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Abstract: The significant advantage of the quantum homomorphic encryp-
tion scheme is to ensure the perfect security of quantum private data. In this
paper, a novel secure multiparty quantum homomorphic encryption scheme is
proposed, which can complete arbitrary quantum computation on the private
data of multiple clients without decryption by an almost dishonest server.
Firstly, each client obtains a secure encryption key through the measurement
device independent quantum key distribution protocol and encrypts the pri-
vate data by using the encryption operator and key. Secondly, with the help
of the almost dishonest server, the non-maximally entangled states are pre-
shared between the client and the server to correct errors in the homomorphic
evaluation of T gates, so as to realize universal quantum circuit evaluation
on encrypted data. Thirdly, from the perspective of the application scenario
of secure multi-party computation, this work is based on the probabilistic
quantum homomorphic encryption scheme, allowing multiple parties to dele-
gate the server to perform the secure homomorphic evaluation. The operation
and the permission to access the data performed by the client and the server
are clearly pointed out. Finally, a concrete security analysis shows that the
proposed multiparty quantum homomorphic encryption scheme can securely
resist outside and inside attacks.

Keywords: Quantum homomorphic encryption; secure multiparty computation;
almost dishonest server; security

1 Introduction

Classical homomorphic encryption (HE) is focused on the related notion of homomorphism in
the field of abstract algebra. Its central idea is to take advantage of homomorphism as a preserving

http://dx.doi.org/10.32604/cmc.2022.029125
mailto:flyover100@163.com


2836 CMC, 2022, vol.73, no.2

function to ensure the security of private data. Under this premise, the operations on the ciphertext
are outsourced to a server with powerful computing capabilities. The idea of homomorphic encryption
first emerged in 1978 when the professional term was called privacy homomorphism that was proposed
by Rivest et al. [1] at that time. Since then, an open question in the international cryptographic circle is
how to construct a fully homomorphic encryption scheme capable of arbitrary function transforma-
tion of the ciphertext. Until 2009, The first fully homomorphic encryption (FHE) algorithm came into
view which was presented by Gentry [2]. It inspired the rapid development of the FHE scheme in the
following decades. According to the FHE schemes based on difficult problems, it is mainly divided
into the problem of approximate greatest common divisor over the integers [3–5] and learning with
errors problem based on lattices [6–8].

The development and progress of quantum computers provide access to accelerate the calculation
based on the properties of quantum mechanics. The application of quantum computation in quantum
communication network [9,10] and quantum blockchain [11–13] will be practical and feasible in the
future, and in the meantime, the concept of quantum homomorphic encryption (QHE) has also been
proposed. Similar to the homomorphic characteristics used in classical HE, QHE also completes
homomorphic quantum computations without decryption by the server. The ciphertext after the
homomorphic quantum computation is the same as a valid ciphertext after performing the same
quantum computation on the original plaintext. The difference is that all the above processes are
completed in the background of quantum data and quantum computation. In the beginning, a large
amount of research work [14–16] addressed the task of secure implementation of delegated quantum
computation on the encrypted data, but the interaction requirements of the above schemes lead to the
workload of the client is proportional to the size of the homomorphic evaluation circuit. The non-
interactive schemes have been given in [17,18], but neither of them is suitable for universal quantum
computation. The QHE scheme described in [17] realized a restricted class of quantum computation on
the encoded input quantum state through the boson-sampling model under the premise of satisfying
some information-theoretic security. Reference [18] used the group theoretical insights to make the
scheme support quantum computing tasks including and extending beyond the boson-sampling model
with improved security. In 2014, Yu et al. [19] proved that achieving a certain balance between security
and compactness in a quantum fully homomorphic encryption (QFHE) scheme would be the optimal
trivial scheme. In other words, if a QFHE scheme with information-theoretic security is to meet the
non-interactivity and realize universal quantum computation, it will inevitably lead to exponential
storage overhead. This allows more research to dive into the study of whether a QFHE scheme can
be achieved under the condition of relaxing some properties and requirements. In 2015, Broadbent
et al. [20] weakened the security level to computational security and gave the definitions of QHE and
QFHE. They proposed two QHE schemes, which were suitable for the homomorphic evaluation of
the quantum circuit containing a finite number of T gates. Subsequently, Dulek et al. [21] improved
the quantum circuit to the size of any polynomial level and presented a QFHE scheme under the
computational security by using auxiliary quantum gadgets. In 2018, Ouyang et al. [22] used quantum
codes to encode plaintext and evaluation circuits in parallel under the entropy security model to realize
universal quantum computation. In the same year, Mahadev [23] utilized the classical leveled FHE
scheme to encapsulate the key and constructed a quantum leveled FHE under the assumption of cyclic
security.

