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Abstract: Elliptic curves (ECs) are deemed one of the most solid structures
against modern computational attacks because of their small key size and
high security. In many well-known cryptosystems, the substitution box (S-
box) is used as the only nonlinear portion of a security system. Recently, it has
been shown that using dynamic S-boxes rather than static S-boxes increases
the security of a cryptosystem. The conferred study also extends the practical
application of ECs in designing the nonlinear components of block ciphers in
symmetric key cryptography. In this study, instead of the Mordell elliptic curve
(MEC) over the prime field, the Galois field has been engaged in constructing
the S-boxes, the main nonlinear component of the block ciphers. Also, the
proposed scheme uses the coordinates of MEC and the operation of the
Galois field to generate a higher number of S-boxes with optimal nonlinearity,
which increases the security of cryptosystems. The proposed S-boxes resilience
against prominent algebraic and statistical attacks is evaluated to determine
its potential to induce confusion and produce acceptable results compared
to other schemes. Also, the majority logic criteria (MLC) are used to assess
the new S-boxes usage in the image encryption application, and the outcomes
indicate that they have significant cryptographic strength.
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1 Introduction

When it comes to electronic data transfer, digital technology and network communications have
had a significant impact during the past few decades. Various issues about the privacy of sensitive data
transmissions through open communication networks arise, as most of these networks are exposed
to the public. Cryptography, steganography, and watermarking are the most common methods for
securing information. The robust watermarking algorithm is presented in [1,2] to assure the safe
transmission and storage of medical data and to prevent the leakage of patient information in
telemedicine. Consequently, the security of sensitive data has been a significant focus of cryptography
in recent decades. The researchers have proposed various information security strategies to counter
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the most recent security threats. S-box is a nonlinear component in numerous famous algorithms,
especially in advanced encryption standards (AES) [3]. The security of all such cryptosystems is thus
reliant on the cryptographic aspects of these S-boxes. Because of this, many researchers have expressed
an interest in developing new and more effective S-boxes. The S-box is predicated on algebraic systems,
which are impervious to linear and differential cryptanalysis; they have received a lot of interest
because of their solid cryptographic properties. Thus, secure transmission based on various classes
of S-boxes is always promoted. Like the AES, the affine power affine (APA) S-box is presented to
increase algebraic complexity while maintaining accessible encryption features [4]. In [5], the action
of the symmetric group S8 over AES is utilized to generate S-boxes. The Gray S-box is generated by
adding an extra transformation based on binary gray codes to the basic AES S-box by employing a
polynomial of 255 terms instead of a polynomial having 8 terms, which retains all the features and
strengthens AES security [6]. Also, the chaotic map-based generators produced secure S-boxes that
were impenetrable to the linear, differential, and algebraic attacks. In [7], a sturdy S-Box design is
proposed by using a continuous-time Lorenz system as the chaotic system. By effectively exploiting
the characteristics of a chaotic map and the evolution process, a method of S-boxes is presented in
[8]. However, a parallel and more uncomplicated technique for constructing a block cipher nonlinear
component is still required.

1.1 Related Work

ECs have recently gained a lot of interest in the cryptography sector. The techniques based on
ECs are the most extensively used for enhancing information security. We will concentrate on EC-
based cryptography and the various methods presented by numeral experts in this domain. Cheon et
al. [9] characterized S-boxes by offering the relation between nonlinearity of rational functions over
F2n and the points are lying on the corresponding hyper EC. Hayat et al. [10] designed an algorithm for
constructing an 8×8 S-box using an x-coordinate of ordered EC over a prime field. Reference [11] is a
refinement of the previous work; Hayat et al. use the x-coordinate of an EC over prime field followed
by modulo operation to construct a different number of S-boxes. An algorithm for designing 8 × 8
S-boxes has been developed by Azam et al. [12] by using specific orderings on a class of Mordell elliptic
curves (MEC). A search method is used rather than more configuration group rules to build EC points,
which is computationally expensive. These techniques can be used to make a various number of 8 × 8
S-boxes. However, their conclusion is unpredictable because they are independent of any specific EC
that may or may not produce an S-box for any input variables. Farwa et al. [13] offered an exceptional
and new way for developing a 4 × 4 S-box by applying an EC over the Galois field GF

