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Abstract: The Wireless Sensor Network (WSN) is regarded as the fastest
expanding technological trend in recent years due its application in a variety
of sectors. In the monitoring region, several sensor nodes with various sensing
capabilities are installed to gather appropriate data and communicate it to
the gateway. The proposed system of the heterogeneous WSN employing
LoRaWAN-Zigbee based hybrid communication is explored in this research
study. To communicate in a network, two Long–Range Wide Area Network
(LoRaWAN) sensor clusters and two Zigbee sensor clusters are employed,
together with two Zigbee and LoRaWAN converters. The suggested Golden
eagle shepherd optimization (GESO) method then forms Zigbee as well as
LoRaWAN networking clusters. Furthermore, depending on energy usage
and data packet size, the fitness of each sensor node is assessed using the
Dynamic Intelligent Reasoning Based Neural (DIRN) approach. MATLAB
software is used to implement and execute this study. When the Zigbee
network’s transmission distance is 650 m and the LoRaWAN network’s trans-
mission range is 3.5 km, the system can function with a packet loss rate of less
than 0.04 percent. This study shows significant gains in the performance of
the system when compared to traditional approaches based on digital findings
obtained on software solutions.

Keywords: Zigbee; LoRaWAN; wireless sensor network; health monitoring;
routing protocol

1 Introduction

Wireless sensor networks (WSNs) have gotten a lot of interest in the last several years, both
from academia and business [1]. Moreover, the Industrial Internet of Things (IoT), Environmental
monitoring, health management, contact tracing, and intelligent transportation are just a few of the
sectors and disciplines where WSN has been extensively used [2]. To gather contextual factors and
interact with the sensor nodes and the base station through communication networks, these devices
consist of multiple sensors to be deployed over an area [3]. Even though many studies assume that
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sensor nodes in WSNs are homogenous, such systems need not appear. In terms of starting energy
level & energy degradability, even industrially manufactured homogenous sensors offer a wide range
of capabilities [4]. Furthermore, big WSNs frequently use a variety of sensors as well as protocols to
collaborate, resulting in heterogeneous WSNs [5]. Clustering, radio optimization, data compression,
sleep but rather wake-up procedures, energy-aware routing protocols, and energy generation are some
of the strategies used to build software and hardware components in WSNs concurrently [6].

Consequently, Bluetooth, BLE, Wi-Fi, NB-IoT, LoRaWAN, Zigbee, and LTE-M are just a few
of the WSN network topologies that have been created [7,8]. Specifically, Zigbee and LoRaWAN are
becoming more popular in WSNs due to their exceptional technological benefits. ZigBee technology
is a high-level communication system based on the IEEE 802.15.4 standard that uses low-power radio
transmissions with an Institute of Electrical and Electronics Engineers shortwave frequency [9,10].
Star, tree, and mesh topologies are available in Zigbee [11]. Mesh topology is commonly used in WSNs
since it provides for continual communication and the ability to modify network settings as packets
pass from one node to the next [12]. Every node in the meshes may communicate with its neighbors
and route traffic between each other [13]. LoRaWAN, which stands for “broad frequency range,” is
a novel IoT communication especially focused on the LoRaWAN communication network [14]. The
LoRaWAN technology is built on the chirp spread spectrum technique, which can link to sensors in
rural locations that are more than 15 to 30 miles apart [15].

The frequency of up-chirps rises over time, while the frequency of down-chirps drops. This method
reduces the receiver circuit’s complexity as well as accuracy while outperforming standard modulation
techniques like frequency shift keying [16,17]. Furthermore, LoRaWAN provides several advantages,
including frequency-free operating and simple installation. The challenge of WSN coverage extension
can be solved by using the LoRaWAN technology [17]. As a result, ensuring Quality of Service (QoS)
and optimizing resource allocation in diverse WSNs pose a variety of issues [18]. Also, supervised
learning [19], intelligent method, the fuzzy logic method [20], and so on are utilized for the LoRaWAN
and Zigbee communication [21]. Yet, the optimal solution is not achieved due to poor performance.
The sensors are categorized to the cluster network in this study, which investigates a heterogeneous
WSN depending on Zigbee as well as LoRaWAN connectivity. In addition, a LoRaWAN-based
Wi-Fi gateway is used to send data to the server. At no additional expense, the solution provides
interoperability with current Zigbee networks and combines LoRaWAN to address coverage extension
in heterogeneous WSN. Nevertheless, network longevity and dependability are serious issues. As a
result, the sensor node’s health must be monitored. The following is the work’s key contribution:

• Two Zigbee clusters and two LoRaWAN clusters are proposed for a heterogeneous WSN
depending on Zigbee as well as LoRaWAN connectivity. The Zigbee, as well as LoRaWAN,
are connected in the network communication using bridges. Temperature/humidity, pH sensors,
gas, light intensity, and turbidity sensors are just a few of the sensors that may be connected to
the system.

