
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.028942

Article

A Novel Metaheuristic Algorithm: The Team Competition and Cooperation
Optimization Algorithm

Tao Wu1, Xinyu Wu1, Jingjue Chen1, Xi Chen2,* and Amir Homayoon Ashrafzadeh3

1School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
2School of Computer Science and Engineering, Southwest Minzu University, Chengdu, 610041, China

3CSIT Department, School of Science, RMIT University, Melbourne, 3058, Australia
*Corresponding Author: Xi Chen. Email: cx@swun.edu.cn

Received: 21 February 2022; Accepted: 07 April 2022

Abstract: Metaheuristic algorithm is a generalization of heuristic algorithm
that can be applied to almost all optimization problems. For optimization
problems, metaheuristic algorithm is one of the methods to find its opti-
mal solution or approximate solution under limited conditions. Most of the
existing metaheuristic algorithms are designed for serial systems. Meanwhile,
existing algorithms still have a lot of room for improvement in convergence
speed, robustness, and performance. To address these issues, this paper pro-
poses an easily parallelizable metaheuristic optimization algorithm called
team competition and cooperation optimization (TCCO) inspired by the
process of human team cooperation and competition. The proposed algorithm
attempts to mathematically model human team cooperation and competition
to promote the optimization process and find an approximate solution as
close as possible to the optimal solution under limited conditions. In order
to evaluate the performance of the proposed algorithm, this paper compares
the solution accuracy and convergence speed of the TCCO algorithm with the
Grasshopper Optimization Algorithm (GOA), Seagull Optimization Algo-
rithm (SOA), Whale Optimization Algorithm (WOA) and Sparrow Search
Algorithm (SSA). Experiment results of 30 test functions commonly used in
the optimization field indicate that, compared with these current advanced
metaheuristic algorithms, TCCO has strong competitiveness in both solution
accuracy and convergence speed.

Keywords: Optimization; metaheuristic; algorithm

1 Introduction

Metaheuristic algorithm combines the advantages of random search algorithm and local search
algorithm. Compared with the optimization algorithm that gives a clear optimal solution, the meta-
heuristic algorithm gives an optimal solution or approximate solution to the optimization problem
under limited conditions. In recent years, traditional optimization algorithms can hardly meet the

http://dx.doi.org/10.32604/cmc.2022.028942
mailto:cx@swun.edu.cn

2880 CMC, 2022, vol.73, no.2

accuracy requirements of various fields such as engineering, business and economics for optimiza-
tion problems under limited conditions [1]. Compared with traditional optimization algorithms,
metaheuristic algorithms have the following advantages. First, the algorithm is simple and easy to
implement [2,3]; second, it requires less time and space, and can be adjusted according to the user’s
accuracy requirements [4]; third, the algorithm can jump out of the local optimal solution to a certain
extent and approach the global optimal solution as close as possible. Generally, the metaheuristic
optimization algorithm includes two parts, exploration and exploitation. Due to the randomness of
the metaheuristic algorithm, finding a proper balance between these two parts is a challenging task [5].

The No Free Lunch theorem (NFL) [6] shows that there is no metaheuristic algorithm that
can solve all optimization problems at the same time. The NFL theorem makes this field of study
highly active. It allows researchers to improve existing algorithms or propose new algorithms to better
address various optimization problems. In this paper, the experiments show that compared with the
latest excellent optimization algorithms, such as Whale Optimization Algorithm (WOA) [7], Sparrow
Search Algorithm (SSA) [8], Seagull Optimization Algorithm (SOA) [9], Grasshopper Optimization
Algorithm (GOA) [10], TCCO has made significant progress.

The rest of the paper is structured as follows. Section 2 presents a literature review of metaheuristic
algorithms. Section 3 presents the details about TCCO and its pseudo-code implementation. Section
4 provides the comparative statistical analysis of results on benchmark functions. Section 5 concludes
the work and suggests some directions for future studies.

2 Related Work

In the past few decades, researchers have developed a series of metaheuristic algorithms inspired
by nature to solve optimization problems under limited conditions. They can be roughly divided into
the following four classes:

The metaheuristic algorithm based on Darwinian theory of evolution. For instance, the Genetic
Algorithm (GA) [11] proposed by Holland et al. seeks the optimal solution by imitating the natural
selection, genetic and mutation mechanisms in the biological evolution; the Biogeography-Based
Optimizer proposed by Simon (BBO) [12], which is inspired by biogeography regarding the migration
of species between different habitats, as well as the evolution and extinction of species. These
algorithms have been widely used in process control, signal processing, image processing, flexible job
shop scheduling, machine learning and other fields. Excellent traits have a greater probability of being
inherited, which is one of the main advantages of evolutionary algorithms. Besides, the algorithms are
scalable and easy to combine with other algorithms. The disadvantage is that they may fall into a local
optimal solution and lead to premature convergence.

The second class is physics-based algorithms. This type of algorithm seeks the optimal solution
by imitating the physical rules that are common in the real world. For example, the annealing idea
proposed by Metropolis et al. was introduced into the field of optimization problems by Kirkpatrick
et al. and designed the simulated annealing algorithm (SA) [13]. Although the simulated annealing
algorithm has a simple calculation process, it is universal, and has strong robustness. It can be used to
solve complex non-linear problems. But there are also disadvantages such as slow convergence speed,
long execution time, performance related to initial values and parameter sensitivity; different from SA,
the Gravitational Search Algorithm (GSA) [14] proposed by Esmat et al. is an optimization algorithm
based on the law of universal gravitation. It finds the optimal solution by moving the particle position
of the population; furthermore, the artificial electric field algorithm (AEFA) [15] designed by Yadav,

CMC, 2022, vol.73, no.2 2881

which is inspired by the Coulomb law, finds optimal solution by simulating the movement of charged
particles in an electrostatic field.