(
24

)
. In this

paper, the authors constructed a bijective Boolean function by applying the structure of a group to
the elements of EC having the same order as the order of the Galois field. Recently, Rehman et al. [14]
designed an algorithm for the construction of a higher number of different 8×8 S-boxes by deploying
MEC over the Galois field GF (2n) where n = 8 or an odd n ≥ 9.

1.2 Motivation

The following are the key motives for this scheme to boost the performance of ECs based S-boxes
and their effectiveness in numerous cryptographic algorithms.

1. S-boxes are typically constructed by considering ECs over prime fields. Yet, the outcomes of
these studies remain uncertain. i.e., the algorithms do not invariably output an S-box to every
set of specified parameters.

2. Furthermore, the prime field-based S-boxes do not encompass all the S-box possibilities.
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3. In [11], the authors design an algorithm by choosing a particular EC over the Galois field
GF

(
24

)
and they are constructing a single 4 × 4 S-box.

4. In [12], they considered MEC over Galois field GF (2n) , where n = 8 or an odd n ≥ 9 and
develop a practical scheme for the generation of 8 × 8 S-boxes but did not attain the optimal
results, also they generate a single 8 × 8 S-box while utilizing MEC over the Galois field of
order 256. However, in this study, we bring a comprehensive approach to design an algorithm
by employing MEC over the Galois field GF (2n) , where n ≥ 8 and generate 8 × 8 S-boxes
having outstanding results.

1.3 Our Contribution

To overcome the shortcomings of current schemes, we have developed a new one. To summarize
a lengthy piece of writing, follow these steps:

1. We implemented a simple technique rather than rigorous S-boxes algorithms with exceptional
outcomes to construct 8 × 8 S-boxes in the proposed work.

2. We utilized MEC over the Galois fields GF (2n) with n = 8, 9, 10 and higher with different
numbers of primitive irreducible polynomials (PIPs) to generate points of EC.

3. Following the current approach, we used the EC points, prime numbers characteristics that
rely on an EC x and y-coordinates, and an Inverse function under a predefined Galois field
and PIP.

4. S-box figures can be changed by varying the MEC variable b or by amending the PIP of a
degree equivalent to the Galois field GF (2n).

The following documents still need to be executed: Some introductory details are given in Section
2. The proposed algorithm can be found in Section 3. In Section 4, we compared our newly developed
S-boxes to other S-boxes already in use. Section 4 also deals with S-boxes in the image encryption
technique and the majority logic criterion (MLC). Towards the end of Section 5, there are several
compelling arguments.

2 Preliminaries

In this part, several fundamental and crucial notions like ECs, Galois fields, Euler’s phi function,
and primitive polynomials are presented.

2.1 Galois Fields

A mathematical concept is known as finite field, or Galois field is considered the cornerstone of all
cryptography theory. The representation of Galois field is GF (pn) , where p signifies any prime number
and n ∈ Z+. Galois fields can be roughly divided into two categories: prime fields, which have p = 1,
and extension fields, which have p > 1.

2.2 Euler’s Phi Function

Euler’s phi function offers the coprime numbers to an integer m, denoted as ϕ (m) , [15]. To put it
another way, when the number m is greater than one, ϕ (m) is the number of elements in Um.

2.3 Primitive Irreducible Polynomials (PIPs) and Galois Fields

Galois field and PIPs over the Galois field are explained below in [16]. If it isn’t explicitly stated,
the base field GF (2) is used in this section.
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2.3.1 Definition

For each prime number p and positive integer m with order pm, there is one finite field. The elements
of these finite fields under multiplication form a cyclic group excluding zero. Consequently, there is a
generator α that generates finite field apart from zero and αpm−1 = 1.