• The suggested Golden eagle shepherd optimization (GESO) method then forms Zigbee and
LoRaWAN networking clusters.

• Then, depending on the energy usage and data packet size, the health of every sensor node is
assessed using the Dynamic Intelligent Reasoning Based Neural approach.

• The outcomes from the proposed method are compared with the conventional methods in terms
of packet loss, throughput, network lifespan, end-to-end delay, and so on.

The following is a breakdown of the paper’s structure. The second section focuses on the literature
review. The third section includes a description of the system model and its issue. The suggested system
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is described in depth in Section 4. The system performance and comparative analysis are explained in
Section 5. Section 6 of the article concludes with a discussion of the study’s future potential.

2 Related Work

Some of the recent works correlated to this research are summarized as follows: These networks’
terminal devices connect with all gateways within their respective ranges, wasting energy in duplicated
transmissions. Gupta et al., [22] investigated whether LoRaWAN networks may benefit from cluster-
ing, and proposed two methods for this kind of networks: path-based as well as data-centric. Examine
how several nodes, node range, and cluster range affect transmitting data energy consumption.

Klaina et al. [23] established numerous hypothetical scenarios for big farm monitoring employing
LPWAN-based near-ground sensor nodes with the engagement of both tractors as well as landowners.
Cloud-based platforms for LoRaWAN, Sigfox, and NB-IoT networking verify the suggested systems,
enabling highly scalable technologies to allow interactive agricultural activities.

The majority of WSNs comes with a battery that has a finite lifespan. The maximum functioning
of these systems necessitates the use of additional electricity. Developing LoRaWAN has become
a significant problem in today’s world, and it is critical to predicting their performance and power
consumption for numerous applications. Rao et al. [24] presented a power consumption system based
on LoRa & Zigbee protocols that enable wireless sensor nodes to detect and quantify power usage
in a cyclic sleeping situation. Practical findings show that the developed LoRa WSNs nodes have an
interest in real IoT applications when compared to Zigbee sensor networks in terms of communication
distance, network information, broadcasting speed, and energy consumption.

The majority of extant study focuses on enhancing sleep scheduling tactics and deployment
methodologies, either alone or together, to extend network lifetime. Nevertheless, mesh network
congenital abnormalities cannot be eliminated. Wu et al. [25] designed a LoRaWAN-based WSN
and investigated its energy-efficient management strategy to address technological obstacles. The
simulation and experimental findings proved that at various times, most nodes have the very same
energy output, and the network lifespan is maximized.

Lombardo et al. [26] compared the transmission rate of two of the most widely used IoT
development tools in key situations. For the aforementioned application cases, the most widely
used path-loss features are discussed. A multiprotocol wireless sensing cluster design utilizing both
broadcasting protocols is detailed to evaluate and analyze the performance.

Evaluating signal strength to forecast packet delivery may be a useful technique for ensuring
the reliability of wireless networks. To address this issue, Guerrero et al. [27] used the LoRaWAN
network protocols to investigate the practical applicability of this concept from the end-device aspect.
Correlations between connection parameters at the edge router and the reality that a packet is accepted
at the gateway have been discovered through an examination of the collected traces. The findings show
that in all of the instances studied, it can know the delivery of packets.

As a result, they can’t tell the difference between infrequent data abnormalities created by genuine
occurrences in sensed data on the one hand, and failure data misinterpretation on the other. Widhalm
et al. [28] donated fully accessible sensor node architecture for sensor activities like monitoring systems.
It is mostly made up of low-power parts to ensure long battery life. Unlike another sensor network, this
platform has self-diagnostic features that ensure active node dependability. With both extended battery
life & high-quality information, this enhances the overall dependability of WSNs. Compatibility
amongst IoT wireless technology protocols is still restricted, according to the preceding research.
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There is currently no perfect solution for heterogeneous WSN using Zigbee as well as LoRaWAN.
This is what motivates us to create a system that integrates different wireless network technologies
into a heterogeneous WSN.