At the same time, the functionality and application scenarios of the QHE scheme have also
been extensively studied. In 2017, Alagic et al. [24] proposed a verifiable leveled QHE scheme by
using classical computing logs, proving that homomorphic evaluation results of the QHE scheme
can be verified in a non-interactive way. In 2019, Chen et al. [25] combined the characteristics of the
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QHE algorithm with the quantum secret sharing scheme to achieve a flexible and variable number
of honest evaluators to perform homomorphic evaluation operations in sequence. Later, Liang [26]
corrected errors occurring in the homomorphic quantum computation of T gates based on the
quantum technology of gate teleportation and proposed a QHE scheme that allows quantum circuits
with arbitrary polynomial size. Reference [27,28] completed the Grover retrieval scheme on secret
superposition state based on QHE in 2020. Besides, there are some experimental studies [29–31] on
QHE schemes.

At present, the existing schemes [20,21,24,26,27] apply the maximally entangled state to remove
the P error, that is, an arbitrary quantum calculation can be achieved through the maximally entangled
channel. However, the quantum system is generally open in the real physical environment. When
coupled with the realistic environment, the maximally entangled state is affected by the ambient noise,
resulting in the problem of degenerating into a non-maximally entangled state. Therefore, our scheme
uses non-maximally entangled states as quantum resources to assist solve the error problem in the
evaluation of T gate. While ensuring the correct execution of the scheme, it reduces the requirements
for quantum channels in the previous QHE scheme. In order to improve the universality of the QHE
scheme, we will study the QHE scheme with multiple clients and extend its application scenarios to
secure multi-party computation. In this paper, we propose a novel secure multi-party QHE scheme
by introducing pre-shared non-maximally entangled states that are relatively well prepared between
the client and the server as an auxiliary resource. The error correction of the T gate evaluation is
completed and the universal quantum circuit evaluation on the quantum ciphertext can be achieved.
It is possible for multiple clients to send computation requests to an almost dishonest server in parallel,
and guarantee the perfect security of private data.

2 Preliminaries
2.1 Quantum Computation

We will give the symbols and concepts that are essential for the construction of the scheme. For a
more detailed introduction to quantum computation, refer to Nielsen et al. [32].

Our work will employ the universal quantum circuit model, denoted as QC, consisting of Clifford
gates and non-Clifford gates, where Clifford gates include Pauli gates X and Z, as well as H gate, P gate
and CNOT gate, and T gate is chosen as a representative of the non-Clifford gate for computation.
Coupled with the computational basis measurements, it is sufficient to realize universal quantum
computation.

The entanglement appearance between quantum states is a property of the quantum composite
system described in quantum mechanics. Bell state, as the representative of the two-qubit entangled
state, is in the maximally entangled state, also known as the EPR (Einstein-Podolsky-Rosen) pair. It
consists of four entangled states as follows,

|Φ±〉 = 1√
2

( |00〉 ± |11〉) , |Ψ±〉 = 1√
2

( |01〉 ± |10〉) . (1)

We define |Θ〉 = u |00〉+v |11〉 to be a non-maximally entangled state, where u and v are complex
numbers and satisfy the normalization condition |u|2 + |v|2 = 1. Let Id denote the identity matrix of
dimension d, then the completely mixed state can be expressed as Id/d.
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A density matrix ρ is regarded as the quantum plaintext, by randomly selecting the Pauli key, that
is, the classical bit a, b ∈ {0, 1} and applying the Pauli operator X and Z on ρ, any quantum plaintext
is mapped to the quantum ciphertext, which is in a completely mixed state, since

∀ρ :
∑

a,b∈{0,1}n

1
22n

X aZbρ
(
X aZb

)† = 1
2n

I2n . (2)

This property is allowed to construct a quantum one-time pad (QOTP) and qubits are encrypted
in a quantum cryptography scheme. The Pauli key used only once will be randomly generated. Only
with the correct key can the quantum ciphertext be decrypted to obtain valid information. So, even
if an attacker intercepts the complete quantum ciphertext, it is meaningless to ensure the security of
privacy information.