Algorithms based on swarm intelligence is the third class, they find the optimal solution by
simulating the activities of biological swarms. The Particle Swarm optimization algorithm (PSO) [16]
designed by Kennedy et al. It is inspired by the social behavior of a flock of birds. Individuals are
abstracted into particles, and all particles have a fitness value determined by a user defined fitness
function. Each particle also has a speed that determines the direction and distance of their flight, and
then the particles follow the current optimal particle to search in the solution space. The ant colony
optimization (ACO) [17] proposed by Dorigo et al. is inspired by the social behavior of ants. In fact,
the social intelligence of ants in finding the closest path from the nest and a source of food is the main
inspiration of this algorithm. The Whale Optimization Algorithm (WOA) [7] designed by Mirjalili
et al., which mimics the hunting behavior of humpback whales. In the WOA algorithm, the position of
each humpback whale represents a feasible solution. The sparrow search algorithm (SSA) [8] designed
by Xue et al. finds the optimal solution by simulating the strategy of predation and avoiding natural
enemies of sparrow groups. This kind of swarm intelligence algorithm also has problems such as easy
to fall into local optimal solution and slow convergence speed. The Rock Hyraxes Swarm Optimization
(RHSO) [18] designed by Al-Khateeb et al., which mimics the collective behavior of rock hyraxes to
find their eating and their special way of looking at this food. RHSO is very effective in solving real
issues with constraints.

The Fourth subclass is the algorithms based on human behavior, such as CAs [19] and ICA [20]. In
the Cultural Algorithms (CAs) [19], the belief space serves as a knowledge database in which people’s
past experience is stored, so that future generations can learn from the knowledge. As a result, the
evolution speed of the population surpasses the evolution speed of purely relying on biological genetic
inheritance, and has good global optimization performance. The Imperialist Competitive Algorithm
(ICA) [20] designed by Atashpaz et al. is an optimization method formed by simulating the colony
assimilation mechanism and the imperial competition mechanism.

3 The Team Competition and Cooperation Optimization Algorithm

In this section, we will elaborate on the inspiration of TCCO, the mathematical model and
pseudo-code.

3.1 Algorithm Inspiration

Competition and cooperation exist everywhere in human society. The development of human soci-
ety is largely driven by competition and cooperation. Therefore, this paper attempts to mathematically
model cooperation and competition to promote the optimization process and find an approximate
solution as close as possible to the optimal solution under limited conditions. At the same time,
the concept of team and intra-team update in algorithm naturally support parallel computation, the
simple and efficient inter-team cooperation also allow the algorithm to be parallelized with a small
communication cost. In addition, considering the massive computing power of the parallel system,
this algorithm also designs a process of judging the advantage of team members, which improves the
performance and convergence speed of the algorithm to a certain extent.

The competition and cooperation process in this paper can be simplified into the following steps.
First, people are divided into several teams. In order to achieve a same goal, everyone proposes their
own pre-solution to this problem. Each team selects a leader according to the quality of their solution.
The cooperation is advanced under the organization of the leader, trying to find a better solution.

2882 CMC, 2022, vol.73, no.2

After all the team members updated their own solution, a new leader is selected, and then the best
solution is used to participate in the team competition. The team with the best solution wins and
becomes the dominant team. Next, each team randomly finds their own partners to work together
to optimize their solution. However, the dominant team has the right to choose more partners than
other teams. If your team’s solution is better than partner’s, they will follow you, otherwise thing
reversed. After the cooperation, people of each team should re-elect the leader and participate in the
team competition. When all the teams have completed these steps, the current round of competition
and cooperation process ends. After multiple rounds of this process, the solution given by the dominant
team will become the final solution.

3.2 Mathematical Model and Pseudo-Code Implementation

In order to simplify the mathematical model, this paper is based on the following assumptions:

Assumption 1: Each member is identical except for his own solution.

Assumption 2: Each ordinary team’s partner count is partnerNorm, but the dominant team is
partnerBest.

Assumption 3: The population is equally divided into teamN teams (teamN > 1) and satisfies
(teamN − partnerBest − 1) mod (partnerNorm + 1) = 0. Besides, the number of members in
each team is bigger than 1(memberN > 1).

Assumption 4: Pre-solution and random grouping are implemented by random initialization.

Assumption 5: The solution is a feasible solution of the objective function, and its quality is
measured by the fitness function. This paper defines that the solution with lower fitness value is better.

Assumption 6: When the solution proposed by ordinary members and leaders, ordinary team and
dominant team have the same fitness values, the solution of the leader and dominant team is given
priority.

Assumption 7: The team leader’s solution is defined as the team’s solution.

Assumption 8: The process of advantages judgment is simplified to the member replaces the
corresponding items of others with their own items in turn. Items are defined as advantages only
if the solution is better after be replaced.

In this paper, partnerNorm = 1, partnerBest = 2, the number of team is set to 7 (teamN = 7),
the number of team members is also 7 (memberN = 7) and the population size is 49. Fig. 1 shows
the basic flow chart of TCCO.

3.2.1 Grouping and Pre-Solution

There are 7 teams in this paper, and each team contains 7 members. It can be seen from
assumptions 1 and 5 that members can be abstracted as feasible solutions, and the members of a team
can be specified by a matrix. Each row of the matrix identifies a member. See Eq. (1) for details, where
d represents the dimension of the objective function.