3 System Model

A heterogeneous WSN depending on Zigbee as well as LoRaWAN communication is suggested
in this section. The LoRaWAN sensor cluster, Zigbee sensor cluster, and gateway are the four primary
pieces that make up this WSN technically. Nodes may interact with one another over a small distance
using a Zigbee and LoRaWAN converter operating in the 2 GHz band. LoRaWAN sensor clusters are
made up of LoRaWAN sensing devices that communicate over long distances using 340 MHz bands
and a modest transmission range. The Zigbee and LoRaWAN conversion, which is positioned close
to the Zigbee cluster, converts the Zigbee transmission to LoRaWAN.

The interior LoRaWAN gateway is installed in a public Wi-Fi hotspot. With such a framework,
we can simply expand the system to include 30 Zigbee and 62 LoRaWAN sensor nodes. The system
model of heterogeneous WSN is shown in Fig. 1.

Sensor node with Zigbee 
interface

Sensor node with LoRaWAN 
interface

Zigbee Gateway

LoRaWAN Gateway

Sensor layer

Gateway layer
Cloud storage layer User layer

Cloud Server
High energy

Figure 1: The system model of heterogeneous WSN

Sensor nodes must be deployed and associated data must be sent to the information center in
contemporary monitoring systems. WSNs are typically used in tough settings with vibration, changes
in temperature, congestion, humidity, and other factors. Due to the difficulty of access, sensor node
batteries are never changed. To enable accurate data capture while running unsupervised and over long
periods, sensor nodes must be dependable and energy-efficient. The majority of extant study focuses
on enhancing rest scheduling tactics and deployment methodologies, either alone or together, to extend
network lifetime. However, mesh network congenital abnormalities cannot be eliminated.
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4 Proposed Framework

The proposed methodology of the WSN health monitoring is illustrated in Fig. 2. Here, are
the performance of Zigbee and LoRaWAN based communication sensor node systems for the data
reliability and network lifetime analysis. The Zigbee and LoRaWAN system-based sensor nodes like
Temperature/humidity, pH sensors, gas, light intensity, and turbidity sensors are formed as two modes
of cluster individually.

Remote Users 

Internet server

Performance measures

Zigbee and 
LoRWAN sensor 

nodes Zigbee cluster 

LoRWAN cluster

Contribute GESO 
Method for cluster 

formation

Apply DIRN 
method for 
monitoring

Figure 2: The proposed methodology of the network health monitoring

The clusters are selected and formed using the GESO algorithm and the network lifetime and
packet delivery rate is evaluated using the DIRN method. The performance of the proposed method
is validated with the different parameters like throughput, network lifetime, end-to-end delay, packet
loss, alive nodes, and so on. The description of the proposed approach in Zigbee and LoRaWAN based
network communication is explained in following sections.

4.1 GESO Based Clustering Formation

The GESO algorithm is the combination of the golden eagle and shuffle shepherd optimization
method. The fitness of each algorithm is combined to develop a new algorithm named GESO.
Shepherds form herds of horses or other animals, depending on the animals’ innate instincts to choose
the best path to pasture. For this purpose, the shepherd herds sheep alongside horses. The fitness
of hunting and surrounding behaviors is taken into account for the assessment of the golden eagle
technique. The GESO was created as a result of this behavior. Fig. 3 shows a flow diagram of the
suggested GESO algorithm’s performance.
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Figure 3: Flow diagram of proposed GESO based node clustering

Initialization: Throughout each cycle, each parameter chooses the activation of p another param-
eter q at random and circles around the best point that parameter q has visited thus far. Since the
parameter may pick to cycle has its memory, have q ∈{1, 2, . . . , PopSize}here. In the solution space,
the mathematical analysis begins GESO with a randomly determined beginning population parameter:

V 0
a,s = Vmin + r ∗ (Vmax − Vmin) (1)

where Vmin and Vmax are the lowest and maximum model parameter bounds, respectively; r is a random
variable formed between 0 and 1 for each element; q is the number of persons in each group, and p is
the total number of groups and a = 1, 2, . . . .. p and s = 1, 2, . . . . . . , q. Then, Eq. (2) may be used to
compute the total number of community members in this method,

qVp = p × q (2)

Cluster Shuffling: The initial members p of each population are randomly placed in the first
column of the multi-cluster conditions Eq. (3) in this approach based on their goal functions as the
other members of each population. The subsequent p members are chosen in the same way as the
previous step and are organized in a random order in the section to create the second column of
the multi-cluster parameter. This procedure is continued q until the following multi-cluster matrix is
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created:

Vp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V1,1 V1,2 · · · V1,q · · · V1,q

V2,1 V2,2 · · · V2,q · · · V2,q

...
...