2.2 Quantum Homomorphic Encryption

Quantum homomorphic encryption refers to that the client encrypts the quantum state and sends
it to the server. After the server is delegated to perform quantum evaluation operations on the quantum
ciphertext, the calculation result is returned to the client for decryption. And the intended result of
the quantum evaluation operations on the original quantum state is finally obtained. The concepts
introduced in this section include QHE, correctness, compactness, and QFHE. For a more in-depth
understanding of the above definitions, refer to Broadbent et al. [20].

Definition 1 (Quantum homomorphic encryption). We now provide the definition of the QHE
scheme in the asymmetric key setting. It consists of the following algorithms: key generation,
encryption, evaluation, and decryption.

(i) Key Generation. (pk, sk, ρevk) ← QHE.KeyGen (1κ), where κ ∈ N is the security parameter. pk
is used as a public key for encryption, sk is used as a private key for decryption, and both are classical
keys. ρevk is worked as an evaluation key for evaluating the quantum circuit, which is a quantum state.

(ii) Encryption. σ ← QHE.Encpk (ρ). For the quantum plaintext ρ of the message space, the
effective public key pk is employed to map it to the quantum ciphertext σ of the cipher space through
the encryption algorithm.

(iii) Homomorphic Evaluation. σ ′ ← QHE.EvalQC
ρevk

(σ ), where QC is a universal quantum circuit
that acts on the quantum ciphertext σ . The evaluation function maps σ to a certain output space to
generate a new quantum ciphertext σ ′ and consumes the evaluation key ρevk.

(iv) Decryption. ρ ′ ← QHE.Decsk (σ ′). Using the correct private key sk and decryption algorithm,
the quantum state σ ′ is mapped from the output space to the message space to obtain another quantum
plaintext ρ ′, which is consistent with the homomorphic quantum computation conducted on the
original quantum plaintext ρ.

Definition 2 (Correctness). A QHE scheme is correct if for any quantum circuit QC and the
quantum plaintext ρ, there is a negligible function η such that

Pr
[
QHE.Dessk

(
QHE.EvalQC

ρevk

(
QHE.Encpk (ρ)

)) �= ΦQC (ρ)
]

≤ η (κ) , (3)

where Φ denotes a quantum channel, which represents any physically achievable mapping on the
quantum register, namely, the quantum circuit QC is applied to the quantum state.

Definition 3 (Compactness). For any quantum circuit QC and quantum ciphertext σ ′, a QHE
scheme is compact, the complexity of the decryption function is independent of the size of the quantum
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circuit QC, that is, there is a polynomial p (κ), the computational complexity of applying QHE.Decsk

to decrypt the quantum ciphertext σ ′ is at most p (κ).

Definition 4 (Quantum fully homomorphic encryption). If a QHE scheme is correct and compact
for all quantum circuits formed by a set of universal quantum gates, the scheme is a QFHE scheme.

3 Secure Multiparty Quantum Homomorphic Encryption Scheme

In this section, we first introduce the probabilistic QHE scheme that uses the non-maximally
entangled state to accomplish T gate evaluation. Based on Zhang et al.’s result [33], the main idea of the
scheme is described in Section 3.1 which is helpful for our proposal. Then, in Section 3.2, we propose
our secure multiparty quantum homomorphic encryption (MQHE) scheme in detail, combined with
the evaluation method of T gate, to realize the universal quantum circuit evaluation for multiple clients.

3.1 T gate Evaluation in Quantum Homomorphic Encryption

As a non-Clifford gate, T gate does not have the property of commuting with the Pauli group.
When it is applied to the encrypted quantum state, we will get TX aZb |φ〉 = PaX aZbT |φ〉. This
result contains an unexpected P error and is unable to be corrected by using Pauli corrections.
Therefore, the main method we adopt is to pre-share the non-maximally entangled state |Θ12〉 =
u |00〉 + v |11〉 (|u|2 + |v|2 = 1

)
between the client and the server, where the first particle is owned by

the client, and the second particle is owned by the server. After a series of operations, the P error
is successfully corrected with a certain probability, and the T gate evaluation in the QHE scheme is
realized. Next, we will give the specific process of the main method, which be minutely illustrated in
Fig. 1 below.

