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Abstract: The biomedical data classification process has received significant
attention in recent times due to a massive increase in the generation of health-
care data from various sources. The developments of artificial intelligence
(AI) and machine learning (ML) models assist in the effectual design of
medical data classification models. Therefore, this article concentrates on the
development of optimal Stacked Long Short Term Memory Sequence-to-
Sequence Autoencoder (OSAE-LSTM) model for biomedical data classifica-
tion. The presented OSAE-LSTM model intends to classify the biomedical
data for the existence of diseases. Primarily, the OSAE-LSTM model involves
min-max normalization based pre-processing to scale the data into uniform
format. Followed by, the SAE-LSTM model is utilized for the detection and
classification of diseases in biomedical data. At last, manta ray foraging
optimization (MRFO) algorithm has been employed for hyperparameter
optimization process. The utilization of MRFO algorithm assists in optimal
selection of hypermeters involved in the SAE-LSTM model. The simulation
analysis of the OSAE-LSTM model has been tested using a set of benchmark
medical datasets and the results reported the improvements of the OSAE-
LSTM model over the other approaches under several dimensions.
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1 Introduction

Recently, research in computer aided intelligent systems for healthcare domains becomes an
interesting and essential process [1]. Generally, the physicians utilize their knowledge depending upon
patient indications and the long-established diagnoses. As such, prognostic importance of indications
towards specific illnesses and symptomatic exactness of a patient are exceptionally subject to a doctor’s
insight. Since medical information and therapy treatment progressed quickly, for example, the event
of new sicknesses and the accessibility of new medications, it is tedious for a doctor to stay updated
with all new information and improvement in clinical practices [2]. Due to the developments of
computing techniques, it becomes easier to attain and save massive quantities of digital data. Thusly,
the organization of modernized medical decision support system turns into a suitable way to deal with
helping doctors to quickly and precisely analyze patients [3,4]. In any case, various issues must be
defeated before designing a decision support system within the sight of vulnerability and imprecision.

While medical specialists’ information and experience are significant, going from evaluating a
patient’s condition to making a determination, progresses in artificial intelligence (AI) strategies
have opened up the way for medical experts to take advantage of electronic shrewd frameworks for
decision making in their working environment [5]. Computerized intelligent systems find meaningful in
helping the doctor to show up at an educated choice rapidly, for example by gaining from comparable
previous cases in an enormous database of electronic patient records and gathering the conclusion for
the current patient with appropriate avocations [6]. The benefits of utilizing such smart frameworks
incorporate expanding determination precision and, simultaneously, decreasing time and expenses
related to patient treatment.

AI models have been created to help different medical dynamic errands. There is an expanding
interest in intelligent design of AI and data mining procedures for helping in biomedical examinations
as well as in clinical decision making [7]. Conventionally, statistical learning approaches are designed
to be performed on the data of previous cases in the diagnosis models which can be utilized for
forthcoming cases [8]. They may be utilized to help doctors in directing their choices, and are
now and then displayed to beat the specialists’ forecast exactness. Besides, such models can find
already unnoticed relations between the factors and result in further developing information and
comprehension of the condition. Such revelations might bring about better medicines or preventive
techniques. Considering that prescient models figure forecasts in view of data of a specific patient, they
are additionally encouraging instruments for accomplishing the objective of customized medication
[9,10].

This article concentrates on the development of optimal Stacked Long Short Term Memory
Sequence-to-Sequence Autoencoder (OSAE-LSTM) model for biomedical data classification. The
presented OSAE-LSTM model majorly focuses on the classification of biomedical data for the
existence of diseases. Primarily, the OSAE-LSTM model involves min-max normalization based pre-
processing to scale the data into uniform format. Followed by, the SAE-LSTM model is utilized
for the detection and classification of diseases in biomedical data. At last, the manta ray foraging
optimization (MRFO) algorithm has been employed for hyperparameter optimization process. The
simulation analysis of the OSAE-LSTM model has been tested using a set of benchmark medical
datasets.