2.3.2 Definition

An irreducible polynomial in GF (p) [X ] cannot be reduced into a pair of lower-degree polynomials
in GF (p) [X ] . For example, the polynomial x3 + x + 1 is irreducible in GF

(
23

)
and x3 + 1 is reducible.

2.3.3 Definition

A polynomial h (x) ∈ GF (pm) [X ] is known as a primitive polynomial of degree m if all its roots
are also primitive elements in the corresponding Galois field. Irreducible polynomials of degree m that

are binary primitives are
ϕ (2m − 1)

m
, where ϕ represents Euler’s phi function. For example, if p = 2

and n = 4, then
ϕ

(
24 − 1

)
4

= 2.

2.3.4 Lemma

An EC of the form Ep,b : y2 = x3+b is known as MEC, where p is used for prime field. The specialty
of this curve is that it has precisely p + 1 points for the prime number of forms p ≡ 2 (mod3). Also,
y-coordinates of this specified MEC are random, Washington [17](6.6 (c) , p.188) .

2.3.5 Addition, Subtraction, and Multiplication in GF (2n)

The addition and subtraction operations are identical because we are operating in characteristic
2. Adding polynomials in Galois Field [18] is relatively easy. In multiplication let h∗ (x) is PIP of order
m and f ∗ (x) , g∗ (x) are polynomials in GF (2n), then

m∗ (x) = (f ∗ (x) · g∗ (x)) mod h∗ (x) (1)

where m∗ (x) is the resultant polynomial.

And k∗ (x) provides the multiplicative inverse of g∗ (x) , i.e.,

(g∗ (x) · k∗ (x)) mod h∗ (x) = 1 (2)

Multiplying two polynomials and finding the multiplicative inverse of a polynomial need’s modulo
2 for coefficients and modulo h∗ (x) for polynomials.

3 S-boxes Design by MEC over GF (2n) , for n ≥ 8

Here, the proposed S-box algorithm is described using two different approaches. In the first
technique, we used MEC over Galois field GF

(
28

)
to generate EC points and design an algorithm

involving the x and y coordinates of the specified EC points. In the second technique, rather than
selecting a particular Galois field GF

(
28

)
, we created a comprehensive algorithm for the construction

of S-boxes by employing MEC over GF (2n) where n ≥ 9.

3.1 Construction of S-box Using MEC over Galois Field GF
(
28

)
1. Take PIP of degree 8
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f (x) = x8 + x4 + x3 + x2 + 1 (3)

over the binary field.

2. Choose MEC

Eb : y2 = x3 + b (4)

where b ∈ GF(28)/{0}.
3. Generate an EC points by utilizing that MEC over the Galois field GF

(
28

)
.

4. Calculate how many primes there are between the beginning and current parameter b and
take an inverse of the parameter b under the Galois field GF

(
28

)
.

5. Instead of choosing b, the inverse of b under Galois field GF
(
28

)
and the sum of primes

there are between the beginning value of b and the current value of parameter b, we replace
them with the y-coordinates at that place.
6. Adjust the x-coordinates of EC points based on the resulting y-coordinates and parameter
b, as shown in Fig. 1.
7. Take an inverse under the Galois field GF

(
28

)
of that x-coordinates except zero using

specified PIP and generate 8 × 8 S-boxes.

To build a different number of S-boxes, one can adjust the parameters of MEC or the PIP. As the
number of PIPs over Galois field GF

(
28

)
is 16. Through this technique, we can generate a different

number of 16 × 255 S-boxes in which every S-box has nonlinearity between 110 to 112. The S-box
having nonlinearity 111.25 is presented in Tab. 1. A diagram of the proposed algorithm is shown in
Fig. 1.