Mn =

⎡
⎢⎢⎣

m1,1

m2,1

...
mmemberN,1

m1,2

m2,2

...
mmemberN,2

· · ·
· · ·
. . .
. . .

m1,d

m2,d

...
mmemberN,d

⎤
⎥⎥⎦ (n = 0, 1, . . . , teamN − 1) (1)

mi = borderL + uniform (0, 1) ∗ (borderH − borderL) (2)

CMC, 2022, vol.73, no.2 2883

Figure 1: TCCO algorithm flow chart

Eq. (2) gives the initialization method of each pre-solution, where mi represents a feasible solution,
borderL and borderH are lower and upper bounds of objective function. The uniform (0, 1) is a
uniformly distributed random d-dimension vector in the range [0, 1].

3.2.2 Fitness Function and Competition

Generally, under the condition of assumption 5, if the objective function f(x) is a maximization

problem and its value range is non-negative, then the fitness function Fit (x) = 1
f (x)

. If f(x) is a

minimization problem, it can be simply mapped to Fit (x) = f(x).

Fit (x) = f(x) (3)

Fit(Mn) =

⎡
⎢⎢⎢⎣

f
(
m1,1, m1,2, . . . , m1,d

)
f
(
m2,1, m2,2, . . . , m2,d

)
...
f
(
mmemberN,1, mmemberN,2, . . . , mmemberN,d

)

⎤
⎥⎥⎥⎦ (4)

leadern = Mn [argmin (Fit (Mn))] (5)

leaderV = Fit
(
[leader1, leader2, . . . , leadern]

T)
(6)

leaderTeam = Margmin(leaderV) (7)

2884 CMC, 2022, vol.73, no.2

Eq. (5) gives the selection method of the team leader, where leadern represents the solution of the
team leader, that also is, the solution of the team. argmin (x) represents the index of the minimum
value of vector x, and the leader of each team follows the assumption 6 responsible by the best
solution within the contemporary team. Eq. (7) gives the selection method of the leading team, and
the dominant team is also defined as the team with the best solution among all teams according
to Assumption 6. The selection of the team leader and the dominant team together constitutes the
competition in this algorithm.

3.2.3 Update Solutions within the Team

For ordinary members of the team, they have three ways to update their solution. In this paper,
there is a probability Pleader = 0.6 that members will follow the team leader. Members in one team
can share their solutions without reservation, so that members can learn from leader to improve their
own shortcomings, at the same time, the leader also can absorb advantages of their members; besides,
there is a probability PdominantTeam = 0.3 for all members to follow the leader of the dominant team,
in order to surpass the leader of their own team. But because they are not in the same team, they
can only learn and improve from the leader of the dominant team in the general direction, and they
cannot communicate with each other; furthermore, there is also a probability of 1−Pleader −PleaderTeam =
0.1, members can choose not to follow and freely explore their own solutions. In general, the free
exploration probability can affect the exploration and exploitation capabilities of the algorithm. The
greater the probability, the stronger the exploration ability of the algorithm. errorRange is the following
error, which is positively related to the distance between itself and the following target, and is limited
by the number of current iteration. As the number of iteration increases, it gradually approaches zero.
The expression is given by Eq. (8), where abs is the absolute value function, the tMax is the maximum
iteration and the t is current iteration.

errorRange = uniform (0, 1) ∗(tMax − t)
tMax

∗abs (mi − dest) (8)

exploreRange = uniform (0, 1) ∗(borderH − borderL) ∗ d ∗ (tMax − t)
teamN ∗ memberN ∗ tMax

(9)

1. Follow the team leader, update method is given in Eq. (15). Ti in Eq. (10) is a real symmetric
matrix, the diagonal elements are the elements of the member to be updated, and the remaining
elements are the same as the team leader. The weaknessi vector given in Eq. (11) represents the
disadvantage items of the member compared to the leader, and the strengthi given in Eq. (12)
represents the advantage items. The errorRange and exploreRange are given by Eqs. (8) and
(9), in this case, dest is the team leader, and p is a random number in the interval [0, 1] that
obeys a uniform distribution.

Ti =

⎡
⎢⎢⎣

mi,1

mleader,1

...
mleader,1

mleader,2

mi,2

...
mleader,2

· · ·
· · ·
. . .
. . .

mleader,d

mleader,d

...
mi,d

⎤
⎥⎥⎦ (10)

weaknessi = Fit (Ti) > fitleader (11)

strengthi = Fit (Ti) ≤ fitleader (12)

CMC, 2022, vol.73, no.2 2885

mt+1
i [dim] =

{
leadert

n [dim] + errorRange, p < 0.5
leadert

n [dim] − errorRange, p ≥ 0.5 (13)

mt+1
i [dim] =

{
mt

i [dim] + exploreRange, p < 0.5
mt

i [dim] − exploreRange, p ≥ 0.5 (14)

mt+1
i =

{
(13) , dim in weknessi

(14) , dim in strengthi
(15)

2. Follow the leader of the dominant team, the errorRange is given by Eq. (8). In this case, dest is
dominant team’s leader, and p is a random number in the interval [0, 1] that obeys a uniform
distribution.

mt+1
i =

{
leaderTeamt

n + uniform (0, 1) ∗ errorRange, p < 0.5
leaderTeamt

n − uniform (0, 1) ∗ errorRange, p ≥ 0.5 (16)

3. Same update method as Eq. (2) for free exploration. mt+1
i = borderL + uniform (0, 1) ∗

(borderH − borderL)

For the team leader, he will learn the advantages of all other members, and Eq. (17) gives the
update method. In a word, it is to gather the advantages of his team members.

leadert+1
n [dim] = Mn[argmin (Fit ([T1 [dim] , T2 [dim] , . . . , TmemberN [dim]))] [dim] (17)

In particular, for the first and second update methods of the above-mentioned ordinary members,
when the feasible solution exceeds the range of the solution space, this paper simply adopts the method
of directly taking the boundary value. After a round of update solutions are completed, a new team
leader will be selected according to Assumption 6 and Eq. (5), and a new dominant team will be
selected according to Assumption 6 and Eq. (7).