2 Literature Review

In [11], a hybridization model has been developed by the use of simulated annealing (SA) and
Rao algorithm (RA) to select optimum subset of genes and cancer classification. The SA operates
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like a local searching mechanism and RA functions as a globalized model. An optimum gene subset
and categorizing cancer. The SA works as a local searching approach and RA work as a global
optimized structure. The reason to integrate SA from RA is to enhance the exploitation ability of RA.
The presented approach has 2 phases. During the primary phase, minimum redundancy maximum
relevance (mRMR) was utilized for choosing the relevant gene subsets in the microarray data set.
Afterward, the SA is hybridized with RA for improving the quality of solutions then all iterations
of RA.

The authors in [12] examine a novel adaptive technique named Feature Selection(FS)-Seven Spot
Ladybird Optimization Algorithm (FS-SLOA) that is a metaheuristic FS technique dependent upon
the foraging behavior of 7 spot ladybird. A novel effectual approach was executed for determining
an optimum subset feature that attains the maximal accuracy classifier utilizing 3 classifications. In
[13], a novel hybrid classification termed fruit-fly optimization (FFO) based extreme learning machine
(ELM) was presented for classifying the biomedical data. The projected classification efficiency is
also related to different classifications namely support vector machine (SVM) and ELM. These
classifications were validated utilizing different performance indices.

In [14], a novel wrapper FS method was presented dependent upon the chimp optimization
algorithm (ChOA) for bio-medical data classifier. The ChOA is a recently presented meta-heuristic
approach whose ability to resolve FS problems is not examined yet. In 2 binary variations of ChoA are
presented to FS problem. During the initial technique, 2 transfer functions (S-shaped and V-shaped)
were employed for converting the continuous version of ChoA to binary.

The authors in [15] propose a novel random vector functional link with ε-insensitive Huber
loss function (ε-HRVFL) for biomedical data classifier problem. The optimized issue of ε-HRVFL
was reworked as strongly convex minimized problems with an easy function iterative method for
determining solution. For having an optimum deal of scope of the biomedical data classifier problem
and potential solution, it is shown experimentally with 3 distinct kinds of label noise from biomedical
dataset and some non-biomedical data sets.

3 The Proposed Model

In this article, a novel OSAE-LSTM model has been developed for the effectual classification
of biomedical data for the existence of diseases. The proposed OSAE-LSTM model encompasses a
series of operations such as min-max normalization, SAE-LSTM classification, and MRFO based
hyperparameter tuning. The utilization of MRFO algorithm assists in optimal selection of hypermeters
involved in the SAE-LSTM model. Fig. 1 illustrates the block diagram of OSAE-LSTM technique.

3.1 Min-Max Normalization

At the preliminary stage, the OSAE-LSTM model undergoes min-max normalization based pre-
processing to scale the data into uniform format. The min-max normalization process undergoes
mathematical formulation by the use of Eq. (1):

x′ = x − xmin

xmax − xmin

(1)
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x′ represents normalizing value, x implies the new instance value, xmax denotes maximum samples,
τ2 = τ4 = 1μs suggests minimum samples. The inverse normalization of the presented method is given
in Eq. (2):

x = xmin + (xmax − xmin) x′ (2)

Figure 1: Block diagram of OSAE-LSTM technique

3.2 Process Involved in SAE-LSTM Based Classification

In this study, the SAE-LSTM model is utilized for the detection and classification of diseases in
biomedical data. The SAE-LSTM model works as a prototype of a sequence-to-sequence (seq2seq)

method. The Seq2seq paradigm is newly developed commonly in the domain of machine translation
and is composed of 2 parts as encoding and decoding [16,17]. The data are established by the encoding
that compresses it as to single vector. The vector at present was recognized as context vector (CV), and
decoding utilizes it for creating a resultant sequence. The recurrent neural network (RNN) or LSTM
was utilized by the encoded for transforming input as to hidden state vector. The encoder resultant
vector is state-of-the-art RNN cell hidden state. The encoded send the CV to decoder. The encoding
CV was employed as the decoding network initial hidden state, and resultant value of preceding time
step is sent to the next LSTM unit as input to progressive forecast.