Algorithm 1: Construction of S-box Using MEC over GF(28)

1: Input: Select PIP of degree 8 with b ∈ GF
(
28

) − {0} and W ← [0 : 255]
2: Output: S-box
3: Z = ∅

4: for each x ∈ W do
5: for each y ∈ W do
6: if y2 − (

x3 + b
) = 0 then

7: Z = Z ∪ {x, y}
8: end
9: end
10: end
11: B ← x coordinates from set Z
12: C ← y coordinates from set Z
13: Take the sum of primes [1 : b]
14: Take the inverse of b under GF

(
28

)
15: Taking the corresponding element in C in the place of b and sum of primes [1 : b]
16: D ← Rearrange these values in B
17: j ← 1: 256
18: if D (j) ← 0 then
19: No change
20: else take inverse under GF

(
28

)
21: end if
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Figure 1: Proposed algorithm using MEC over GF
(
28

)
Table 1: Proposed S-box 1 by using MEC over GF

(
28

)
0 216 108 72 54 56 36 40 27 24 28 135 18 41 20 227
1 114 237 137 95 35 87 209 84 223 130 229 89 113 63 231
142 192 57 111 248 104 202 17 161 68 159 238 165 200 230 181
244 88 81 46 213 140 91 217 29 79 198 107 53 246 240 234
71 224 96 164 146 129 185 233 124 155 52 235 101 249 134 3
167 62 86 195 78 26 196 251 204 188 194 242 184 67 177 143
122 73 76 64 166 37 23 218 228 15 70 191 163 215 226 211
186 102 138 94 4 97 77 121 176 92 5 175 158 214 241 201
173 144 112 80 48 19 82 219 44 11 206 197 210 16 250 66
157 222 208 34 136 193 141 119 49 220 59 100 247 115 116 212
221 85 31 207 43 203 239 6 39 189 13 7 98 118 243 232
152 128 74 169 30 99 179 187 45 148 60 123 90 120 180 117
61 160 38 171 22 151 32 132 83 172 156 149 133 153 109 127
170 131 139 12 103 14 236 205 105 9 8 154 125 10 33 255
93 75 51 21 69 55 47 254 2 199 190 174 168 25 178 126
150 42 110 225 147 65 50 252 245 162 183 182 58 145 106 253
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3.2 Construction of S-box Using MEC over Galois Field GF (2n)

The Galois fields GF (2n) where n ≥ 9 is applied in this study to establish a more comprehensive
and effective approach for the designing of a large number of distinct 8 × 8 S-boxes. A diagram of the
proposed algorithm is shown in Fig. 2.

Figure 2: Proposed algorithm using MEC over GF(2n)

3.2.1 Construction of S-box Using MEC over Galois field GF
(
29

)
1. Choose PIP of order degree 9

f (x) = x9 + x4 + 1 (5)

Also, an independently one can take any other PIP of degree 9 over the binary field.

2. Consider MEC

Eb : y2 = x3 + b (6)

where b be the element of Galois field GF(29) excluding zero.

3. Utilize MEC over the Galois field GF(29) and generate EC points.
4. Compute the inverse of the parameter b under the Galois field GF(29), find the number

of primes between the smallest possible value of parameter b and the value b used for
specified MEC.
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5. Calculate the position of b, its inverse under the Galois field GF(29), the number obtained
by summing the number of primes and taking the corresponding y-coordinates from EC
points at that place.

6. Managing parameter b and the resultant y-coordinates, re-adjust the x-coordinates of
corresponding EC points.

7. Taking the inverse of each x-coordinate except zero under the Galois field GF(29) with
corresponding PIP.

8. Finally, randomly take those elements less than 256 to construct an S-box.

The number of S-boxes can be varied by modifying the MEC parameter b or the PIP. The total

number of PIPs over Galois field GF(29) is calculated by
ϕ

(
29 − 1

)
9

, where phi represents the Euler

totient function. This technique allows one to construct a different number of 48 × 511 S-boxes. The
S-box created using this technique is given in Tab. 2.