Figure 1: Quantum circuit of T gate evaluation

At first, the client prepares a quantum state |φ0〉 = α |0〉 + β |1〉. The secure encryption key is
ek = (a, b) (a, b ∈ {0, 1}). The client encrypts the initial quantum state by using QOTP and we will
get |φ1〉 = X aZb |φ0〉 = X aZb (α |0〉 + β |1〉) which then be sent to the server. The server performs T
gate and outputs |φ2〉 = T |φ1〉 = TX aZb (α |0〉 + β |1〉). Meanwhile, the non-maximally entangled
state |Θ12〉 is introduced. The server performs the CNOT gate with the second particle of |Θ12〉 as
the control qubit and |φ2〉 as the target qubit. Then we will have |Λ〉 = (I ⊗ CNOT) ( |Θ12〉 ⊗ |φ2〉).
The client performs the Pa operation and the Hgate on the first particle of the |Θ12〉 in the hand,
and the quantum state becomes |Ω〉 = (HPa ⊗ I ⊗ I) |Λ〉 = (HPa ⊗ CNOT) ( |Θ12〉 ⊗ |φ2〉). More
specifically, if a = 0, the quantum states in the circuit are as follows
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(H ⊗ CNOT) ( |Θ12〉 ⊗ |φ2〉)
= (H ⊗ CNOT) (u |00〉 + v |11〉) ⊗

(
α |0〉 ± e

iπ
4 β |1〉

)
= u · H |0〉 |0〉

(
α |0〉 ± e

iπ
4 β |1〉

)
+ v · H |1〉 |1〉

(
α |1〉 ± e

iπ
4 β |0〉

)
= 1√

2

[
u ( |0〉 |0〉 + |1〉 |0〉)

(
α |0〉 ± e

iπ
4 β |1〉

)
+ v ( |0〉 |1〉 − |1〉 |1〉)

(
α |1〉 ± e

iπ
4 β |0〉

)]
.

(4)

Similarly, if a = 1, the quantum state obtained can be expressed as Eq. (5).

(HP ⊗ CNOT) ( |Θ12〉 ⊗ |φ2〉)
= (HP ⊗ CNOT) (u |00〉 + v |11〉) ⊗

(
e

iπ
4 α |1〉 ± β |0〉

)
= u · HP |0〉 |0〉

(
e

iπ
4 α |1〉 ± β |0〉

)
+ v · HP |1〉 |1〉

(
e

iπ
4 α |0〉 ± β |1〉

)
= 1√

2

[
u ( |0〉 |0〉 + |1〉 |0〉)

(
e

iπ
4 α |1〉 ± β |0〉

)
+ iv ( |0〉 |1〉 − |1〉 |1〉)

(
e

iπ
4 α |0〉 ± β |1〉

)]
.

(5)

Then the first and third particles in the |Ω〉 are measured with the basis { |0〉 , |1〉}, and we denote
the corresponding outputs as y and r. The obtained quantum states will be in the following set which all

hold up to an irrelevant global phase, namely
{

1√
2

(
uα |0〉 ± e

iπ
4 vβ |1〉

)
,

1√
2

(
e

iπ
4 uβ |0〉 ± vα |1〉

)}
.

It can be seen that the quantum state of the entire system contains the uncertain values u and v. For the
purpose of attaining the correct T gate evaluation results, the server prepares an auxiliary quantum

state |0〉aux and carries out the defined unitary operator, which is denoted as U =
(

I 0
0 Ua

)
. The unitary

matrix Ua = e
−iπ

2 e
iπ ·n̂·σ

2 , where n̂ = (√
1 − u2/v2, 0, u/v

)
and σ = (

σx, σy, σz

)
, and its calculation process

is concretely given in [33]. Here we give the matrix expression form as follows,

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

0 0 u
v

√
1 − u2

v2

0 0

√
1 − u2

v2
−u

v

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

Without loss of generality, we take the
1√
2

(
uα |0〉 + e

iπ
4 vβ |1〉

)
as an example to elaborate the

operation which is shown in Eq. (7). Other quantum states also have a similar calculation process.