The mathematical an encoded ∅ has been created by input as well as hidden layers that compress
input data x in a high dimension representation as to low dimension representation Z. Meanwhile,
a decoded � was made by the hidden as well as output layers that regenerates the input data x′ in
the suitable codes. This alteration in the seq2seq learning is represented mathematically by the typical
neural network (NN) function passed with sigmoid activation function σ (Eq. (3)).

∅ : X → Z (3)

χ �→ ϕ (x) = σ (Wx + b) : = z

� : Z → Z (4)
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z �→ � (x) = σ
(

W̃z + b̃
)

: = χ ′

whereas W refers the weighted matrices and b denotes the bias [17].

The encoded and decoded networks of LSTM seq2seq method employed for prediction. To utilize
this seq2seq learning from prediction, LSTM layer is stacked on the encoded and decoded parts of
models and named as SAELSTM technique. With stacking LSTM, it is capable of improving our
methods prediction abilities to understand further complicated representation of our time-series data
from the hidden layer with gathering data at several levels. In addition, x and 0 are the input as well
as output data, c implies the encoded CV and ht and st represents the hidden state from the encoded
and decoded that is corresponding as follows:

ht = LSTMenc (xt, ht−1) (5)

ht = LSTMdec (ot−1′st−1) . (6)

All the encoded LSTM layer computes the CV c, and this CV is simulated and sent to all the
decoded units.

3.3 Process Involved in MRFO Based Hyperparameter Optimization

At the final stage, the MRFO algorithm has been employed for hyperparameter optimization
process which assists in optimal selection of hypermeters involved in the SAE-LSTM model. The
MRFO is a bio-inspired new technique which simulates the intelligent foraging performance of manta
rays (MRs) and features of its foraging performance. The model was appropriate to our current solar
radiation forecast problem provided that MRs on that the MRFO is created, have 3 various foraging
approaches which are utilized for searching for food that procedure the vital search methods of MRFO
for optimizing the solution of our presented solar radiation forecast problem [18]. The mathematical
process of chain foraging was signifying as:

M∗
m =

{
Mm + (MB − Mm) (r + σ) if m = 1
Mm + r (Mm−1 − Mm) + σ (MB − Mm) if m �= 1

(7)

σ = 2r
√| log(r)|) (8)

In which (Mm) stands for the individual MR (m), r refers the arbitrary uniformly distributed
number from the range of zero and one. M∗ and MB defines the novel or optimum position of MR
from the population, σ denotes the weighted co-efficient as function of all the iterations. Fig. 2 depicts
the flowchart of MRFO technique.

It can be apparent in Eq. (8) that the preceding MR from the chain and spatial place of strongest
plankton obviously determine the position upgrade method from the chain foraging. Cyclone foraging
was separated as to 2 parts. The 1st half concentrations on improving the exploration and is
upgraded as:

M∗
m =

{
MR + (MR − Mm) (r + β) if m = 1
Mm + r1 (Mm−1 − Mm) + β (MR − Mm) if m �= 1

(9)

whereas MR signifies the individual generated arbitrarily:
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Figure 2: Flowchart of MRFO technique

MR = Mmin + r1

(
Mmax − Mmin

)
. (10)

The adaptive weighted co-efficient (β) was diverse as:

β = 2er2
Iterm−Iterm+1

Iterm sin (2πr2) (11)

In which Iter implies the present iteration and arbitrary uniformly distributed number, and r2 is
over of zero and one. The 2nd half concentrate on enhancing the exploitation, thus the upgrade is as per:

M∗
m =

{
MB + (MB − Mm) (r1 + β) if m = 1
MB + r1 (Mm−1 − Mm) + β (MB − Mm) if m �= 1

(12)

Somersault foraging: The ending foraging approach with MRs determining the food supply
and exploiting backward somersaults for circling the plankton for attracting. Somersaulting is local,
spontaneous, cyclical, and periodic act which MRs utilize for maximizing their food intake. The 3rd

approach is where an upgrade of all individuals takes place around an optimum position:

M∗
m = Mm + S (r3MB − r4Mm) . (13)

In Eq. (13), S represents the somersault co-efficient (S = 2) adjusting the domain of MRs, r3 and
r4 are arbitrary numbers in the range of zero and one. According to an arbitrarily created number, the
MRFO technique is switched amongst chain as well as cyclone foragings. Afterward, the summersault
foraging gets act for updating individual’s present positions utilizing an optimum solution obtainable
at the time. These 3 various foraging procedures are utilized interchangeably for achieving the global
optimal solution of optimized problem, so sufficient the already decided end condition.