Table 2: Proposed S-box 2 by using MEC over GF
(
29

)
0 114 151 40 190 152 175 115 6 102 133 255 219 107 50 176
1 227 223 252 189 90 212 33 105 122 13 5 66 62 60 49
251 18 229 245 244 206 110 16 41 29 231 59 159 10 167 93
222 143 17 139 109 241 15 70 243 79 112 237 140 123 91 85
74 104 9 200 158 118 146 113 205 131 44 86 72 63 172 186
111 253 130 14 38 197 169 215 81 19 136 135 204 99 125 171
201 217 52 230 193 83 20 87 53 36 188 30 58 239 214 240
228 96 180 32 203 121 246 98 39 233 218 185 4 202 234 127
71 92 187 226 94 24 126 170 142 11 76 25 106 147 124 211
37 61 236 195 68 84 198 254 95 31 45 232 55 224 8 69
208 80 166 174 165 137 235 138 148 47 221 12 154 249 75 150
247 157 48 196 65 132 43 108 155 97 101 181 213 88 35 54
145 64 149 183 56 23 100 209 2 34 168 82 199 178 161 67
192 51 46 210 141 144 7 21 173 28 207 42 73 164 27 177
184 57 238 162 26 116 250 225 163 77 103 216 194 153 182 134
160 156 220 78 129 119 248 22 128 191 242 89 117 179 120 3

3.2.2 Construction of S-box Using MEC over Galois Field GF(210)

1. Choose PIP of order degree 10 over the binary field.

2. Consider MEC

Eb : y2 = x3 + b (7)
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where b be the element of Galois field GF(210)/{0}.
3. Utilize MEC over the Galois field GF(210) and generate EC points.
4. Compute the inverse of the parameter b under the Galois field GF(210), find the number

of primes between the smallest possible value of parameter b and the value b used for
specified MEC.

5. Calculate the position of b, its inverse under the Galois field GF(210), the number obtained
by summing the number of primes and taking the corresponding y-coordinates from EC
points at that place.

6. Managing parameter b and the resultant y-coordinates, re-adjust the x-coordinates of
corresponding EC points.

7. Taking the inverse of each x-coordinate except zero under the Galois field GF(210)

with corresponding PIP.
8. Finally, randomly take those elements less than 256 to get an S-box.

The number of S-boxes can be varied by modifying the MEC parameter b or the PIP. The total
number of PIPs over Galois field GF(210) is calculated by ϕ

(
210 − 1

)
/10, where phi represents the

Euler totient function. This technique allows one to generate 62 × 1023 different S-boxes. The S-box
created using this technique is given in Tab. 3.

Algorithm 2: Construction of S-box Using MEC over GF(2n) .
1: Input: Select PIP of degree n with b ∈ GF (2n) − {0} and T ← [0 : 2n − 1]
2: Output: S-box
3: M = ∅

4: for each x ∈ T do
5: for each y ∈ T do
6: if y2 − (

x3 + b
) = 0 then

7: M = M ∪ {x, y}
8: end
9: end
10: end
11: B ← x coordinates from set M
12: C ← y coordinates from set M
13: Take the sum of primes [1 : b]
14: Take the inverse of b under GF (2n)

15: Taking the corresponding element in C in the place of b and sum of primes [1 : b]
16: D ← Rearrange these values in B
17: i ← 1: length(D)

18: if D (i) ← 0 then
19: No change
20: else take inverse under GF(2n)

21: end if
22: Taking randomly all those elements less than 256
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Table 3: Proposed S-box 3 by using MEC over GF
(
210