1√
2

U
(

u α |0〉 + e
iπ
4 vβ |1〉

)
⊗ |0〉aux

= 1√
2

(
uα |0〉 |0〉aux + e

iπ
4 uβ |1〉 |0〉aux + e

iπ
4 v

√
1 − u2

v2
· β |1〉 |1〉aux

)

= 1√
2

[
u

(
α |0〉 + e

iπ
4 β |1〉

)
⊗ |0〉aux + e

iπ
4 v

√
1 − u2

v2
· β |1〉 ⊗ |1〉aux

]
(7)

At last, the auxiliary particle |0〉aux is measured under the basis { |0〉 , |1〉}. When the measurement
result is |0〉, the T gate evaluation is accomplished and the expected result can be obtained with a
probability of u2/2. Otherwise, the P error cannot be corrected this time. Hence, we can see that our
method verifies that the non-maximally entangled state can solve the obstacles in the homomorphic
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quantum computation of the T gate but at the expense of the probability of successfully correcting the
P error. From the perspective of experimental implementation, our scheme can not only be true of the
homomorphic evaluation of the universal quantum circuit, but is also more flexible in the choice of
quantum resources.

3.2 Multiparty Quantum Homomorphic Encryption Scheme

In this subsection, we propose a secure MQHE scheme, which allows multiple clients to complete
the evaluation of the universal quantum circuit on encrypted private data in parallel with the assistance
of the almost dishonest server. In particular, the quantum circuit includes Clifford gates and a finite
number of non-Clifford gates. The almost dishonest server in our scheme is the one with great
computing capability, which will loyally perform quantum computations. It will not cooperate with
clients to launch a collusion attack but will take the initiative to steal clients’ private data. At the
same time, a trusted key center is introduced and responsible for the execution of the key generation
algorithm, and updating the encryption key to obtain the decryption key.

Next, we will specifically describe our MQHE scheme. Assume that there are n (n ≥ 2) clients
which are denoted as Pi (i = 1, 2, · · · , n). Firstly, the server uses the measurement device independent
quantum key distribution (MDI-QKD) protocol to distribute secure keys to multiple clients and the
trusted key center, i.e., Charlie. Each client uses QOTP technology to encrypt their private data and
sends it to the server. The expected quantum circuit is determined and sent to Charlie and the server
simultaneously. Then, the server successively acts on the received quantum ciphertext according to the
order of the quantum gates in the quantum circuit to complete the homomorphic evaluation while
keeping the private data in the quantum ciphertext. And the result of the homomorphic evaluation is
received by the client. Finally, according to the quantum circuit and the encryption key shared with
each client, Charlie updates the encryption key through the key update rules to acquire the decryption
key, which is transmitted to the corresponding client for decryption. The client decrypts to obtain
the intended outcome of the quantum circuit acted on the quantum plaintext. The above process is
depicted in Fig. 2 below.

The complete process of our scheme is illustrated by step as follows.

S1. Key generation. eki = (ai, bi) ← MQHE.KeyGen, where ai, bi ∈ {0, 1}, i ∈ {1, 2, · · · , n}. There
are clients Pi and Charlie randomly prepare one of the quantum states |0〉, |1〉, |+〉, and |−〉. Let
|ϕpij

〉
denotes the j-th quantum state prepared by the i-th client, and |ϕcij

〉
denotes the quantum state

prepared by Charlie. When Pi and Charlie transmit them to the server, they form j pairs of quantum
states |ϕpij

〉 |ϕcij

〉
. The server performs joint Bell state measurement on |ϕpij

〉 |ϕcij

〉
and returns the

measurement results to both parties through a trusted and authenticated classical channel. According

to the measurement results
{
|Φ±〉pij cij

, |Ψ±〉pij cij

}
, Pi and Charlie retain the quantum state corresponding

to the successful measurement and announce the preparation basis used. Only the quantum states with
the same preparation basis are reserved. At this time, the key obtained is the sifted key. Finally, Pi and
Charlie publishes a part of the sifted key to perform post-processing. If the error rate is lower than
the set threshold, it is confirmed that there is no eavesdropper, the quantum channel between the two
parties is secure. And in accordance with the agreed encoding rules, |0〉 and |+〉 are encoded as the
classic bit “0”, |1〉 and |−〉 are encoded as the classic bit “1”. Whereupon, both parties can get the
same security key which is of the form eki = (ai, bi).
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and Charlie prepare and send quantum states

Server performs joint Bell state measurement

Encrypted data & 
quantum circuit 

Server completes the homomorphic 
evaluation

and Charlie retain quantum states with the 
same basis and obtain the sifted key

Whether the error rate is 
lower than the set threshold?

and Charlie get the encryption key

Y

N

encrypts the quantum plaintext and determine 
the quantum circuit

Server prepares an auxiliary particle

Evaluated data

Charlie updates the key and sends the 
decryption key to

decrypts and gets the desired result

Encrypted data & quantum circuit
& non-maximally entangled state

End

Start

Server performs the unitary operator 
and measures particles

iP

Whether the quantum 
circuit contains a T gate?