The MRFO method made a FF for reaching higher classifier performance. It defines a positive
integer for demonstrating the best result of candidate solutions. Under this work, the minimized
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classification error rate is regarded as FF is given in Eq. (14). The best result is a less error rate and
worst outcome reaches a higher error rate.

fitness (xi) = ClassifierErrorRate (xi)

= numberof misclassifiedsamples
Totalnumberof samples

∗ 100 (14)

4 Results and Discussion

The performance validation of the OSAE-LSTM model is performed using three benchmark
datasets [19]. Firstly, the Breast Cancer Wisconsin (BCW) dataset with 569 samples with 32 features is
used. Next, the PIMA Indians dataset (PID) includes 768 instances with 8 features. Finally, the Liver
Disorders dataset comprises 345 samples with 7 attributes.

Tab. 1 offers a detailed classifier outcome of the OSAE-LSTM model on the test BCW dataset.
The experimental values highlighted that the OSAE-LSTM model has accomplished maximum
classifier results. For instance, with run-1, the OSAE-LSTM model has offered accuy, sensy, specy,
and receiver operating characteristic (ROC) of 97.07%, 98.27%, 98.49%, and 97.59% respectively. At
the same time, run-2, the OSAE-LSTM technique has offered accuy, sensy, specy, and ROC of 97.16%,
97.77%, 98.13%, and 98.48% correspondingly. Moreover, run-4, the OSAE-LSTM model has offered
accuy, sensy, specy, and ROC of 97.49%, 98.61%, 97.99%, and 99% respectively. Likewise, run-5, the
OSAE-LSTM approach has offered accuy, sensy, specy, and ROC of 98.61%, 97.13%, 97.36%, and
98.15% correspondingly.

Table 1: Result analysis of OSAE-LSTM technique with distinct measures on BCW dataset

Breast cancer wisconsin dataset

No. of runs Accuracy Sensitivity Specificity ROC

Run-1 97.07 98.27 98.49 97.59
Run-2 97.16 97.77 98.13 98.48
Run-3 97.95 97.00 98.20 97.31
Run-4 97.49 98.61 97.99 99.00
Run-5 98.61 97.13 97.36 98.15

Average 97.80 97.63 97.92 98.24

Fig. 3 illustrates the training and validation accuracy inspection of the OSAE-LSTM technique
on BCW dataset. The figure conveyed that the OSAE-LSTM model has offered maximum training/-
validation accuracy on classification process.

Next, Fig. 4 exemplifies the training and validation loss inspection of the OSAE-LSTM approach
on BCW dataset. The figure exposed that the OSAE-LSTM model has offered decreased training/ac-
curacy loss on the classification process of test data.
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Figure 3: Accuracy analysis of OSAE-LSTM technique on BCW dataset

Figure 4: Loss analysis of OSAE-LSTM technique on BCW dataset

Tab. 2 and Fig. 5 demonstrate the comparison study of the OSAE-LSTM model with recent
models such as fuzzy min-max (FMM), FMM with Classification And Regression Tree (CART),
FMM-CART-random forest (RF) on BCW dataset. The table values indicated that the FMM-CART
model has resulted to sensy, specy, accuy, and ROC of 95.01%, 90.87%, 84.82%, and 97.29% respectively.
Along with that, the FMM model has obtained slightly increased outcome with sensy, specy, accuy, and
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ROC of 94.87%, 94.99%, 94.27%, and 96.57% respectively. Though the FMM-CART-RF model has
resulted to sensy, specy, accuy, and ROC of 97.41%, 97.12%, 97.26%, and 98.10%, the OSAE-LSTM
model has reached maximum performance with sensy, specy, accuy, and ROC of 97.63%, 97.92%,
97.80%, and 98.24% respectively.

