsizeBetter

i,j

i = 1, 2, . . . , m and j = 1, 2, . . . , n (4)

where stepsizeWorse
i,j and stepsizeBetter

i,j is determined by:

stepsizeWorse
i,j = α × rand1 × (

MOCi,w − MOCi,j

)
(5)

stepsizeBetter
i,j = β × rand2 × (

MOCi,b − MOCi,j

)
(6)

where rand1 and rand2 represents arbitrary vector; MOCi,b(chosen horse) and MOCi,w(chosen sheep)
implies worst and optimum member. In addition, α and β indicates factors that accomplish exploita-
tion and exploration, respectively. It can be represented as follows:

α = α0 − α0 × t; t = iteration
Max iteration

(7)

β = β0 + (βmax − β0) × t (8)

According to prior step, the novel place of MOCi,j is evaluated by Eq. (9) as:

newMOCi,j = MOCi,j + stepsizei,j (9)

In this study, the QOBL concept is included in the SSO algorithm for improving the candidate
solutions by the consideration of present and quasi-opposite populations concurrently. This procedure
can be enhanced by the initialization of a nearer solution by concurrently inspecting the quasi-opposite
solution. Using this process, the fittest solution (guess or quasi-opposite guess) can be elected as the
initial solution. This procedure begins with the two closer guesses. It is applied to initial solution
and also to every solution that exists in the present solution. It is guaranteed that the quasi-opposite
number is generally nearer to the arbitrary number to the solution. Besides, the quasi-opposite number
is generally nearer to the opposite number to the solution [25]. The concept of QOBL technique is
utilized for population initialization and generation jumping.

When x denotes a real number among [lb, ub], its opposite and quasi opposite numbers xo and xqo

can be represented by

x0 = lb + lu − x (10)

and

χqo = rand
[(

lb + lu
2

)
, (lb + lu − x)

]
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Besides, consider X = (x1, x2, . . . , xn) represents a point in n dimension space whereas χi ∈
[lbi, ubi] and i ∈ 1, 2, . . . , n. The opposite point Xo = (x01, x02, . . . , xon) is entirely represented using
the elements in (11).

xoi = lbi + ubi − xi (11)

The quasi-opposite point Xqo = (
xqo1, xqo2, . . . , xqon

)
is totally denoted using the elements given

in (12).

χqoi = rand
[(

lbi + lui

2

)
, (lbi + lui − xi)

]
(12)

Using the quasi-opposite point, the QOSSO algorithm can be defined in the following. Assume
X = (x1, x2, . . . , xn) denotes a point in n-dimension space. Here f = (·) is a fitness function that is
employed for determining the fitness of the candidate. Based on the concept of the quasi-opposite
point, Xqo = (

xqo1, xqo2, . . . , xqon

)
is the quasi-opposite of X = (x1, x2, . . . , xn). Now, when

(
Xqo

)
<

f (X), then point X can be replaced with Xqo; else, the procedure gets repeated with X .

3.3 Application of QOSSO Technique for CH Selection and Cluster Construction

The proposed AECCDC-UAV based clustering mainly depends upon the QOSSO algorithm. The
goal of the AECCDC-UAV technique is to divide the n UAV nodes into a predefined or optimum
number of clusters Copt. At the time of clustering, the nearby nodes are allotted to the CH by means of
Euclidean distance which make user that the minimum communication range results in reduced energy
utilization. But it is tedious to identify the distance in highly mobile situations. For resolving the issue,
the distance to neighboring UAVs is determined by use of AECCDC-UAV technique. To elect CHs and
construct clusters, the AECCDC-UAV technique considers the problem as a maximization problem
and derives a fitness function involving residual energy level (REL), average distance to neighboring
UAVs (DTN), and UAV degree (DEG). The fitness function is defined as follows.

F (i) = α × REL + β × ADTN + γ × DEG, (13)

where α + β + γ = 1. Firstly, the REL of the UAV(x) during the transmission of k bit data to the
receiving UAV(y) which is located at a distance d, is represented using Eq. (14):

REL = E − (
ET (k, d) + ER(k)

)
(14)

where E implies the present energy level of UAVs and ET indicates the energy spent for data
transmission.

