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Abstract: To improve the maintenance and quality of software product
lines, efficient configurations techniques have been proposed. Nevertheless,
due to the complexity of derived and configured products in a product line,
the configuration process of the software product line (SPL) becomes time-
consuming and costly. Each product line consists of a various number of
feature models that need to be tested. The different approaches have been pre-
sented by Search-based software engineering (SBSE) to resolve the software
engineering issues into computational solutions using some metaheuristic
approach. Hence, multiobjective evolutionary algorithms help to optimize
the configuration process of SPL. In this paper, different multi-objective
Evolutionary Algorithms like Non-Dominated Sorting Genetic algorithms
II (NSGA-II) and NSGA-III and Indicator based Evolutionary Algorithm
(IBEA) are applied to different feature models to generate optimal results
for large configurable. The proposed approach is also used to generate the
optimized test suites with the help of different multi-objective Evolutionary
Algorithms (MOEAs).

Keywords: Software product line; search-based software engineering;
metaheuristic; multiobjective evolutionary algorithms; feature model

1 Introduction

The work described in this paper is also mentioned in Software Product Lines testing optimization
using the Multiobjective Evolutionary Algorithms (MOEAs) like Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) and NSGA-III [1]. Mostly, software engineers are developing such software
families comprised of identical systems with many variations. Software Product Line Engineering
(SPLE) methodology generates a diversity of quality software products in less time frame and cost
[2,3]. In other words, the SPL methodology can also be described as a set of different systems sharing
and managing features. Moreover, those are adapted according to specific market requirements [4].
SPLE process combines reusable components in order to produce a newer product for a particular
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domain [5]. This approach identifies the requirements, architecture, and different reusable components,
and all these artifacts help to develop the specific components of the products’ functionalities [6,7].

The goal of the SPL methodology is to increase the product quality while reducing the time
and cost of production by reusing already tested core assets. To achieve the objectives in this
process, artifacts like requirements specification documents, analysis diagrams, architectures, reusable
components, tests, strategies, and maintenance methods are put together [7,8]. Software Product Line
Engineering (SPLE) has been introduced for feature analysis [9,10]. The feature models help to deal
with variability that can arise in SPLE [11,12].

Fig. 1 shows the methodology of the SPLE process, the reusability of components is considered
as the main approach in SPLE. This methodology has been divided into two phases, (1) Domain
Engineering where analysis, design, and implementation have been done to develop the core assets of
the specific domain, (2) Application Engineering phase build the final products as per requirements
of the customer [1,7,13].

Figure 1: Software product line engineering process

The large number of variations points in SPL makes its development process challenging because
product line development differs from single product development. Hence, the variability is a natural
aspect of the modeling process [14]. The software industry uses Software product lines (SPL)
methodology to make the software development process more effective because of faster production
in less time. But testing of SPL needs more research due to the infeasibility of testing of individuals’
systems components. The organization of software product line variation points originates the process
of test case generation [15–17]. Therefore, variability is considered as the core point in product line
development. But major challenges regarding SPL testing is to handle the situation when required as
test cases become large in numbers due to product variants [16]. During the test case design, there
requires strategies for testing optimization and the utilization of these strategies would be useful when
test cases become large and also helps to maintain the quality of the products [15]. The optimization
techniques would also be helpful to optimize the bigger size of the regression test suits [18].

However, the feature models are used to represent the software product line and Mendonc
et al. [19] discussed that Satisfiability (SAT) solvers originate clear solutions for SPL feature models’
reasoning. The SAT solver produces a valid number of configurations for a feature model. The
technique is adopted by the SAT solver to translate a feature model into the Boolean formula to
generate the configurations [20]. There has been needed to adopt efficient testing techniques in high-
cost and sensitive software development environments. In SPL, a different number of products can
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be derived from a single product line. Hence, the testing process of SPL can be expensive and time-
consuming. The complex SPL testing process needs to figure out which product features should be
tested [21].