...
...

...
...

Va,1 Va,2 Va,s Va,q

...
...

...
...

...
...

Vp,1 Vp,2 · · · V a,s · · · Vp,q

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3)

It’s worth noting that each row of the multi-cluster parameter reflects an individual from each
cluster, with the top column being the best people from each cluster. Furthermore, the persons in the
last segment are the weakest variable in the cluster.

Optimal Cluster Selection: To establish a specific step size for each member of the group, two
factors are utilized. The potential to explore more areas of the solution space is shown by the first
variable Gw

a,s. The capacity to explore the surroundings of previously visited probable solution space
parts is the second variable Gb

a,s as an intensification strategy. The mathematical expression for the step
size is as follows:

Ga,s = Gw
a,s + Gb

a,s a = 1, 2, . . . .p and s = 1, 2, . . . .q (4)

The Eq. (5) is used to calculate the worst and best functions of step size for adjusting the parameter,

Gw
a,s = �ap × r1 × (Va,w − Va,s) (5)

Gb
a,s = cpq × r2 × (Va,b − Va,s) (6)

where �ap and cpq are the exploitation and exploration. In comparison to Va,s, r1 and r2 are random
variables with each component having a value between 0 and 1; Va,b and Va,w are the better and worse
parameters in terms of the objective function value. It’s worth noting that the community’s initial
parameter lacks an affiliate that is superior to it. It’s worth noting that the pth community’s initial
parameter Va,1 lacks an affiliate that is superior to it. As a result, Gb

a,1 has the same value as 0. As a
result of the pth group final parameters, Va,q does not have a worse parameter than itself. As a result,
Gw

a,s is also zero.

Parameter exploitation: A vector that starts at the current state of the parameter and ends at the
parameter’s location in the classification memory can be used to illustrate the approach. In addition,
Eq. (7) may be used to find the p parameter’s entry point.

�ap ≡ �Y ∗
q − �Yp (7)

where �ap is the parameter p’s attack vector, where �Y ∗
q is the parameter’s best tuning location so far,

and �Yp is the parameter p’s present position. The exploitation phase of GESO is characterized by the
exploitation, which pushes parameter populations into the most visited locations.

Parameter exploration: The exploration is computed using exploitation. The exploration is
tangential to the circle and perpendicular to the exploitation. The n-dimensional exploration takes
place within the perpendicular hyperplane of the circle. To calculate the exploration, the solution of
the perpendicular hyperplane is calculated. A random point from a hyperplane and a perpendicular
component to that hyperplane referred to as the hyperplane’s coordinates can be used to compute
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the expression of a hyperplane in n dimensions. In n-dimensional space, Eq. (8) represents the scalar
version of the hyperplane solution.

s1a1 + s2a2 + . . . smam = r ⇒
m∑

i=1

siai = n (8)

where S = [s1, s2 . . . ..sm] are the ordinary vector and Y = [a1, a2, . . . ..am] are the decision key vector of
ith node.

The arbitrary target point of the cruise hyperplane is discovered. Eq. (9) shows the general form
of the exploration hyperplane’s goal destination,

cpq =
n − ∑

p;p�=q

aq

ap

= w (9)

It is obvious that as the number of iterations s grows, �ap increases and cpq decreases. As a result,
exploration lags while exploitation lifts.

Parameter Updating: According to the preceding stage, the new parameter Vp,q is determined using
Eq. (10). After that, if the Vp,q parameter’s current objective function rate is not lower than its prior
rate, it will be updated:

NewVp,q = Vp,q + Sp,q (10)

Termination: After a chosen Maximum iteration, the optimization procedure will be completed.
If it doesn’t, it goes back to step one for another round of repetitions.