Table 2: Comparative analysis of OSAE-LSTM technique with existing algorithm on BCW dataset

Methods Sensitivity Specificity Accuracy ROC

FMM 94.87 94.99 94.27 96.57
FMM-CART 95.01 90.87 84.82 97.29
FMM-CART-RF 97.41 97.12 97.26 98.01
OSAE-LSTM 97.63 97.92 97.80 98.24

Figure 5: Comparative analysis of OSAE-LSTM technique on BCW dataset

Tab. 3 provides a detailed classifier outcome of the OSAE-LSTM technique on the test PID
dataset. The experimental values highlighted that the OSAE-LSTM algorithm has accomplished
maximum classifier results. For instance, with run-1, the OSAE-LSTM methodology has accessible
accuy, sensy, specy, and ROC of 82.98%, 80.54%, 80.77%, and 76.66% correspondingly. Concurrently,
run-2, the OSAE-LSTM approach has offered accuy, sensy, specy, and ROC of 81.27%, 79.53%,
82.57%, and 76.13% correspondingly. Additionally, run-4, the OSAE-LSTM model has offered accuy,
sensy, specy, and ROC of 82.41%, 82.45%, 80.37%, and 76.46% individually. Likewise, run-5, the
OSAE-LSTM technique has obtainable accuy, sensy, specy, and ROC of 82.33%, 80.91%, 81.51%, and
76.87% correspondingly.
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Table 3: Result analysis of OSAE-LSTM technique with distinct measures on PID dataset

Pima indians diabetes dataset

No. of runs Accuracy Sensitivity Specificity ROC

Run-1 82.98 80.54 80.77 76.66
Run-2 81.27 79.53 82.57 76.13
Run-3 82.66 81.12 82.34 78.22
Run-4 82.41 82.45 80.37 76.46
Run-5 82.33 80.91 81.51 76.87

Average 82.98 80.54 80.77 76.66

Fig. 6 showcases the training and validation accuracy inspection of the OSAE-LSTM technique
on PID dataset. The figure conveyed that the OSAE-LSTM system has offered maximum training/-
validation accuracy on classification process.

Figure 6: Accuracy analysis of OSAE-LSTM technique on PID dataset

Afterward, Fig. 7 represents the training and validation loss inspection of the OSAE-LSTM
approach on PID dataset. The figure showing that the OSAE-LSTM technique has offered decreased
training/accuracy loss on the classification process of test data.

Tab. 4 and Fig. 8 showcase the comparison study of the OSAE-LSTM technique with recent
techniques on PID dataset. The table values referred that the FMM-CART model has resulted to sensy,
specy, accuy, and ROC of 76.21%, 60.16%, 70.87%, and 68.51% correspondingly. Similarly, the FMM
algorithm has obtained somewhat improved outcome with sensy, specy, accuy, and ROC of 73.24%,
57.68%, 69.57%, and 66.46% respectively. Followed by, the FMM-CART-RF system has resulted to
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sensy, specy, accuy, and ROC of 79.54%, 66.39%, 78.59%, and 73.34%, the OSAE-LSTM approach
has reached superior performance with sensy, specy, accuy, and ROC of 80.91%, 81.51%, 82.33%, and
76.87% respectively.