For software product line testing, the big number of variants results in a large number of test
cases which is a challenge for the testing procedure. During product development, the number of
test cases increases exponentially which makes the testing process infeasible [1]. This study explores
how Multiobjective Evolutionary Algorithms (MOEA) can help to optimize the product line con-
figurations. The research also inquiries to generate the optimal number of test cases with the aim
of maximum coverage and to minimize the testing exertions. The three renounced Multiobjective
Evolutionary Algorithms (MOEA), Non-Dominated Sorting Genetic Algorithm II, Non-Dominated
Sorting Genetic Algorithm III, and an Indicator-Based Evolutionary Algorithm (IBEA) have been
utilized to achieve the testing objectives. These three evolutionary algorithms apply to three different
product line feature models to generate optimal results. The Pareto dominance technique has been
adopted for solution optimality [22]. For the accuracy of results, performance metrics and quality
indicators have been utilized [23].

Figure 2: Feature model for E-shop product line [24]

The article has been organized as follows. Section 2 discusses the Feature Model and Multiobjec-
tive Evolutionary Algorithms NSGA-II, NSGA-III, and IBEA. The research problem and different
terminologies mention in Section 3. The experiments, results, limitations, and conclusions about the
research have been described in Sections 4, 5, and 6 respectively.

2 Background
2.1 Feature Models

Feature Models (FM) are represented in a hierarchical form with associations between different
features to follow particular constraints. This research work focuses on model-based configuration of
product lines and a feature model that describes a particular product line. According to Iglesias et al. [2]
and Pohl et al. [3], a product line is a collection of different products, that can share the same features.
Software functionalities or attributes are being represented by a feature. The products are distinguished
from each other with the help of features, which allow representing variability. Therefore, it can be
concluded that distinctive products might be produced by selecting different features. In an SPL,
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features are represented in a hierarchical form like a tree in a single Feature Model (FM) [21]. The
following Fig. 2 describes the E-Shop feature model.

2.2 Multiobjective Evolutionary Algorithms (MOEAs)

The requisition of optimization algorithms assists to solve issues concerned with software
testing and software engineering, which are known as Search-Based Software Testing (SBST) and
Search-Based Software Engineering (SBSE). Many of the problems include concurrent streamlining
optimization with some competing goals. Therefore, problems concerning optimization, a set of
possible solutions or choices or courses of action need to be explored [25,26]. These solutions are
ideal in a large search space when every last bit targets the required results [27,28]. For multi-
objective optimization, a significant number of algorithms have been proposed from the last two
decades and these algorithms rely on evolutionary algorithms [21]. They were invented with the
purpose of single-objective optimization, such as Genetic Algorithms, Evolutionary Strategies, Particle
Swarm Optimization, and Differential Evolution. In the proposed research, MOEAs discussed relying
on Genetic Algorithms. These MOEAs follow basic features or qualities, like crossover, mutation,
selection, and elitism. Following different multi-objective algorithms are considered for optimization
problems criteria, which are given as:

2.2.1 NSGA-II Algorithm

Deb recommended non-dominated sorting genetic algorithm–II (NSGA-II) [26]. NSGA-II algo-
rithm has three important properties, (1) an elitism law is exploited by this algorithm, (2) the
algorithm relies on non-dominated solutions, and (3) It makes use of a developed mechanism based
on preservation. It initializes a population of N size after measuring this rank population. From the
ranked population, different criteria are defined to calculate the child population. For N individuals’
selection, it creates a combination of parent, rank, and child population.

The pseudocode for the NSGAII algorithm has been presented as follows.

Algorithm NSGA-II Algorithm
Input: N ′, g, fk (X) �N ′ members matured g generations to get solution fk (X)
1 Initialize Population P

′;
2 Random population generation–size N ′;
3 Evaluate Objectives Values:
4 Rank assignment rely on Pareto–sort;
5 Produce Child Population;
6 Apply Binary Tournament Selection;
7 Procedure of crossover and Mutation;
8 for i = 1 to g do
9 for each Parent and Child in Population do
10 Rank assignment rely on Pareto–sort:
11 Produce nondominated solutions sets;
12 Calculate Crowding distance:
13 Inner Loop to add solutions to next-generation begin from the first front until N ′

individuals;
14 end

(Continued)
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Algorithm Continued
15 Select points on the lower front with high crowding distance;
16 Produce next generation:
17 Apply Binary Tournament Selection:
18 Procedure of crossover and Mutation;
19 end