ET (k, d) = kEe + KEad2 (15)

where Ee signifies the energy of electrons and Ea is the essential amplified energy, ER(k) is the energy
spent for data reception, which can be represented using Eq. (16):

ER(k) = kEe (16)

Besides, the ADTN represents the average value of the distance of adjacent UAVs in its 1-hop
transmission range [26]. It can be defined using Eq. (17):

ADTN =
∑NBi

j=1 dist
(
i, nbj

)
NBi

, (17)
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where dist
(
i, nbj

)
is the distance from the UAV to the closer jth UAV.

At a time t, the DEG represents the UAV degree signifying the number of nearby nodes present
for the UAV, which can be equated as follows

DEG = |N (x)| (18)

where N (x) = {
ny/dist (x, y) < transrange

}
x �= y, and dist (x, y) denotes the distance amongst two

UAVs nx and ny, transrange is the communication range of the UAVs.

4 Performance Validation

The proposed AECCDC-UAV approach has been simulated and the results are investigated under
varying numbers of UAVs. Tab. 1 shows the parameter setting.

Table 1: Parameter setting

Parameter Values

Randomization factor 0.98
Network area 1500 × 1500 m2, 2000 × 2000 m2, 3000 × 3000 m2

UAV node density 100
Initial energy level 20
Transmission frequency 2.4 GHz
Receiver sensitivity −90 dBm
Transmission range Dynamic

Tab. 2 and Fig. 3 examines the energy consumption (ECM) analysis of the AECCDC-UAV
approach with state-of-art methods. From the table values, it is evident that the AECCDC-UAV
approach has exhibited the compared methods by offering minimum ECM. At the same time, the PSO
based clustering (PSO-C) algorithm has depicted ineffective outcomes by accomplishing maximum
ECM. For sample, under 10 UAVs, the AECCDC-UAV approach has achieved a lower ECM of 31 mJ
while the type 2 fuzzy logic based clustering (T2FL-C), krill herd algorithm based clustering (KHA-C),
MPSO-C, and PSO-C approaches have gained a higher ECM of 40, 44, 46, and 55 mJ respectively. In
addition, under 40 UAVs, the AECCDC-UAV approach has achieved a lower ECM of 75 mJ while the
T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have gained a higher ECM of 99, 108, 111, and
140 mJ correspondingly. Moreover, under 80 UAVs, the AECCDC-UAV system has obtained a reduced
ECM of 133 mJ while the T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have gained a higher
ECM of 161, 178, 192, and 197 mJ respectively. Furthermore, under 100 UAVs, the AECCDC-UAV
approach has achieved a lower ECM of 154 mJ while the T2FL-C, KHA-C, MPSO-C, and PSO-C
algorithms have gained a higher ECM of 174, 196, 213, and 222 mJ correspondingly.
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Table 2: Comparative ECM analysis of AECCDC-UAV model

No. of UAVs ECM (mJ)

AECCDC-UAV T2FL-C KHA-C MPSO-C PSO-C

10 31 40 44 46 55
20 52 64 69 71 80
30 68 93 97 104 110
40 75 99 108 111 140
50 99 126 133 145 165
60 112 144 161 172 178
70 119 150 165 177 186
80 133 161 178 192 197
90 138 166 190 198 211
100 154 174 196 213 222

Figure 3: ECM analysis of AECCDC-UAV model

An analysis of network lifetime (NLT) of the AECCDC-UAV approach with existing approaches
shown in Tab. 3 and Fig. 4. From the gained outcomes, it could be evident that the PSO-C algorithm
has accomplished poor results with the worse network lifetime while the AECCDC-UAV approach
has reached effectual outcome with the maximum network lifetime. For sample, under 10 UAVs,
the AECCDC-UAV approach has led to in an improved network lifetime of 5750 rounds while the
T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have demonstrated a reduced network lifetime
of 5400, 5350, 5160, and 4600 rounds respectively. Besides, under 40 UAVs, the AECCDC-UAV
system has caused in a higher network lifetime of 5240 rounds while the T2FL-C, KHA-C, MPSO-
C, and PSO-C approaches have demonstrated a reduced network lifetime of 5080, 4780, 4430, and
4010 rounds correspondingly. Additionally, under 80 UAVs, the AECCDC-UAV methodology has
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resulted in enhanced network lifetime of 4260 rounds while the T2FL-C, KHA-C, MPSO-C, and PSO-
C approaches have demonstrated a reduced network lifetime of 3910, 3670, 3590, and 3420 rounds
respectively. At last, under 100 UAVs, the AECCDC-UAV system has led to a superior network lifetime
of 3990 rounds while the T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have demonstrated a
reduced network lifetime of 3380, 3210, 3110, and 3040 rounds correspondingly.