)
0 121 42 153 34 132 144 204 6 84 201 105 35 136 192 25
1 46 157 154 167 79 65 163 147 48 187 28 173 194 141 40
129 44 197 207 21 245 77 224 205 27 68 130 226 220 193 247
184 58 24 11 200 30 14 69 2 117 97 98 90 51 102 106
254 231 8 221 81 91 146 118 113 115 110 62 217 185 63 39
232 145 33 125 12 103 165 17 208 216 37 181 222 10 112 139
214 135 67 251 233 85 49 223 176 16 162 72 169 172 243 114
242 253 108 155 4 74 225 177 47 66 188 202 96 56 20 189
92 23 64 183 52 161 31 252 45 134 95 82 234 196 211 61
88 93 158 19 94 75 36 80 249 246 170 7 152 124 59 78
127 22 175 195 229 190 41 149 186 128 60 73 174 171 53 50
116 89 182 55 168 120 101 159 178 9 71 203 209 164 248 213
104 29 206 13 54 43 140 212 111 219 86 138 18 70 191 122
133 38 123 255 230 142 241 119 76 199 150 131 215 83 235 156
239 143 148 237 179 109 166 100 87 15 218 160 137 180 57 228
107 26 240 236 32 210 198 244 227 250 5 238 151 99 126 3

4 Security Analysis

The cryptographic integrity of the proposed scheme is obtained using several conventional tests.
This section will briefly review these security tests and the offered method’s results compared to other
methods.

4.1 Nonlinearity (NL)

An S-box must confuse the data to a certain amount to keep the data safe from an attacker. The
NL security test is a measure that computes the ability of an S-box to confuse the data, as represented
in the following

N∗ (S) = min
μ,β,η

{α ∈ GF(2n)|μ.S(α) = β · α ⊗ η} (8)

where μ ∈ GF(2n), β ∈ GF (2n) \ {0} , η ∈ GF(2), and “·” denotes the dot product over GF(2).

An S-box with considerable NL can inflict a lot of data confusion. The optimal value of an 8 × 8
S-box is 120, which is calculated as 2n−1 − 2

n
2 −1, [19]. In Tab. 4, the NL of newly designed S-boxes and

some existent S-boxes are given comparatively. One can notice clearly that the newly formed S-boxes
have more significant NL when compared to the EC-based S-boxes in [10,12].
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Table 4: Comparison of NL of the proposed S-boxes with existing S-boxes

S-box Scheme Minimum value Maximum value Average value

Proposed 1 EC 110 112 111.25
Proposed 2 EC 100 110 105.75
Proposed 3 EC 104 108 105.25
Ref [20] Chaos 100 110 105
Ref [21] Group 98 110 105.5
Ref [10] EC – – 104
Ref [22] EC – – 106
Ref [12] EC – – 106
Ref [23] Chaos 98 106 103
Ref [24] Chaos 104 110 106
Ref [25] Pseudo-random 102 106 104
Ref [26] Chaos 102 108 106
Ref [27] Chaos 104 108 105.8

4.2 Strict Avalanche Criterion (SAC)

Webster and Tavares [28] were the first to introduce SAC in 1985. The SAC is built on the principles
of avalanche and completion. The requirement of SAC is fulfilled when a single bit of information is
updated; half of the matching output bits must change. The offered S-boxes meet the SAC criteria
according to the calculated performance indexes. In Tab. 5, the proposed S-boxes SAC values are
compared to the existing S-boxes, which shows that our S-boxes have an optimal SAC value.

4.3 Bit Independent Criterion (BIC)

The other vital test to study any cryptographic technique is BIC [29], which is operated to evaluate
the independence of pair of output bits when the input bit is changed. Tab. 5 displays the outcomes of
BIC analysis of the proposed S-boxes, and in the significance of encryption stability, the BIC of the
proposed S-boxes is satisfactory. Performance Indexes of S-boxes given in Tab. 5 reveal that the rank
of our proposed S-box is comparable with S-boxes from literature, and we marked that the offered
S-boxes satisfied BIC close to the satisfactorily probable value.