2.2.2 NSGA-III

Deb proposed the many-objective algorithm known as NSGA-III [29]. The basic working is
similar to the NSGA-II using the selection criteria [30]. NSGA-III pseudo-code working has been
described with generation t. For a specific domain, the parent population Pt of size N is initialized
randomly. After that, with the application of operators like selection, crossover, and mutation
operators, offspring population Qt is generated. Then both populations are joined to generate the
organization and after that according to the domination level they are arranged and sorted. Then
sampling approach is adopted for the best N members selection. The NSGA-III adopts the reference
points Zr technique as compared to NSGA-II. The pseudocode for the NSGAIII algorithm has been
shown as follows.

The pseudocode for the NSGAIII algorithm

Algorithm Algorithm Generation t of NSGA-III
Input: H structured reference points Zs
Zα represents points, Pt for parent population
Output: Pt + 1
1 St ← ∅, i ←1;
2 Qt ← Crossover + Mutation (Pt)
3 Rt ←Pt ∪ Qt
4 (All fronts F1, F2, . . .)←Non-dominated-sort (Rt)
5 iterate
6 St←St ∪ Fi and i ← i + 1;
7 until |St| ≥ N;
8 Fl ←Fi; /∗Last front to be included ∗/
9 if |St | = N then
10 Pt + 1 ←St;
11 else
12 Pt+1 ← Ul−1

j=1 Fj;
/∗Select Points from Fl ∗/

13 K ←N − |Pt + 1|;
/∗ Objectives Normalization and generate reference set Zr ∗/

14 Normalize (FM, St, Zr, Zs, Zα)
/∗Relate all member s of St with a reference point∗/
/∗π(s): shows closest reference point ∗/
/∗ d: distance between s and π(s) ∗/

(Continued)
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Algorithm Continued
15 [π(s), d(s)] = Associate (St, Zr)

/∗ Calculate niche count of reference point j ∈ Zr ∗/
16 ρ ←∑

sεSt / Fl ((π(s) = j) ? 1: 0);
/∗Select K members one at a time from Fl to form Pt = 1 ∗/

17 Niching (K, ρj, π(s), d(s), Zr, Fl, Pt + 1);
18 end if
19 end

2.2.3 IBEA Algorithm

The indicator-based evolutionary algorithm (IBEA) procedure works using arbitrary indicators.
The IBEA procedure relies on the user’s preferences and therefore it does not require the diversity
preservation technique. To obtain better results, the IBEA focuses on fitness ranking criteria, therefore
it can obtain the best results [31]. The details and working flow of the IBEA algorithm can be explored
in [32]. The IBEA procedure has been presented as follows.

Algorithm Procedure for IBEA
Input: α, N, k
1 Define initial population P of size α

2 Generation counter m to 0
3 while population P not greater than α do
4 foreach Population Individual do
5 Measure individual fitness values
6 end foreach
7 Select individual x ε P (smallest fitness value)
8 Eliminate x from the P
9 Revise the fitness values for other individuals
10 if alternate stopping criterion satisfied then
11 Selection of non-dominated individuals in P
12 else
13 Fill the mating pool P′ while running binary tournament selection with the replacement on P
14 Use crossover and mutation operators on pool P′ and sum up the generated offspring to P
15 Addition the generation counter m and start again from line 5
16 end if
17 end while

2.3 Quality Metrics

These metrics guarantee the discovery of quality-oriented solutions. The performance of MOEAs
is difficult in terms of assessment and comparison to measure the nature of Pareto fronts.

Hypervolume

The Hype Volume metric is used to present the volume of objective space and this space is
dominated by Pareto front A. Here, A is considered as a set of non-dominated solutions and
mathematically defined as

HV (A) = volume(∪|A|
i=1vi) where, vi is a hypercube defined
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between solution i ∈ A and the reference point R.

A hyper-volume quality indicator is utilized to determine the quality for both the spread and
convergence of non-dominates solutions set. However, there is a need for a reference point selection
that bounds the dominated region. The higher value of Hypervolume will illustrate the better working
of an algorithm. The discussed metric produces a single value that helps to estimate non-dominated
solutions. But one unfavorable metric of HV is that it requires a reference point to compare all non-
dominated solutions [33].