Table 3: Comparative NLT analysis of AECCDC-UAV model

No. of UAVs Network lifetime (Rounds)

AECCDC-UAV T2FL-C KHA-C MPSO-C PSO-C

10 5750 5400 5350 5160 4600
20 5640 5350 5120 4980 4550
30 5500 5120 4800 4650 4420
40 5240 5080 4780 4430 4010
50 5010 4840 4650 4220 3870
60 4730 4450 4500 3910 3690
70 4550 4240 4290 3640 3500
80 4260 3910 3670 3590 3420
90 4030 3630 3440 3200 3110
100 3990 3380 3210 3110 3040

Figure 4: Network lifetime analysis of AECCDC-UAV model

An analysis of throughput (THPT) of the AECCDC-UAV approach with existing approaches
occurs in Tab. 4 and Fig. 5. From the reaches outcomes, it could be evident that the PSO-C algorithm
has accomplished poor results with the worse THPT while the AECCDC-UAV approach has achieved
effectual outcome with the maximum THPT. For sample, under 10 UAVs, the AECCDC-UAV
approach has led to in maximal THPT of 0.98 Mbps while the T2FL-C, KHA-C, MPSO-C, and PSO-
C systems have demonstrated a reduced THPT of 0.92, 0.91, 0.89, and 0.85 Mbps correspondingly.
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Also, under 40 UAVs, the AECCDC-UAV method has led to in higher THPT of 0.86 Mbps while
the T2FL-C, KHA-C, MPSO-C, and PSO-C algorithms have demonstrated a reduced THPT of 0.71,
0.65, 0.59, and 0.52 Mbps respectively. In addition, under 80 UAVs, the AECCDC-UAV approach has
caused in a superior THPT of 0.77 Mbps while the T2FL-C, KHA-C, MPSO-C, and PSO-C methods
have demonstrated a reduced THPT of 0.60, 0.52, 0.51, and 0.41 Mbps correspondingly. Followed by,
under 100 UAVs, the AECCDC-UAV technique has led to in higher THPT of 0.73 Mbps while the
T2FL-C, KHA-C, MPSO-C, and PSO-C methodologies have demonstrated a reduced THPT of 0.56,
0.48, 0.47, and 0.38 Mbps respectively.

Table 4: Comparative throughput analysis of AECCDC-UAV model

No. of UAVs Throughput (Mbps)

AECCDC-UAV T2FL-C KHA-C MPSO-C PSO-C

10 0.98 0.92 0.91 0.89 0.85
20 0.95 0.86 0.80 0.76 0.72
30 0.89 0.79 0.71 0.66 0.63
40 0.86 0.71 0.65 0.59 0.52
50 0.84 0.67 0.60 0.55 0.47
60 0.82 0.63 0.57 0.53 0.44
70 0.80 0.61 0.54 0.52 0.43
80 0.77 0.60 0.52 0.51 0.41
90 0.74 0.58 0.49 0.50 0.40
100 0.73 0.56 0.48 0.47 0.38