3.2.4 Teamwork to Update Solutions

After all members updated, the team randomly search for partners according to Assumption 2.
In the two teams that cooperate, all members will follow the better solution. The way to update the
solution is given by Eq. (18). Step is the number of times that each team continuously proposes better
solutions in all collaborations. In other words, once the team solution is worse than cooperation team,
step will be reset to 1. The errorRange is given by Eq. (8), dest is the solution of the better team in this
case, and p is a random number with uniform distribution in the interval [0, 1].

mi =
{

dest + step ∗ errorRange, p < 0.5
dest − step ∗ errorRange, p ≥ 0.5 (18)

When the feasible solution exceeds the solution space, the method of directly taking the boundary
value is also simply adopted in this paper. After a round of collaborative update solutions between
teams, a new team leader will be selected according to Assumption 6 and Eq. (5), and a new dominant
team will be selected according to Assumption 6 and Eq. (7).

3.2.5 TCCO Pseudo-Code Implementation

Tab. 1 shows the team competition and cooperation optimization algorithm’s main pseudo-code.

2886 CMC, 2022, vol.73, no.2

Table 1: TCCO pseudo-code

Algorithm

01: Begin
02: Randomly grouping and initializing

team members’ solutions.
03: Select team leader and dominant

team.
04: While (stop condition is not met):
05: For (team in teams):
06: Team members update

solution by itself.
07: Select new team leader.
08: Select new dominant team.
09: Randomly find partners.
10: Start team cooperation.
11: Select new team leader.
12: Select new dominant team.
13: End
14: End
15: The dominant team’s solution is the

final optimal solution.
16: End

4 Experiment and Analysis

In this section, the TCCO is benchmarked on 30 classic benchmark functions [1,21,22] com-
pared with the Whale Optimization Algorithm (WOA), Sparrow Search Algorithm (SSA), Seagull
Optimization Algorithm (SOA) and Grasshopper Optimization Algorithm (GOA) to analysis it’s
performance. All algorithms are basic version, and the parameter settings are shown in Tab. 2. In this
paper, 30 classic benchmark functions are divided into 4 categories: low-dimensional unimodal, low-
dimensional multimodal, high-dimensional unimodal, and high-dimensional multimodal according to
dimensions and modals. Four sets of experiments are performed to test and compare the performance
of the above algorithms. In order to compare the performance fairly, the population size of all
algorithms is set to 49, and the maximum number of iterations is 500. At the same time, in order
to make the comparison experiment more general, each algorithm will run the benchmark function
30 times to compare the average, best, and worst solutions of 30 classic benchmark functions.

4.1 The Experiments of Low-Dimensional Unimodal Functions

This section will conduct experiments on the first set of eight low-dimensional unimodal test func-
tions to compare the performance of the above five optimization algorithms. The name, expression,
minimum value, range and dimension of the functions are shown in Tab. 3.

CMC, 2022, vol.73, no.2 2887

Table 2: Algorithm parameter settings

Parameters\
Algorithm

GOA SOA WOA SSA TCCO

l 1.5
f 0.5
Cmax 1
Cmin 0.00004
fc 2
a 2
b 1
Ppercent 0.2
R2 0.8
Pleader 0.6
PleaderTeam 0.3
partnerNorm 1
partnerBest 2

Table 3: Low-dimensional unimodal test functions

Function name Expression Minimum Range d

Mccormick
F1 = sin (x1 + x2) + (x1 − x2)

2−
1.5x1 + 2.5x2 + 1

−1.9133 [−3, 4] 2

Easom F2 =
− cos (x1) ∗ cos (x2) ∗ e−(x1−π)

2−(x2−π)
2

−1 [−100, 100] 2

Matyas F3 = 0.26
(
x1

2 + x2
2
) − 0.48x1x2 0 [−10, 10] 2

Zakharov
F4 =

d∑
i=1

xi
2 +

(
d∑

i=1

0.5i ∗ xi

)2

+(
d∑

i=1

0.5i ∗ xi

)4 0 [−5, 10] 10

Bohachevsky1
F5 = x1

2 + 2x2
2 − 0.3 cos (3πx1) −

0.4 cos (4πx2) + 0.7 0 [−100, 100] 2

Booth F6 = (x1 + 2x2 − 7)
2 + (2x1 + x2 − 5)

2 0 [−10, 10] 2

Bohachevsky2
F7 = x1

2 + 2x2
2 − 0.3 cos (3πx1) ∗

cos (4πx2) + 0.3 0 [−100, 100] 2

Bohachevsky3
F8 = x1

2 + 2x2
2 − 0.3 cos (3πx1 + 4πx2)

+ 0.3 0 [−100, 100] 2

2888 CMC, 2022, vol.73, no.2

Tab. 4 shows the experiment results of 8 low-dimensional unimodal test functions and advantages
are shown in bold. In the average solution comparison, SOA won 3 items, WOA won 4 items and
TCCO won 6 items. In the comparison of minimum values, GOA got 1 item, SOA got 2 items, WOA
got 3 items and SSA got 4 items, while TCCO has 7 wins. In the maximum value item, SOA won 3
items, WOA won 4 items and TCCO won 6 items. Fig. 2 shows the convergence performance of each
algorithm under eight test functions (run once, maximum iteration set to 20). The results show that
TCCO has a slight lead in convergence speed and accuracy.