2.4 SBSE Problems and Selected MOEAs

Search-based software engineering problems have been resolved by different researchers using
multiobjective optimization algorithms. For example, Yoo et al. [34] addressed the test case selection
problem and explored that Pareto efficient technique can help to resolve or optimize the multiple
objectives problem. They devised a two objectives approach that unites the coverage and cost.
Meanwhile, for three objectives optimization, they combine the coverage, cost, and fault history [34].
To optimize the two or three objectives for test case selection, three algorithms like single–objective
greedy algorithm, the Non-Dominating Sorting Genetic Algorithm (NSGA-II), and an island genetic
algorithm variant of NSGA-II, which is called vNSGA-II, have been utilized [34].

Mkaouer recommended and utilized a search-based software engineering technique where he used
the NSGA-III algorithm to optimize the 15 distinct objectives. They produced effective results in
their proposed work to automated refactoring defining 15 distinguishable metrics. They selected open-
source systems available online where they applied their approach and concluded that their technique
is capable to generate results of more than 92% for code smells [35]. Sayyad proposed a refinement
approach to improve the IBEA’s productivity where he introduced the PUSH, seeding, and PULL
heuristic methods. The PUSH heuristic forces the evolutionary search identified dependencies utilizing
feature models. But, the PULL technique focuses to satisfy constraints, while the seeding technique
figures out the correct configurations in the optimization process [36].

3 Proposed Method

This section describes the research problem concerned with finding optimal configurations for
the large software product line. This section provides definitions of terms used in this research
work. In particular, this section also defines problem representation (encoding), variation operators
(mutation and crossover), objective functions, and constraint handling mechanisms. Before describing
the research process for the proposed research, there is a brief discussion about the problem statement
i.e., in SPL large composition and configuration of products. For this, the SAT solver technique is
applied to three different size feature models using three different MOEAs and a quality metric with
specific parameter settings. The terminologies used in the proposed work has been shown in Fig. 3.

3.1 Maintaining Configurations using NSGA-II, NSGA-III, and IBEA

The proposed study utilizes the three MOEAs like NSGA-II, III, and IBEA to obtain optimized
results for different product lines. These three algorithms are applied to different sizes of product line
feature models. The following objectives will be optimized with the help of these MOEAs which are
mentioned in detail in research work [14].

I. Objective One (Maximization of pairwise coverage)

Obj1(x) = coverage(x)
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The function determines coverage about the number of feature pairs.

II. Objective Two (Minimization the number of products)

Obj2(x) = minimize(x)

This function calculates the number of products.

III. Objective Three (Minimization of the testing cost)

Obj3(x) = cost(x)

This function determines the testing cost of the product.

Figure 3: Terminologies used

Fig. 4 shows the workflow of the proposed approach. After the start of the optimization process,
a feature model is selected, then SAT solver technique is applied to select the configurations from
the feature model. After this a MOEA with parameter values is applied with the defined objective
functions to run the experiments. We obtained and organized the results and best optimal values are
selected from the whole process.

3.2 Definitions of Terminologies

There have been defined as different terminologies in this section and shown in Fig. 3.

• The feature Model consists of different features with some constraints that need to be satisfied.
• Configuration is a set of features that represents particular features of a product of product line.
• Configuration Suite shows a set of valid configurations.
• An Individual is represented as a configuration suite.
• A Population is shown as a set of individuals.

3.3 Experiments Organization

This section discusses the experimental setup. There have been selected three different feature
models product lines of different sizes. These feature models have been selected from the SPLOT online
repository [37]. The characteristics of these feature models have been shown in Tab. 1.
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Figure 4: Workflow of the proposed approach

Table 1: Feature models attributes

Feature model Features Configurations Number of pairs

Counter strike 24 18176 208
DS sample 32 73728 1448
Electronic drum 52 331776 2592

Tab. 1 shows the characteristics of feature models selected for experiments. For optimization of the
three objectives, the three feature models have been selected named as Counter Strike, DS Sample, and
Electronic Drum. Each Feature Model (FM) has a distinct number of characteristics, for example, the
total number of features, configurations number, and the number of pairs mentioned in Tab. 1. For the
Counter Strike feature model, it has 24 features, 18176 numbers of configurations, and 208 numbers of
pairs. Similarly, other feature models’ characteristics have been described in Tab. 1. This information
about feature models is obtained from the SPLOT repository [37].