Y

N

and Server pre-share the non-maximally 
entangled state    

performs the operations

iP

iP

iP

iP

iP

iP

S4. Decryption

iP

S1. Key generation

S2. Encryption

S3. Homomorphic evaluation

Figure 2: Flow chart of the MQHE scheme

S2. Encryption. |φi1

〉 = X ai Zbi |φi0

〉 ← MQHE.Enceki

( |φi0

〉)
. Pi has the quantum plaintext to

be encrypted as |φi0

〉 = αi |0〉 + βi |1〉 and use eki in S1 as the encryption key of QOTP to execute
the encryption algorithm. In the meantime, Pi determines the quantum circuit QCi containing m
quantum gates Gd (d = 1, 2, . . . , m) to be performed on the quantum ciphertext, which is composed
of {X ,Z, H, P, CNOT , T}. After that, Pi transmits the quantum ciphertext |φi1

〉
and QCi to the server,

and only sends QCi to Charlie. When QCi contains a T gate, the client should share the non-maximally
entangled state, namely |Θi12

〉 = ui |00〉 + vi |11〉 (|ui|2 + |vi|2 = 1
)
, with the server in advance.
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S3. Homomorphic evaluation. QCi

(
X ai Zbi |φi0

〉) ← MQHE.EvalQCi
( |φi1

〉)
. The form of the

quantum ciphertext received by the server is as
(
X a1Zb1 ⊗ X a2Zb2 ⊗ · · · ⊗ X anZbn

) |φ10

〉 |φ20

〉 · · · |φn0

〉
.

A server will faithfully perform operations on the corresponding quantum ciphertext according to the
order of the quantum gates in QCi. When the quantum gate Gd ∈ {X ,Z, H, P, CNOT}, it is directly
applied to the encrypted qubits, and Charlie can update the encryption key in a direct way. When
Gd = T , the server adopts the main method introduced in Section 3.1 to remove the P error and
complete T gate evaluation, including the application of a CNOT gate, the introduction of an auxiliary
particle |0〉aux, the implementation of the defined unitary operator and the measurement. The client’s
operation on the non-maximally entangled particle in his hands will be delayed until the decryption
stage. After the homomorphic evaluation, the server returns the evaluated data to the corresponding
client Pi.

S4. Decryption. QCi |φi0

〉 ← MQHE.Decdki

(
QCi

(
X ai Zbi |φi0

〉))
. In the final phase, Charlie updates

the encryption key to acquire the decryption key, i.e., dki =
(

ai
′ , bi

′)
, and sends it to Pi through the

classical authenticated channel. Next, we show how the key is updated according to the key update
rules.

(a) If Gd = X or Gd = Z, eki = (ai, bi)
update→ dki = (ai, bi).

(b) If Gd = H, eki = (ai, bi)
update→ dki = (bi, ai).

(c) If Gd = P, eki = (ai, bi)
update→ dki = (ai, ai ⊕ bi).

(d) If Gd = CNOT , because CNOT is a two-qubit gate, both the control qubit and the
target qubit need the encryption keys, namely eki = (ai, bi, ci, di), and the decryption key is

dki =
(

ai
′ , bi

′
, ci

′ , di

′)
. The corresponding key transformation is eki = (ai, bi, ci, di)

update→ dki =
(ai, bi ⊕ di, ai ⊕ ci, di).
(e) If Gd = T , the client operates on the first particle in the non-maximally entangled state,
that is, (HPai ⊗ I) |Θ12〉, where ai is the value of the X -encryption key obtained by the client
in S1, and then measures this particle. In this case, the rule for updating the encryption key
requires two measurement results after the evaluation of the T gate, namely yi and ri, then
there is eki = (ai, bi)

update→ dki = (ai ⊕ ri, ai ⊕ bi ⊕ airi ⊕ yi).