Table 4: Experiment results of low-dimensional unimodal test functions

GOA SOA WOA SSA TCCO

F1 Best −1.913E+00 −1.913E+00 −1.913E+00 −1.913E+00 −1.913E+00
Worst −1.913E+00 −1.721E+00 −1.913E+00 −1.913E+00 −1.913E+00
Mean −1.913E+00 −1.884E+00 −1.913E+00 −1.913E+00 −1.913E+00

F2 Best −1.000E+00 −1.000E+00 −1.000E+00 −1.000E+00 −1.000E+00
Worst −1.000E+00 −8.088E−05 −1.000E+00 −1.000E+00 −1.000E+00
Mean −1.000E+00 −8.310E−01 −1.000E+00 −1.000E+00 −1.000E+00

F3 Best 1.193E−14 0.000E+00 3.527E−213 0.000E+00 −1.000E+00
Worst 1.426E−13 0.000E+00 1.012E−174 2.263E−18 9.011E−47
Mean 5.726E−14 0.000E+00 3.374E−176 1.373E−19 3.932E−48

F4 Best 1.194E−05 7.815E−02 1.093E−26 0.000E+00 1.162E−15
Worst 3.023E−05 1.709E+02 7.918E−20 2.493E−16 4.030E−12
Mean 2.011E−05 3.405E+01 3.685E−21 9.677E−18 3.629E−13

F5 Best 3.064E−10 0.000E+00 0.000E+00 0.000E+00 0.000E+00
Worst 2.148E−09 0.000E+00 0.000E+00 4.223E−11 0.000E+00
Mean 9.757E−10 0.000E+00 0.000E+00 1.408E−12 0.000E+00

F6 Best 9.943E−13 1.645E−06 4.489E−09 6.558E−07 0.000E+00
Worst 5.328E−12 2.231E−01 5.972E−06 1.887E−04 0.000E+00
Mean 2.628E−12 1.584E−02 7.115E−07 4.054E−05 0.000E+00

F7 Best 3.621E−10 0.000E+00 0.000E+00 0.000E+00 0.000E+00
Worst 2.375E−09 0.000E+00 0.000E+00 2.731E−14 0.000E+00
Mean 1.346E−09 0.000E+00 0.000E+00 9.363E−16 0.000E+00

F8 Best 1.303E−10 6.181E−12 0.000E+00 0.000E+00 0.000E+00
Worst 3.472E−10 1.820E−06 0.000E+00 8.116E−14 0.000E+00
Mean 2.065E−10 1.160E−07 0.000E+00 3.364E−15 0.000E+00

4.2 The Experiments of Low-Dimensional Multimodal Functions

This section will conduct experiments on the second set of 12 low-dimensional multimodal
test functions to compare the performance of the above five optimization algorithms. The name,
expression, minimum value, range and dimension of the function are shown in Tab. 5, and the results
of experiment are shown in Tab. 6. Fig. 3 shows the convergence performance of each algorithm under
twelve test functions (run once, maximum iteration set to 20).

CMC, 2022, vol.73, no.2 2889

Figure 2: Convergence speed comparison of low-dimensional unimodal test functions

Table 5: Low-dimensional multimodal test functions

Function name Expression Minimum Range d

Beale
F9 = (1.5 − x1 + x1x2)

2+(
2.25 − x1 + x1x2

2
)2+(

2.625 − x1 + x1x2
3
)2

0 [−4.5, 4.5] 2

Michalewicz2 F10 = −
d∑

j=1
sin

(
xj

) (
sin

(
jxj

2/π
))20 −1.8013 [0, π] 2

Michalewicz5 F11 = −
d∑

j=1
sin

(
xj

) (
sin

(
jxj

2/π
))20 −4.6877 [0, π] 5

Michalewicz10 F12 = −
d∑

j=1
sin

(
xj

) (
sin

(
jxj

2/π
))20 −9.6602 [0, π] 10

Schaffer F13 = 0.5 + sin2
(√

x1
2 + x2

2
) − 0.5(

1 + 0.001
(
x1

2 + x2
2
))2 0 [−100, 100] 2

Six_Hump_
Camel_Back

F14 = 4x1
2 − 2.1x1

4 + 1
3

x1
6+

x1x2 − 4x2
2 + 4x2

4
−1.03163 [−5, 5] 2

Shubert

F15 =
(

5∑
j=1

jcos (j + 1) x1 + j

)
∗(

5∑
j=1

jcos ((j + 1) x2 + j)

) −186.73 [−10, 10] 2

(Continued)

2890 CMC, 2022, vol.73, no.2

Table 5: Continued
Function name Expression Minimum Range d

Cross_in_tray F16 = −0.0001 (|sin (x1) sin (x2)

e

∣∣∣∣∣∣100−
√

x1
2+x2

2
∣∣∣∣∣∣
∣∣∣∣∣∣∣ + 1

⎞
⎟⎠

0.1
−2.06261 [−10, 10] 2

Drop_Wave F17 = −1 + cos
(
12

√
x1

2 + x2
2
)

0.5
(
x1

2 + x2
2
) + 2

−1 [−5.12, 5.12] 2

Eggholder

F18 = − (x2 + 47) sin(√∣∣∣x2 + x1

2
+ 47

∣∣∣) − x1sin(√|x1 − (x2 + 47)|)
−959.647 [−512, 512] 2

Goldstein_Price

F19 = [1 + (x1 + x2 + 1)
2

(19 − 14x1 + 3x1
2 − 14x2+

6x1x2 + 3x2
2)] ∗ [30 + (2x1 − 3x2)