3.4 Experiments Results and Analysis

Tab. 3 shows the elapsed time to produce the solutions that are convergent at a particular
generation for each feature model. The table represents the feature models, algorithms used for
generation convergence, and elapsed time in milliseconds. From Tab. 2, the same settings as the number
of generations, population size have been considered in Tab. 3, while running the experiment.

Fig. 5 shows each feature model convergent generation using different three MOEAs. For example,
for the Electric Drum feature model, the solutions generated by the IBEA algorithm convergent at 65
generations. In the same for NSGAII and NSGAIII, the solutions are convergent at generations 74
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and 492 generations respectively. It is observed from Fig. 5 that NSGAIII for all the feature models
has the capability to convergent solutions at a maximum number of generations.

Table 2: Parameters settings for experiments

Parameters Values

Size of population 200
Number of generations 500
Crossover rate 60%
Mutation 30%

Table 3: Elapsed time for solutions generation for each feature model

Feature model Algorithm Convergent generation Elapsed time (in milliseconds)

Counter strike NSGAII 142 57110
NSGAIII 499 370024
IBEA 74 97139

DS sample NSGAII 96 388779
NSGAIII 498 410025
IBEA 82 164069

Electronic drum NSGAII 74 456612
NSGAIII 492 1691169
IBEA 65 346673
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Figure 5: Generation convergent

Tab. 4 results are based on a set of better solutions created, generally following the idea of Pareto
dominance [38]. This solution set builds estimation to the Pareto Front, where it also comprises of other
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non-dominated solutions. The first column of Tab. 4 shows the feature models, the second column
represents the number of solutions in the global Pareto front described as Global PF. The percentage
calculation describes the percentage of solutions in the Local PF calculated by each algorithm. The
number of Local PF solutions that exist in the front Global PF.

Table 4: Pareto fronts solutions for different feature models

Feature models Algorithms

Global PF NSGAII NSGAIII IBEA

Local PF

Counter strike 363 102 (28.1%) 189 (52.1%) 72 (19.8%)
DS sample 566 188 (33.12%) 292 (51.6%) 86 (15.91%)
Electric drum 623 212 (34.02%) 308 (49.4%) 103 (16.5%)

Tab. 5 presents the first 5 and last five fitness values generated by the three different MOEAs, the
first five values are presented in italic font while the last five fitness values are shown as underlined.
The best fitness values have been bold in this Table. Again, from Tab. 5, it is concluded that better
results in terms of maximizing coverage, minimizing products, and minimizing cost are generated by
the NSGAII and NSGAIII algorithms.

Table 5: First 5-last 5 (out of 500 runs) fitness values of FMs

No.
Of
values

Counter strike DS sample Electronic drum

NSGAII NSGAIII IBEA NSGAII NSGAIII IBEA NSGAII NSGAIII IBEA

1 286.25 49.5 190.62 85.25 63.26 56.01 301.75 299.25 286.25
2 267 314.06 76.76 216.5 21.50 89.96 295 282 267
3 181 94.5 90.11 91.5 44.51 80.11 255.75 207.5 181
4 297.5 101.13 10.57 241.5 20.52 77.82 227.25 131 297.5
5 267 168.09 66.21 300.25 57.26 69.01 241.5 271 267
6 258.75 75.22 297.20 227.75 286.25 17.87 290.25 287 190
7 269.25 152.13 73.07 170 267 41.94 256.25 189.75 261.75
8 177.5 134.2 26.03 211.75 181 31.58 256.5 286.25 261.5
9 289.75 155.15 49.66 172.25 297.5 51.14 249.5 267 253.75
10 241.5 144.5 66.21 289.25 267 23.86 261.25 181 280