Figure 5: Throughput analysis of AECCDC-UAV model

Tab. 5 and Fig. 6 examines the average delay (ADEL) analysis of the AECCDC-UAV approach
with existing methods. From the table values, it is evident that the AECCDC-UAV approach has
demonstrated the compared methods by offering minimum ADEL. Also, the PSO-C approach has
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depicted ineffective outcomes by accomplishing maximum ADEL. For sample, under 10 UAVs, the
AECCDC-UAV approach has achieved a lower ADEL of 2.04 s while the T2FL-C, KHA-C, MPSO-
C, and PSO-C approaches have gained a maximal ADEL of 2.17, 2.20, 2.27, and 2.86 s respectively. In
addition, under 40 UAVs, the AECCDC-UAV approach has achieved a lower ADEL of 2.54 s while
the T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have achieved an enhanced ADEL of 4.27,
4.85, 5.67, and 7.86 s respectively. Moreover, under 80 UAVs, the AECCDC-UAV system has reached a
reduced ADEL of 6.43 s while the T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have gained a
higher ADEL of 7.17, 7.82, 8.36, and 10.39 s respectively. Eventually, under 100 UAVs, the AECCDC-
UAV approach has achieved a minimal ADEL of 6.98 s while the T2FL-C, KHA-C, MPSO-C, and
PSO-C systems have reaches a superior ADEL of 8.16, 8.92, 9.19, and 11.89 s correspondingly.

Table 5: Comparative average delay analysis of AECCDC-UAV model

No. of UAVs Average delay (s)

AECCDC-UAV T2FL-C KHA-C MPSO-C PSO-C

10 2.04 2.17 2.20 2.27 2.86
20 2.16 2.67 2.95 3.77 4.96
30 2.54 3.37 3.65 4.87 6.16
40 3.76 4.27 4.85 5.67 7.86
50 5.79 5.87 6.05 6.27 8.96
60 5.89 6.35 6.75 6.86 9.35
70 5.98 6.91 7.25 7.48 9.89
80 6.43 7.17 7.82 8.36 10.39
90 6.72 7.70 8.58 8.96 10.82
100 6.98 8.16 8.92 9.19 11.89

Figure 6: ADEL analysis of AECCDC-UAV model
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A detailed comparison results analysis of the AECCDC-UAV approach with other methodologies
under distinct speed of mobile nodes in Tab. 6. From the achieved outcomes, it can be demonstrated
that the AECCDC-UAV approach has exhibited higher outcomes with the minimal NCHC. For
sample, with the UAV speed of 2 m/s, the AECCDC-UAV approach has offered a minimum NCHC of 6
while the T2FL-C, KHA-C, MPSO-C, and PSO-C approaches have demonstrated a maximum NCHC
of 9, 10, 13, and 16 respectively. Eventually, with the UAV speed of 6 m/s, the AECCDC-UAV approach
has offered a minimum NCHC of 8 while the T2FL-C, KHA-C, MPSO-C, and PSO-C approaches
have demonstrated a maximum NCHC of 11, 14, 18, and 23 respectively. Meanwhile, with the UAV
speed of 10 m/s, the AECCDC-UAV approach has offered a minimum NCHC of 14 while the T2FL-C,
KHA-C, MPSO-C, and PSO-C approaches have demonstrated a maximum NCHC of 17, 21, 26, and
30 respectively. From the aforementioned results analysis, it could be stated that the proposed approach
is found that an effectual data collection and clustering tool for UAV networks in 6G environment. It
allows to effectively collect the data from the deployed environment and cooperatively transmit it to
the ground station via intercluster communication.

Table 6: Comparative NCHC analysis of AECCDC-UAV model

Number of cluster head changes (NCHC)

UAV speed rate (m/s) AECCDC-UAV T2FL-C KHA-C MPSO-C PSO-C

2 06.00 08.00 10.00 13.00 16.00
4 05.00 07.00 12.00 15.00 19.00
6 08.00 11.00 14.00 18.00 23.00
8 12.00 16.00 19.00 22.00 25.00
10 14.00 17.00 21.00 26.00 30.00

5 Conclusion

This paper has established a new AECCDC-UAV approach to achieve energy efficient data
collection for UAVs in 6G environment. The proposed AECCDC-UAV approach aims for selecting
an optimum group of CHs and construct clusters in such a way that the total ECM of the UAV
networks gets reduced. Besides, the integration of QOBL concept to the SSO algorithm supports for
considerably enhance the performance of the SSO technique. For validating the improved performance
of the AECCDC-UAV approach, a series of simulations are executed and the outcomes are examined
under distinct measures. The resultant experimental values make sure the betterment of the AECCDC-
UAV approach on the existing techniques under different dimensions. As a part of future scope, the
performance of the AECCDC-UAV approach can be improved by the design of optimal route planning
process and data compression approaches.
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