2

(18 − 32x1 + 12x1
2 + 48x2 − 36x1x2+

27x2
2)]

3 [−2, 2] 2

Colville
F20 = 100

(
x1

2 − x2

)2 + (x1 − 1)
2 + (x3 − 1)

2

+ 90
(
x3

2 − x4

)2 + 10.1(x2 − 1)
2 + (x4 − 1)

2

+ 19.8 (x2 − 1) (x4 − 1)

0 [−10, 10] 4

Table 6: Experiment results of low-dimensional multimodal test functions

GOA SOA WOA SSA TCCO

F9 Best 8.096E−14 1.589E−10 2.811E−10 1.145E−08 0.000E+00
Worst 7.621E−01 7.621E−01 7.990E−07 2.611E−06 2.773E−32
Mean 5.080E−01 2.286E−01 1.413E−07 5.153E−07 1.849E−33

F10 Best −1.801E+00 −1.801E+00 −1.801E+00 −1.801E+00 −1.801E+00
Worst −1.000E+00 −1.000E+00 −1.313E+00 −1.801E+00 −1.801E+00
Mean −1.534E+00 −1.668E+00 −1.730E+00 −1.801E+00 −1.801E+00

F11 Best −3.550E+00 −4.585E+00 −3.504E+00 −4.631E+00 −4.688E+00
Worst −2.658E+00 −2.514E+00 −1.896E+00 −3.462E+00 −4.688E+00
Mean −3.141E+00 −3.303E+00 −2.548E+00 −4.233E+00 −4.688E+00

F12 Best −6.490E+00 −5.936E+00 −4.304E+00 −8.046E+00 −9.660E+00
Worst −4.811E+00 −4.200E+00 −2.803E+00 −5.842E+00 −9.660E+00
Mean −5.898E+00 −5.109E+00 −3.602E+00 −6.670E+00 −9.660E+00

F13 Best 2.491E−12 0.000E+00 0.000E+00 0.000E+00 0.000E+00
Worst 8.427E−11 0.000E+00 0.000E+00 2.495E−13 9.716E−03
Mean 3.148E−11 0.000E+00 0.000E+00 8.330E−15 7.449E−03

F14 Best −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00
Worst −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00
Mean −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00 −1.032E+00

F15 Best −1.867E+02 −1.867E+02 −1.867E+02 −1.867E+02 −1.867E+02

(Continued)

CMC, 2022, vol.73, no.2 2891

Table 6: Continued
GOA SOA WOA SSA TCCO

Worst −1.867E+02 −1.864E+02 −1.864E+02 −1.867E+02 −1.867E+02
Mean −1.867E+02 −1.867E+02 −1.867E+02 −1.867E+02 −1.867E+02

F16 Best −2.063E+00 −2.063E+00 −2.063E+00 −2.063E+00 −2.063E+00
Worst −2.063E+00 −2.063E+00 −2.063E+00 −2.063E+00 −2.063E+00
Mean −2.063E+00 −2.063E+00 −2.063E+00 −2.063E+00 −2.063E+00

F17 Best −1.000E+00 −1.000E+00 −1.000E+00 −1.000E+00 −1.000E+00
Worst −9.362E−01 −1.000E+00 −1.000E+00 −1.000E+00 −9.362E−01
Mean −9.575E−01 −1.000E+00 −1.000E+00 −1.000E+00 −9.957E−01

F18 Best −7.865E+02 −9.596E+02 −9.596E+02 −9.596E+02 −9.596E+02
Worst −7.182E+02 −8.889E+02 −9.595E+02 −7.865E+02 −8.889E+02
Mean −7.410E+02 −9.181E+02 −9.596E+02 −9.480E+02 −9.554E+02

F19 Best 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
Worst 3.000E+00 3.271E+01 3.000E+00 3.000E+00 3.000E+00
Mean 3.000E+00 9.479E+00 3.000E+00 3.000E+00 3.000E+00

F20 Best 3.000E+00 3.000E+00 3.000E+00 3.000E+00 3.000E+00
Worst 3.000E+00 3.255E+01 3.000E+00 3.000E+00 3.000E+00
Mean 3.000E+00 9.467E+00 3.000E+00 3.000E+00 3.000E+00

Figure 3: Convergence speed comparison of low-dimensional multimodal test functions

2892 CMC, 2022, vol.73, no.2

4.3 The Experiments of High-Dimensional Unimodal Functions

This section will conduct experiments on the third group of 7 high-dimensional unimodal test
functions to compare the performance of the above 5 optimization algorithms. The name, expression,
minimum value, range and dimension of the function are shown in Tab. 7; the results of experiment
are shown in Tab. 8. Fig. 4 shows the convergence performance of each algorithm under seven test
functions (run once, maximum iteration set to 20).