Tab. 6 shows the hyper-volume indicator with their average values. This metric or indicator
generate better quality values [33]. The Hyper-volume metric is used to present the volume of objective
space and this space is dominated by non-dominated solutions of Pareto front as discussed in Section
2.3. From the Tab. 7, it is concluded that NSGAIII is the best algorithm to generate better values using
the hypervolume indicator.
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Table 6: Indicator hypervolume (HV) average values for three objectives

Indicator Feature models Algorithms

NSGAII NSGAIII IBEA

Average-values of hypervolume (HV)

HV Counter strike 0.7627 0.8338 0.2449
DS sample 0.6365 0.7530 0.2315
Electric drum 0.7885 0.8749 0.3008

Table 7: Better MOEA algorithm with respect to indicator (HV)

Feature models Quality indicator
Hypervolume (HV)

Counter strike NSGAII, NSGAIII
DS sample NSGAII, NSGAIII
Electronic drum NSGAII, NSGAIII

Tab. 7 assists in analyzing the MOEAs performance in terms of producing the optimal results
using a quality indicator (hyper-volume) for each feature model. Tab. 7 inferences are also determined
from the results of Tab. 6. For all three feature models, it was discovered that NSGAII and NSGAIII
algorithms originate the best values using the hyper-volume indicator. However, considering the
Spacing indicator, the NSGAIII is only one algorithm that generates the optimal results for all feature
models mentioned in Tab. 7.

Figs. 6a–6c shows the Pareto Fronts solutions for Counter Strike feature model in the case of three
objectives representation i.e., coverage, number of products, and testing cost.

4 Limitations of Work

From the conducted experiments it is inferred that there exist potential threats to validity for
this work. The generalization of the results presented in this paper can be considered a threat. For
different feature models, there is an option to have different results. In the proposed work, three feature
models are selected having different sizes to observe the generalization threat and also to ensure the
validity of the results on these three selected feature models. Due to implementation, there is a chance
to occur other threats, and these errors may influence to generate the optimized results. Hence, the
implementation process is divided into subroutines to make sure of fewer errors. The repetition process
of experimentation would help to minimize the risk of errors. The size of the product line is considered
a risk for the study. However, to satisfy the configuration generation of feature models, it is revealed
that good solutions can be generated by the proposed approach. The fitness evaluation procedures are
to influence the execution time of the algorithms. It is always challenging to decide on the parameters
of the algorithms. The recommendations found in [14] are truly followed to fine-tune the algorithms
and mitigate the allied risks. Since fixed random variations are included in the search algorithms, the
experiments are repeated 30 times, so that the likelihood results are obtained by chance may be reduced.
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Figure 6: Number of pareto front solutions for counter strike feature model

5 Conclusion and Future Work

This research work discussed the idea of Pareto efficient multiobjective optimization to discuss the
configuration generation problem of large systems. The proposed framework generates better results
as compared to state-of-the-art tools [39,40]. The novelty of our proposed approach is to use the
framework of three different MOEAs (NSGAII, NSGAIII, and IBEA) in a framework that works
with SAT solver to optimize three objectives in the best tradeoff, while other researchers use a genetic
algorithm (GA) for different objectives optimization [40–42]. The proposed approach can discover
the optimal numbers of solutions in specific time duration (elapsed time in milliseconds as mentioned
in Tab. 3). The proposed framework of MOEAs can work on small, medium, and large size SPL
feature models. The significant number of non-dominated solutions generated by different MOEAs
algorithms after experimentation have been presented in Tab. 4 to validate the novelty of the approach.
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The estimation to the Pareto Front, called the Local Pareto front set, is established by these
solutions. This is indicative of the fact that the complexity of the problem increases with three
objectives because of the large search space, and it is essential to use this approach in such cases. The
proposed framework is also capable of generating the optimal fitness values for the solution keeping
the normalized values as shown in Tab. 5. These fitness values correspond to the three objectives
(1) pairwise coverage (2) the number of products and (3) testing cost. Tab. 5, it is examined that the
proposed framework can help to produce an optimal set of solutions with the help of fitness values.

For future work, besides the SAT solver there exists other solvers, evolutionary algorithms, and
quality metrics that can be applied on other feature models with different parameter settings as
compared to the proposed research to obtain the novel optimized results to enhance this proposed
research work.
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