4.2 DIRN Method of Monitoring

The DIRN method is a sophisticated hybrid of reasoning-based intelligent neural fuzzy methods.
The input layer, fuzzification, rule layer, membership function, and defuzzification are all included in
this model. The input layer is the first layer. The number of packets, packet arrival time, transmission
energy, spreading factor, signal to noise ratio (SNR), and packet received are all contained in the input
layer. It sends the input data variable to the next layer, where the data will be fuzzified. Let’s say the
input data packet vector is called En. The result of the Enf ∗ second layer is En, while the result of the
fourth layer is. The weight vectors’ input and output are given in the Eq. (11),

S1(m∗r) = Enf ∗ and S2(m∗r) = Fnf ∗ (11)

The neuron’s rule is symbolized by the symbol n∗r′. The second layer is known as the fuzzification
layer, which consists of a set of spatially organized neurons that characterize a fuzzy estimation of any
input variables. Moreover, the input data will be fuzzified by the third layer, which will be executed by
the second layer. The Eq. (12) calculates the normalized fuzzy distance between a new fuzzy case E1f ∗
and the mth cached pattern S1(m) is

gm =
∥∥E1f ∗ − S1(m) ‖h

i∑
m=1

∥∥E1f ∗ − S1(m) ‖h

(12)

where, ‖.‖h is the h-norm. For h-norms, ‖j‖t+y ≤ ‖j‖t in any case, j ∈ �m, t ≥ 1, y ≥ 0. The Eq. (3) gives
the activity levels of rule neurons,

Y1m = 1 − gm (13)
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In such a case Y1m, gm ∈ [0, 1], furthermore, the third layer is the rule base layer, which contains
fuzzy rule nodes. The nodes indicate the Membership functions, which can be altered during the learn-
ing process. Two vectors of bound weights that are corrected using a hybrid supervised/unsupervised
learning technique describe rule nodes. The starting value T∗

s is set to 0.3 by default. During x time
intervals,

If α > β, T ∗
s is decreased,

T ∗
s (s

′ + x) =
(

1 + α − β

x

)
T ∗

s (s
′) (14)

If α < β, T ∗
s is increased,

T ∗
s (s

′ + x) = (1 + α

x
)T ∗

s (s
′) (15)

In Eqs. (14) and (15), the sensitivity threshold is given by T∗
s and the number of neurons is denoted

by α. On propagating the successful neuron’s activation, a saturated linear function type is utilized, as
described in Eq. (16) as,

Ymax =
⎧⎨
⎩

0 if Y(m∗ max)S2 < 0
1 if Y(m∗ max)S2 > 1
Y(m∗ max)S2 otherwise

(16)

Fuzzy output illustrates fuzzy limitations for output variables, and the fourth layer is also referred
to as fuzzy output. The data packet and the energy consumption of the node are verified here
depending on the header. If the energy level of the data packet is in the nodes within the threshold
level, the systems accept the packet and indicate it as a better sensor node; otherwise, the packet is
rejected from network transmission of that particular node and indicated as the worst sensor node.
The weight vectors S1 and S2 of activated neurons with errors e∗

r are transformed from to

S1s(s′ + 1) = S1s(s′) + β1(En − S1s) (17)

S2s(s′ + 1) = S2s(s′) + β2Ymaxe∗
r (18)

In Eqs. (17) and (18), β1 and β2 are the constant learning values (8). Finally, the output layer is
referred to as the fifth layer. The output layer is responsible for defuzzification and determining the
numerical value of the output variable. The maximum activation of the rule node is propagated to the
next level. As a result, the active nodes and data packets are obtained using this proposed approach.
Algorithm 1 describes the suggested network monitoring approach.

Algorithm 1: Proposed DIRN method
Set the number of packets, packet arrival time, transmission energy, spreading factor, signal to noise
ratio (SNR), and packet received
Apply the initial value of the sensitivity threshold T∗

s

Initialize the primary rule S1(m∗r) = Enf ∗ and S2(m∗r) = Fnf ∗
while energy consumption do

Provide En to the next layer and attain MF as Enf ∗
Normalize the fuzzy value gm between E1f ∗ and the mth cached pattern S1(m)

(Continued)
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Algorithm 1: Continued
Estimate the activation function of each rule in the network
Select all rules whose energy level is lesser than the T∗

s

if the energy level Y1m is lesser than T ∗
s then

The node is alive
Else

The node is dead so generate a new rule
Estimate the rule Y(m∗ max) has the utmost energy value Ymax