Table 7: High-dimensional unimodal test functions

Function name Expression Minimum Range d

Step F21 =
d∑

j=1

(
xj + 0.5

)2
0 [−5.12, 5.12] 30

Trid F22 =
d∑

j=1

(
xj − 1

)2 −
d∑

j=2

xjxj−1 −4930 [−900, 900] 30

Quartic F23 =
d∑

j=1

j ∗ xj
4 + rand 0 [−1.28, 1.28] 30

Schwefel2_22 F24 =
d∑

j=1

∣∣xj

∣∣ +
d∏

j=1

∣∣xj

∣∣ 0 [−10, 0] 30

Schwefel1_2 F25 =
d∑

j=1

(
j∑

k=1

xk

)2

0 [−100, 100] 30

Rosenbrock F26 =
d−1∑
j=1

[
100

(
xj+1 − xj

2
)2 + (

xj − 1
)2

] 0 [−30, 30] 30

Dixon_Price F27 =
(x1 − 1)

2 +
d∑

j=2

j
(
2xj

2 − xj − 1
)2

0 [−10, 10] 30

Table 8: Experiment results of high-dimensional unimodal test functions

GOA SOA WOA SSA TCCO

F21 Best 1.251E−04 2.565E−09 2.521E−01 6.127E−05 0.000E+00
Worst 6.057E−04 7.382E−03 1.492E+00 6.969E−03 0.000E+00
Mean 4.035E−04 1.941E−03 9.511E−01 2.158E−03 0.000E+00

F22 Best −3.370E+03 −1.288E+03 −1.469E+03 −4.779E+03 −4.930E+03
Worst −1.914E+03 −8.707E+02 −5.811E+01 −3.747E+03 −4.366E+03
Mean −2.523E+03 −9.554E+02 −3.827E+02 −4.343E+03 −4.742E+03

F23 Best 4.087E−02 3.930E−05 2.526E−04 5.325E−05 2.907E−03
Worst 9.642E−02 7.706E−03 1.851E−02 1.839E−03 4.602E−01
Mean 6.544E−02 2.352E−03 3.756E−03 6.062E−04 1.407E−01

F24 Best 2.428E+00 1.350E−142 1.276E−17 1.289E−81 7.975E−40
Worst 3.816E+00 3.829E−124 1.102E−14 3.456E−07 2.270E−36

(Continued)

CMC, 2022, vol.73, no.2 2893

Table 8: Continued
GOA SOA WOA SSA TCCO

Mean 3.282E+00 1.317E−125 9.780E−16 1.928E−08 3.739E−37
F25 Best 6.035E+02 9.671E+03 6.054E−07 0.000E+00 4.318E+00

Worst 2.631E+03 7.689E+04 3.109E−02 1.137E−13 6.298E+01
Mean 1.680E+03 3.966E+04 2.819E−03 4.532E−15 2.167E+01

F26 Best 1.913E+02 2.795E−09 2.531E+01 3.266E−08 1.262E−02
Worst 3.933E+02 1.588E+00 2.877E+01 9.306E−01 2.147E+01
Mean 2.694E+02 2.417E−01 2.717E+01 1.419E−01 1.069E+01

F27 Best 4.807E+00 7.686E−07 2.376E+01 1.278E−01 0.000E+00
Worst 8.006E+00 1.484E+00 1.942E+02 5.166E+01 0.000E+00
Mean 6.620E+00 1.477E−01 1.239E+02 1.220E+01 0.000E+00

Figure 4: Convergence speed comparison of high-dimensional unimodal test functions

4.4 The Experiments of High-Dimensional Multimodal Functions

This section will conduct experiments on the fourth group of three high-dimensional multimodal
test functions to compare the performance of the above five optimization algorithms. The name,
expression, minimum value, range and dimension of the function are shown in Tab. 9; the results of
experiment are shown in Tab. 10. Fig. 5 shows the convergence performance of each algorithm under
three test functions (run once, maximum iteration set to 20).

2894 CMC, 2022, vol.73, no.2

Table 9: High-dimensional multimodal test functions

Function name Expression Minimum Range d

Rastrigin F28 =
d∑

j=1

(
xj

2 − 10 cos
(
2πxj

) + 10
)

0 [−5.12, 5.12] 30

Griewank
F29 = 1

4000

(
d∑

j=1

(
xj − 100

)2
)

−(
d∏

j=1

cos
(

xj − 100√
j

))
+ 1

0 [−600, 600] 30

Ackley F30 = −20e
−0.2

√√√√√ 1
d

d∑
j=1

xj2

−
e

1
d

d∑
j=1

cos(2πxj) + 20 + e

0 [−32, 32] 30

Table 10: Experiment results of high-dimensional multimodal test functions

GOA SOA WOA SSA TCCO

F28 Best 4.688E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00
Worst 1.214E+02 0.000E+00 5.684E−14 1.124E−08 0.000E+00
Mean 8.530E+01 0.000E+00 1.895E−15 3.772E−10 0.000E+00

F29 Best 7.120E−01 8.424E−03 3.609E+00 1.346E−02 0.000E+00
Worst 1.029E+00 1.029E+00 2.341E+01 1.017E+00 8.303E−02
Mean 8.947E−01 5.336E−01 1.150E+01 8.238E−01 1.038E−02

F30 Best 2.748E+00 4.441E−16 3.952E−14 4.441E−16 3.997E−15
Worst 3.582E+00 4.441E−16 1.611E−09 4.682E−07 1.465E−14
Mean 3.227E+00 4.441E−16 5.533E−11 3.487E−08 7.550E−15

Figure 5: Convergence speed comparison of high-dimensional multimodal test functions

CMC, 2022, vol.73, no.2 2895

4.5 Analysis of Results

Unimodal function has only one global optimal solution in the solution space. This type of
function can well evaluate the exploitation ability of metaheuristic algorithm. Experiment 1 and exper-
iment 3 show that whether it is a low-dimensional unimodal function or a high-dimensional unimodal
function, TCCO has good performance compared with other algorithms, and the convergence speed
is faster than other algorithms.