In the end, Pi uses the decryption key to decrypt the evaluated data, and acquire the homomorphic
evaluation of the quantum circuit acting on the quantum plaintext |φi0

〉
.

Through the description of the above scheme, we propose a novel MQHE scheme, which enables
any number of clients to request homomorphic quantum computations from the almost dishonest but
computationally capable server in parallel. The server implements homomorphic evaluation of the
universal quantum circuit including a limited number of T gate while ensuring the perfect security
of private data. In short, our scheme completes the secure homomorphic evaluation of multi-party
quantum private data in a non-interactive way and guarantees key security through the trusted key
center. From the perspective of simplifying the experimental implementation, we choose the pre-shared
non-maximally entangled state to solve the difficult problems and guarantee the correctness of the
proposed scheme.

4 Security Analysis

This section will discuss the security of our MQHE scheme in different aspects, mainly from the
outside attack and inside attack. An outside attack means that an external eavesdropper attempts to
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grab the private data. An inside attack means that an attack initiated by the client, server, and key
center.

4.1 Outside Attack

On the one hand, this scheme uses the MDI-QKD protocol to ensure the security of the key for
possible security loopholes when the server performs measurement during the key distribution process.
On the other hand, the QOTP technology is utilized to encrypt private data, thereby minimizing the
risk of data leakage to guarantee the security of private data. According to the four stages of the QHE
scheme, we specifically analyze and prove that our scheme can resist outside attacks.

Initially, the security of the key generation stage is analyzed. In our scheme, the distribution of
quantum keys adopts the MDI-QKD protocol. It can resist the attack of the external eavesdropper Eve
that has been rigorously proved in [34]. The device independence means that the security of the protocol
does not depend on the actual measurement device, which is consistent with the security assumption
that the server is almost dishonest in the proposed scheme. When the server sends the results of
Bell state measurement to Pi and Charlie, there is an active interception behavior by Eve. Suppose

|Φ+〉pij cij
= 1√

2
( |00〉 + |11〉) is intercepted, and since

1√
2

( |00〉 + |11〉) = 1√
2

( | + +〉 + | − −〉),
Eve can only judge that Pi and Charlie have randomly prepared the same quantum state this time,
and cannot effectively distinguish whether the quantum state is prepared in Z basis { |0〉 , |1〉} or X

basis
{

|±〉 = 1√
2

( |0〉 ± |1〉)
}

. In addition, when performing post-processing on the sifted key, Pi and

Charlie analyze whether there is an eavesdropper according to the error rate. The final key is secure
and random, making Eve unable to accurately infer the genuine value of the key. Therefore, the key
generation stage can resist outside attacks.

Then, in the encryption stage, each client has only access to their original private data and uses
the secure key as the Pauli key to encrypt the private data in combination with the QOTP method. It is
an asymmetric encryption method that uses random keys makes the encrypted quantum ciphertext in
a totally mixed state. The effective information cannot be obtained by Eve without the correct key so
that the security of private data is guaranteed in the transmission process. Now, we prove the aforesaid
conclusion.

Proof . Define ρ to be a quantum plaintext and σ to be the quantum ciphertext. The encryption
operator of QOTP is denoted with X αi Zβi , where X αi = ⊗n

k=1σx
αi(k) (αi (k) ∈ {0, 1}) and Zβi =

⊗n
k=1σz

βi(k) (βi (k) ∈ {0, 1}). As well as X αi means whether to apply σx according to the classical bit at
the k-th position in the n cbits string αi, namely the value of αi (k). The same goes for Zβi . The Eq. (8)
is obtained below.