Achieved finest fuzzy outcome?
Compute the targeted fuzzy outcome and node energy value
Estimate the outcome error e∗

r

if e∗
r > threshold value

Generate new rule
Else

Achieve the input and output link correlated to the winning health monitoring of ZigBee
and LoRaWAN network

Endif
Endif

5 Results and Discussion

In this section, the outcomes obtained from the proposed method using Zigbee and LaRaWAN
system with the intelligent approach. The main aim of this research is to monitor the health of the
sensor nodes in WSN in terms of data reliability and network lifetime. The suggested technique is also
compared to existing methods that attempt to monitor data dependability and network longevity in
terms of network lifetime. The proposed technique is simulated with the help of the NS2 simulator
program. Tab. 1 lists the simulation parameters.

Table 1: Parameters for simulation

Parameter Value

Number of nodes 500
Channel Wireless channel
Initial node energy 5 nJ
Simulation time 25 min
Network size 1000∗1000 m2

The packet size of data 512 bytes
Node selection Random
Minimum to maximum SNR 2–20 dB

5.1 Performance Analysis

To estimate the performance of the suggested model, the reliability, network lifetime, energy
consumption, packet loss, packet delivery ratio and delay parameters were compared to traditional
methods such as the Fuzzy logic algorithm [29], Evidential reasoning rule (ER) [30], Red Deer
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Algorithm-Black Widow Optimization (RDA-BWO) and FLoRA [31]. In WSNs, clustering is one of
the most essential ways for extending the network lifetime. It entails clustering sensor nodes into groups
and choosing cluster heads (CHs) for each group. The complete heterogeneous networks become more
effective as this study boosts the dynamic clustering performance due to the constantly proposed
clustering.

The recommended approach, as illustrated in Fig. 4a has the highest clustering rate. The Fuzzy
logic algorithm, ER, RDA-BWO, and FLoRA, on the other hand, all achieved a lower clustering
rate than the recommended approach. The time it takes for a packet to go from sender to receiver
across a network is referred to as end-to-end delay. The end-to-end latency is another assessment
parameter. The suggested method’s end-to-end latency has risen when compared to other approaches,
as illustrated in Fig. 4b. The suggested technique examines the correctness of data packets and
conducts combining in each hop, increasing the latency. As a result, the suggested technique can be
considered for situations where network reliability is much more essential than delay.

Figure 4: (a) A study of clustering rates in comparison (b) in terms of time, the end-to-end delays

The results show that the proposed methodology took 0.0183 s to complete 18 s, which is
much less time than the other ways. Standard techniques show that the Fuzzy logic algorithm has
0.0209 s, ER has 0.025 s, RDA-BWO has 0.022 s, and FLoRA has 0.0268 s for various numbers of
rounds greater than 18 s. This proves that the recommended strategy is effective. The entire energy
consumed by the system to execute sending and receiving is referred to as energy consumption. As the
number of nodes grows and so does the simulation time. As the execution time is increased, so is the
quantity of energy consumed, as seen in Fig. 5a. Less energy consumption yields better results. Since
nodes use less energy, they consume a significant share of the remaining energy. The most energy-dense
node in the journey is chosen as the optimal route.

The packet delivery ratio measures the proportion of total data that is efficiently distributed to all
destination nodes, while the total quantity of data created by all source nodes is measured.
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Figure 5: (a) Energy consumption to time (b) packet delivery ratio to time

PDR =Overall amount of data Received
Overall amount of data Send

(19)

The suggested technique obtained a packet delivery ratio of 0.98% for 18 s, whereas the data
measured the Fuzzy logic algorithm, ER, RDA-BWO, and FLoRA approaches have produced much
lower packet delivery ratios, such as 0.79%, 0.64%, 0.68%, and 0.895%, respectively. The PDR value
decreases as the number of time seconds increases. Packet loss is defined as the number of times a
specific data packet is not finished at the end destination, as represented by Eq. (20).

Packetloss = Amount of packet loss
Time

(20)

Fig. 6 compares the packet loss caused by the proposed methodology to alternative methods with
different cycles. The reduction of packet loss during the transmission of communications from data
owners to data users is the top priority. In terms of the total number of iterations, the recommended
approach has achieved remarkably low packet loss when compared to other existing models.