Figure 7: Loss analysis of OSAE-LSTM technique on PID dataset

Table 4: Comparative analysis of OSAE-LSTM technique with existing algorithm on PID dataset

Methods Sensitivity Specificity Accuracy ROC

FMM 73.24 57.68 69.57 66.46
FMM-CART 76.21 60.16 70.87 68.51
FMM-CART-RF 79.54 66.39 78.59 73.34
OSAE-LSTM 80.91 81.51 82.33 76.87

Tab. 5 provides a detailed classifier outcome of the OSAE-LSTM model on the test liver disorders
dataset. The experimental values highlighted that the OSAE-LSTM system has accomplished maximal
classifier results. For instance, with run-1, the OSAE-LSTM approach has accessible accuy, sensy,
specy, and ROC of 90.79%, 92.41%, 90.07%, and 90.85% correspondingly. Simultaneously, run-2,
the OSAE-LSTM model has offered accuy, sensy, specy, and ROC of 90.55%, 90.90%, 90.07%, and
92% correspondingly. Besides, run-4, the OSAE-LSTM technique has offered accuy, sensy, specy, and
ROC of 91.96%, 91.75%, 90.77%, and 90.56% respectively. Also, run-5, the OSAE-LSTM method has
obtainable accuy, sensy, specy, and ROC of 92.33%, 91.69%, 92.17%, and 92.85% respectively.

Fig. 9 illustrates the training and validation accuracy inspection of the OSAE-LSTM technique
on liver disorders dataset. The figure conveyed that the OSAE-LSTM method has offered maximum
training/validation accuracy on classification process.
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Figure 8: Comparative analysis of OSAE-LSTM technique on PID dataset

Table 5: Result analysis of OSAE-LSTM technique with distinct measures on liver disorders dataset

Liver disorders dataset

No. of runs Accuracy Sensitivity Specificity ROC

Run-1 90.79 92.41 90.07 90.85
Run-2 90.55 90.90 90.07 92.00
Run-3 92.64 90.46 90.35 92.51
Run-4 91.96 91.75 90.77 90.56
Run-5 92.33 91.69 92.17 92.85

Average 91.87 91.20 90.84 91.98

Then, Fig. 10 demonstrates the training and validation loss inspection of the OSAE-LSTM
approach on liver disorders dataset. The figure revealed that the OSAE-LSTM model has offered
decreased training/accuracy loss on the classification process of test data.

Tab. 6 and Fig. 11 illustrate the comparison study of the OSAE-LSTM method with recent models
on liver disorders dataset [20]. The table values indicated that the FMM-CART model has resulted
to sensy, specy, accuy, and ROC of 84.87%, 82.17%, 84.28%, and 87.91% respectively. Besides, the
FMM system has obtained slightly increased outcome with sensy, specy, accuy, and ROC of 63.38%,
70.69%, 64.27%, and 71.10% correspondingly. Moreover, the FMM-CART-RF model has resulted to
sensy, specy, accuy, and ROC of 88.77%, 88.09%, 88.16%, and 90.84%, the OSAE-LSTM approach
has reached maximal performance with sensy, specy, accuy, and ROC of 91.20%, 90.84%, 91.87%, and
91.98% correspondingly.
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Figure 9: Accuracy analysis of OSAE-LSTM technique on liver disorders dataset

Figure 10: Loss analysis of OSAE-LSTM technique on liver disorders dataset
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Table 6: Comparative analysis of OSAE-LSTM technique with existing algorithm on liver disorders
dataset

Methods Sensitivity Specificity Accuracy ROC

FMM 63.38 70.69 64.27 71.10
FMM-CART 84.87 82.17 84.28 87.91
FMM-CART-RF 88.77 88.09 88.16 90.84
OSAE-LSTM 91.20 90.84 91.87 91.98

Figure 11: Comparative analysis of OSAE-LSTM technique on liver disorders dataset

5 Conclusion

In this article, a novel OSAE-LSTM model has been developed for the effectual classification
of biomedical data for the existence of diseases. The proposed OSAE-LSTM model encompasses a
series of operations such as min-max normalization, SAE-LSTM classification, and MRFO based
hyperparameter tuning. The utilization of MRFO algorithm assists in optimal selection of hypermeters
involved in the SAE-LSTM model. The simulation analysis of the OSAE-LSTM model has been tested
using a set of benchmark medical datasets and the results reported the improvements of the OSAE-
LSTM model over the other approaches under several dimensions. Thus, the presented OSAE-LSTM
model has been employed for effectual detection and classification of biomedical data. In future,
feature selection models can be introduced to reduce the high dimensionality problem that exist in
the heterogeneous biomedical data.
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