σ =
∑

i

(
X ai Zbi

) |φi0

〉 〈
φi0

| (
Zbi X ai

)

= 1
22n

∑
αi ,βi∈{0,1}n

(⊗n
t=1σx

αi(k)σz
βi(k)

)
ρ

(⊗n
t=1σz

βi(k)σx
αi(k)

)
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= 1
22n

∑
αi ,βi∈{0,1}n

X αi ZβiρZβi X αi

= I2n

2n
(8)

It can be seen that the quantum plaintext is mapped to the same output density matrix I2n/2n. If
Eve intercepts the quantum ciphertext, he is ignorant of any information about the quantum input
state without knowing the key. It is impossible for Eve to distinguish the plaintext state owned by each
client Pi, so as to ensure the security of private information in the encryption stage. Similarly, in the
homomorphic evaluation stage, after the server applies Gd ∈ {X ,Z, H, P, CNOT , T} to the quantum
ciphertext according to the MQHE scheme, the evaluated quantum state is still a completely mixed
state. If the results of the homomorphic evaluation cannot be decrypted, it is unaware for Eve to get
the specific content of the universal quantum circuit operating on the original quantum plaintext. So,
the homomorphic evaluation can also be immune to outside attacks.

Finally, in the decryption stage, the trusted key center renews the decryption key according to the
secure encryption key obtained in S1, the quantum gate used in the quantum circuit in S2, and the
key update rule given in S4. The decryption key is sent to Pi through the trusted and authenticated
classical channel. As time goes by, the key is irregular, so the adversary cannot get valid content about
the decryption key. To conclude, the encryption and decryption keys have good performance in terms
of security.

Through the discussion in this section, our MQHE scheme can securely against outside attacks,
thereby protecting any information about private data and keys from being leaked.

4.2 Inside Attack

Clients, servers, and trusted key centers are the main participants in the scheme. If an inside
attack is launched, it may pose a serious security threat to the cryptographic scheme. Without loss
of generality, suppose there exists a dishonest client Pe (1 ≤ e ≤ n) that wants to steal private data
from n − 1 honest clients and intercepts the quantum state sent by one of them during transmission,
but Pe cannot possess the key of the honest client. In our scheme setting, with the assistance of the
server, each client acquires a secure key by exploiting the MDI-QKD protocol to encrypt private data.
The process of executing the encryption algorithm does not involve the help of other parties. Hence,
in addition to using their own keys and operations to process private data, the clients have neither
interaction with other clients, nor the authority to access other clients’ data or keys.

As an almost dishonest third-party server, there is data exchange with the client, and it can
faithfully complete the homomorphic evaluation of the universal quantum circuit without colluding
with the malicious client. Unfortunately, the server will evade eavesdropping detection and try to grab
the private data. In our scheme, both the encrypted data and the evaluated data are in a completely
mixed state and have information-theoretic security. If the server eavesdrops on the quantum channel
in the transmission, it will be treated as an outside attacker and unable to extract meaningful
information by the means of the outside attack. In QOTP, all keys are randomized and used only
once. The security of the key distribution is guaranteed by the MDI-QKD protocol. The replication
and retransmission of the quantum state by a malicious server will introduce errors with a certain
probability and may be monitored in the post-processing step of the key. In other words, the server
cannot infer the value of the key.
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The trusted key center, Charlie, introduced in our scheme, is responsible for cooperating with each
client to realize the secure distribution of the encryption key, and updating the correct decryption key
depending on the quantum circuit and key update rules. Charlie will honestly abide by the requirements
of the MQHE scheme, and will not disclose the encryption and decryption keys to anyone other
than Pi. Not only the process of the key renewing but also the details of the quantum circuit are
kept confidential and will not disclose. At the same time, Charlie will not be affected by any attacker
who attempts to illegally get the Pi’ private data or the quantum circuit. It further guarantees that the
private data and keys are secure. Therefore, our scheme has the ability to resist the participant’ attack
and third-party’ attack.

In summary, it is demonstrated that the proposed MQHE scheme is good at security in terms of
private data and keys, and has outstanding performance in resisting outside and inside attacks.

5 Conclusions

This paper presents a secure MQHE scheme. On the one hand, the non-maximally entangled state
is used to tackle the computational issues of T gate evaluation that relaxes the technical requirements
for implementation of the universal quantum circuit evaluation. On the other hand, drawing on the
idea of secure multi-party quantum computation, we expand the application scenario of the QHE
scheme and propose a workable scheme that multiple clients request a homomorphic evaluation from
the third-party server in parallel, reflecting the significant advantages of QHE in protecting private
data. In addition, the trusted key center is employed to ensure the security of key distribution and the
encryption and decryption keys, so that the scheme performs well in terms of correctness and security.
What’s more, we hope that the constructed scheme can inspire the application of the QHE scheme
in secure multi-party computation scenarios, making it possible to transmit large-scale quantum
information safely and efficiently.
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