Different from unimodal function, multimodal function has many local optimal solutions in the
solution space. The number of local optimal solutions increases exponentially with the growth of the
problem scale. Therefore, this type of test function is often used to evaluate the exploration capability
of metaheuristic algorithm. Experiment 2 and 4 are designed for this purpose. The experiment
results show that the performance of TCCO is better than other algorithms in both low-dimensional
multimodal function and high-dimensional multimodal function.

5 Conclusion

This research is inspired by the competition and cooperation between human teams, and proposes
a new metaheuristic optimization algorithm, Team Competition and Cooperation Optimization
Algorithm (TCCO), which is easy to parallelize. TCCO includes two operators, which respectively
simulate the update solution within the team and the update solution between teams. This paper
conducts detailed experiments on 30 benchmark functions, compared and analyzed the exploration
ability, exploitation ability and convergence speed of WOA, SSA, SOA, GOA and TCCO. Experiment
results show that compared with other metaheuristic algorithms mentioned above, TCCO has stronger
competitiveness.

Funding Statement: This research was partially supported by the National Key Research and
Development Program of China (2018YFC1507005), Sichuan Science and Technology Program
(2020YFG0189, 22ZDYF3494), China Postdoctoral Science Foundation (2018M643448), and
Fundamental Research Funds for the Central Universities, Southwest Minzu University (2022101).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Jain, V. Singh and A. Rani, “A novel nature-inspired algorithm for optimization: Squirrel search

algorithm,” Swarm and Evolutionary Computation, vol. 44, no. 1, pp. 148–175, 2019.
[2] E. Erdemir and A. A. Altun, “A new metaheuristic approach to solving benchmark problems: Hybrid salp

swarm jaya algorithm,” Computers, Materials & Continua, vol. 71, no. 2, pp. 2923–2941, 2022.
[3] H. Faris, I. Aljarah, M. A. Al-Betar and S. Mirjalili, “Grey wolf optimizer: A review of recent variants and

applications,” Neural Computing and Applications, vol. 30, no. 2, pp. 413–435, 2018.
[4] K. Hussain, M. N. M. Salleh, S. Cheng and Y. Shi, “Metaheuristic research: A comprehensive survey,”

Artificial Intelligence Review, vol. 52, no. 4, pp. 2191–2233, 2019.
[5] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz and A. Cosar, “A survey on new generation metaheuristic

algorithms,” Computers & Industrial Engineering, vol. 137, no. 11, pp. 106040, 2019.
[6] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on

Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.
[7] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering Software, vol. 95,

no. 5, pp. 51–67, 2016.

2896 CMC, 2022, vol.73, no.2

[8] J. Xue and B. Shen, “A novel swarm intelligence optimization approach: Sparrow search algorithm,”
Systems Science & Control Engineering, vol. 8, no. 1, pp. 22–34, 2020.

[9] G. Dhiman and V. Kumar, “Seagull optimization algorithm: Theory and its applications for large-scale
industrial engineering problems,” Knowledge-Based Systems, vol. 165, no. 3, pp. 169–196, 2019.

[10] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris and I. Aljarah, “Grasshopper optimization algorithm for
multi-objective optimization problems,” Applied Intelligence, vol. 48, no. 4, pp. 805–820, 2018.

[11] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992.
[12] H. Ma, D. Simon, P. Siarry, Z. Yang, and M. Fei, “Biogeography-based optimization: A 10-year review,”

IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 5, pp. 391–407, 2017.
[13] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220,

no. 4598, pp. 671–680, 1983.
[14] E. Rashed, E. Rashedi and A. Nezamabadi-pour, “A comprehensive survey on gravitational search

algorithm,” Swarm and Evolutionary Computation, vol. 41, no. 4, pp. 141–158, 2018.
[15] A. Yadav, “AEFA: Artificial electric field algorithm for global optimization,” Swarm and Evolutionary

Computation, vol. 48, no. 5, pp. 93–108, 2019.
[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. on Neural Networks

Proc., Nagoya, NGO, JP, pp. 1942–1948, 1995.
[17] M. Dorigo, M. Birattari and T. Stutzle, “Ant colony optimization,” IEEE Computational Intelligence

Magazine, vol. 1, no. 4, pp. 28–39, 2006.
[18] B. Al-Khateeb, K. Ahmed, M. Mahmood and D. Le, “Rock hyraxes swarm optimization: A new nature-

inspired metaheuristic optimization algorithm,” Computers, Materials & Continua, vol. 68, no. 1, pp. 643–
654, 2021.

[19] A. Maheri, S. Jalili, Y. Hosseinzadeh, R. Khani and M. Miryahyavi, “A comprehensive survey on cultural
algorithms,” Swarm and Evolutionary Computation, vol. 62, no. 3, pp. 100846, 2021.

[20] G. E. Atashpaz and C. Lucas, “Imperialist competitive algorithm: An algorithm for optimization inspired
by imperialistic competition,” in Proc. IEEE Congress on Evolutionary Computation CEC, Singapore, SG,
Singapore, pp. 661–4667, 2007.

[21] M. Jamil and X. S. Yang, “A literature survey of benchmark functions for global optimization problems,”
International Journal of Mathematical Modelling and Numerical Optimisation (IJMMNO), vol. 4, no. 2,
pp. 150–194, 2013.

[22] Y. H. Li, “A kriging-based global optimization method using multi-points infill search criterion,” Journal
of Algorithms & Computational Technology, vol. 11, no. 4, pp. 366–377, 2017.

	A Novel Metaheuristic Algorithm: The Team Competition and Cooperation Optimization Algorithm
	1 Introduction
	2 Related Work
	3 The Team Competition and Cooperation Optimization Algorithm
	4 Experiment and Analysis
	5 Conclusion