Table 5: Comparison of proposed S-boxes SAC and BIC with Some existing Schemes

SAC BIC
S-box Min Max Avg Min Avg

Proposed 1 0.4219 0.5625 0.4878 110 111.43
Proposed 2 0.4063 0.5781 0.4998 88 102.714
Proposed 3 0.4219 0.5938 0.5049 98 103.643
Ref [10] 0.391 0.625 – –
Ref [12] 0.406 0.641 – 98

(Continued)
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Table 5: Continued
SAC BIC

S-box Min Max Avg Min Avg

Ref [20] 0.4063 0.6094 0.5010 104.3
Ref [24] 0.4219 0.5938 0.5039 102.3
Ref [26] 0.4219 0.5938 0.5002 105.4
Ref [30] 0.3671 0.5975 0.5058 104.2
Ref [31] 0.4982 0.5781 0.4218 103.1
Ref [32] 0.4219 0.5469 0.5115 108

4.4 Linear Approximation Probability (LP)

Linear approximation attacks on S-boxes can be approximated by determining the maximum
number of coincidental input and output bit pairs. If an S-box has a lower LP, it is extremely resistant
to linear attacks [29]. According to Tab. 6, the LP values of the new S-boxes are significantly lower
than those of other S-boxes.

4.5 Differential Approximation Probability (DP)

A differential approximation probability is offered in [33] to find the probability impact of a
particular disparity in the input bit on the variance of the resulting output bits. The DAP of an S-
box S is shown below in the mathematical phrase: g∗, h∗ ∈ GF

(
28

)
,

DP (S) = max
g∗ .h∗ {# {

g ∈ GF
(
28

)∣∣ S (g + g∗) − S(g) = h∗}} (9)

The S-box has more potential against differential attacks if it has a lower value of DP. The
experimental outcomes of DP of the newly spawned S-boxes are presented in Tab. 6, which indicates
that the newly designed S-boxes have high resistance against differential attacks.

Table 6: Comparison of proposed S-boxes LP and DP with preexisting S-boxes

S-box LP Max (LP) DP

Proposed 1 0.0703125 146 0.0234375
Proposed 2 0.15625 168 0.046875
Proposed 3 0.148438 166 0.046875
Ref [10] 0.14500 – 0.03900
Ref [12] 0.132800 – 0.039100
Ref [29] 0.062 – 0.01560
Ref [30] 0.1484 – 0.0391
Ref [34] 0.06250 144 0.015625
Ref [35] 0.0159 164 0.028100
Ref [36] 0.1484 162 0.0468
Ref [37] 0.125 – 0.0391
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4.6 NPCR and UACI Analysis

It’s common for hackers to make minor adjustments to an image before using the recommended
method. You can compare the original with the substituted image. Using this method, they discovered
the relationship between the original and encrypted images. A one-pixel change in the original image
considerably impacts the image following substitution. This section combines two key tests, the unified
average change intensity (UACI) and the several pixels changing rate (NPCR), to determine the
design’s resistance to differential attacks. NPCR can be summed up as

NPCR =
∑

g∗ ,h∗ F(g∗, h∗)

M∗ × N∗ × 100% (10)

And UACI is defined as

UACI = 1
M∗ × N∗

[∑
g∗ ,h∗

abs(F ∗
1 (g∗, h∗) − F ∗

2 (g∗, h∗))

255

]
× 100% (11)

where M∗ and N∗ denotes the image height. Tab. 7 depicts the proposed scheme NPCR and UACI
values, indicating that our system is more resistant to various attacks.

Table 7: Comparison of proposed S-boxes NPCR and UACI with existing schemes of S-boxes

Algorithms NPCR UACI

Proposed S-box 1 99.61 33.57
Proposed S-box 2 99.60 33.64
Proposed S-box 3 99.64 33.73
Ref [14] 99.64 33.68
Ref [38] 99.58 28.62
Ref [39] 98.47 32.21
Ref [40] 99.42 24.94
Ref [41] 99.54 28.27
Ref [42] 99.61 33.08
Ref [43] 99.59 33.45