Figure 6: (a) Packet losses to time (b) throughput comparisons to time



CMC, 2022, vol.73, no.2 2675

As demonstrated in Fig. 6a, the recommended approach caused the least amount of loss when
compared to the Fuzzy logic algorithm, ER, RDA-BWO, and FLoRA. The recommended solution
exhibits reduced packet loss at all times as compared to standard Fuzzy logic algorithms, ER, RDA-
BWO, and FLoRA. The packet loss, on the other hand, increases as the number of periods grows.
Furthermore, the proposed packet loss during 18 s is 0.04%, which is lower than standard protocols.
As a result, the proposed approach caused less packet loss throughout the broadcast. The quantity of
data acquired at the receiver end is measured by the time it takes for data to be transferred through
the process, which is referred to as throughput.

Throughput =Amount of data received to the users
Delay of time

(21)

For various rounds, Fig. 7b displays the obtained throughput from the recommended method
in contrast to existing models. The recommended approach generates a throughput value of 98% in
18 s. As the number of cycles increases, the throughput value drops. The comparison, on the other
hand, shows that the proposed technique surpasses existing models in terms of effective performance,
such as all-rounds variation. Fig. 7a depicts a comparison between the suggested technique and
perhaps other methods to the number of alive nodes and network longevity. The entire network has
been formed as a cluster in the suggested technique, and packets are transmitted across small distances
to nodes of higher tiers. The number of alive nodes is counted at that moment for better purposes.

Figure 7: (a) Number of alive to time (b) network lifetime to time

Calculating the time until the first node’s energy runs out is an important performance metric.
Every node in a WSN network immediately broadcasts its data over the internet.

In this setup, the data will be delivered to the network instantly or regularly. Fig. 7b compares the
Fuzzy logic methods, ER, RDA-BWO, and FLoRA, to the network longevity in terms of the death
of the first node, half of the nodes, and all nodes. One of the most significant aims of the suggested
approach is to monitor the network lifespan; nevertheless, as shown in Fig. 7, the proposed technique
outperforms this algorithm in terms of network lifetime. The network topology is arranged as a tree
in the proposed technique, and packets are transferred across small distances to nodes of higher tiers.
Since data transmission necessitates the maximum degree of energy consumption, the structure causes
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nodes to spend less energy. Furthermore, the suggested method’s node-to-node error detection reduces
energy consumption.

The proposed approach also has the purpose of lowering energy use. In contrast to exist-
ing approaches, the suggested method greatly decreases energy consumption, as shown in Fig. 8.
Transmission rate from the previous step is demanded rather than end-to-end transmission in the
proposed technique, which uses the node to node error detection methodology. In comparison to the
retransmission from the source, it consumes less energy.

Figure 8: Reliability to time

5.2 Discussion

According to the predicted outcomes and comparison, the recommended approach has obtained
the best performance in terms of low energy consumption, better accuracy, packet delivery time,
throughput, network alive node estimation, and computing performance value. Using Fuzzy logic
approaches, the node’s energy efficiency has been considerably improved. However, there will be
more nosiness in data transport, and long-distance transmission will require a lot of energy. This
considerably decreased the performance due to the proper estimation of alive nodes and data trans-
mission is important in the heterogeneous-based LoRaWAN and Zigbee network communication.
Furthermore, by reducing a significant amount of power signals, the ER model has enhanced node
performance. For optimal cluster formulation, the traditional RDA-BWO technique required a larger
number of learning parameters. There will, however, be a security concern as well as a delay. Despite
this, the suggested approach improved the system’s performance by monitoring and reducing energy
consumption, increasing packet delivery rate, keeping nodes alive, and increasing dependability.

6 Conclusion

In this paper, the hybrid of Zigbee and LoRaWAN based WSN communication is developed and
monitoring the health of the sensor nodes used in this system. Therefore, novel GSEO and DIRN
based intelligent methods are developed for monitoring the communication system performance
in terms of cluster formation and energy consumption monitoring. The simulation results of the
proposed method are validated with the different performance metrics. The technology outperformed
existing methodologies in terms of packet delivery time, throughput, network longevity, energy usage
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monitoring, packet loss, and alive nodes, according to the findings. Eventhough LoRaWAN has its
inbuilt security system in its MAC layer. a communication system model that would involve external
security in terms of transmission might be developed employing a hybrid learning approach.
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