4.7 Statistical Analysis

When evaluating statistical analyses, one uses the majority logic criteria (MLC) [44]. Also, an S-
box is used to encrypt a test image by swapping pixel values in this standard. Even though this isn’t
an encryption technology, the actual and encrypted data are analyzed statistically using this criterion.
Multiple statistical analyses, including as homogeneity, correlation, contrast, energy, and entropy, can
be evaluated using the MLC as a standard. This evaluation determines whether the S-box can be used
to encrypt an image or not. Lena’s image of 256×256 is operated for the MLC study, and the outcomes
of the presented scheme are given in Tab. 8. The MLC analysis showed that the diffusion level of the
newly developed S-boxes is up to the mark. All of this can be seen in Fig. 3.
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Table 8: Comparison of MLC Analyses of proposed S-boxes with other Schemes of S-boxes

S-boxes Entropy Contrast Correlation Energy Homogeneity

Proposed 1 7.94 9.99240 0.0034 0.0156 0.3887
Proposed 2 7.94 9.6416 0.0130 0.0156 0.3886
Proposed 3 7.94 9.9893 0.0025 0.0156 0.3890
Ref [34] 7.24 7.4568 0.0785 0.0223 0.4731
Ref [42] 7.94 9.9764 0.0487 0.0161 0.4171
Ref [45] 7.96 8.5969 0.0019 0.0174 0.4070
Ref [46] – 10.3986 0.0072 0.0158 0.4214
Ref [47] 7.75 9 .8198 0.0573 0.0163 0.4228

1 2                                   3                                     4

Ref [32] Ref [43]                           Ref [40]                                         

Figure 3: (1) Original Lena Image (2,3,4) Encrypted Lena image using S-box 1, S-box 2, and S-box 3

4.8 Comparative Analysis

Various cryptographic tests assess the proposed algorithm to examine its potential against
different cryptographic attacks. The comparison of the proposed technique with other algorithms is
discussed briefly in the following point-by-point discussion.

1. In Tab. 4, different algorithms are listed based on Chaos, group, Galois field, and EC. By
using MEC over a 256-order Galois field, one can see that we generate 4080 S-boxes having
nonlinearity between 110 to 112.The algorithms in [10,12,22] were constructed using EC over
the prime field but did not achieve outstanding results compared to our proposed technique.
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2. The proposed S-boxes BIC and SAC values are more satisfactory than the algorithms in
[10,12,30–32] mentioned in Tab. 5. Furthermore, our BIC and SAC values are optimal,
indicating that the offered S-boxes can cause enough diffusion in the data.

3. The proposed S-boxes LP values are also acceptable compared to the different algorithms in
Tab. 6. Similarly, the lower value of the DP of the proposed scheme shows that our method is
more invulnerable to various attacks.

4. The NPCR and UACI values of the proposed S-boxes are comparatively better than the cited
algorithms in Tab. 7. Furthermore, the MLC analysis in Tab. 8 shows that the offered algorithm
is more significant for image encryption.

5. The number of S-boxes creation ability of the proposed algorithm is very high compared to
other EC-based algorithms noted in Tab. 9, proclaiming that the presented scheme is novel
and more significant.

Table 9: The comparison of possible S-boxes constructed using MEC over the GF(2n) and MEC over
the prime field P

MEC over GF(2n) MEC over prime field P

N S-boxes P S-boxes

8 4080 257 256
9 24528 521 520
10 63426 1031 1030
11 364366 2053 2052
12 638820 4099 4098

Note: p = 2n + l, where l is the least integer which gives a prime number p greater
than 2n.

The above analysis shows that the proposed scheme has good resistance against various crypto-
graphic attacks compared to existing algorithms. The results of the MLC tests reveal that the proposed
algorithm has good image encryption features.

5 Conclusion

In this article, we considered MEC over the binary extension field GF(2n), where n ≥ 8 and
developed a comprehensive algorithm for the construction of S-boxes. Generally, EC-based algorithms
are considered over prime fields where the possibilities of generating distinct S-boxes are not as great
as the binary extension field. The outputs of different tests imply that the proposed algorithm is also
resilient to various cryptographic attacks. Also, the presented S-boxes are assessed by a substitution
process to study the importance of the proposed algorithm in image encryption applications. In the
future, the various types of ECs over the binary extension field can also be utilized to construct
different cryptographic algorithms.
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