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Abstract: The main objective of this research is to design a state-feedback con-
troller for the rotary inverted pendulum module utilizing the linear quadratic
regulator (LQR) technique. The controller maintains the pendulum in the
inverted (upright) position and is robust enough to reject external disturbance
to maintain its stability. The research work involves three major contributions:
mathematical modeling, simulation, and real-time implementation. To design a
controller, mathematical modeling has been done by employing the Newton-
Euler, Lagrange method. The resulting model was nonlinear so linearization
was required, which has been done around a working point. For the estimation
of the controller parameters, MATLAB LQR function has been utilized.
Simulation has been performed for the designed controller and it also has been
implemented and tested over the real inverted pendulum. From the results, it
is vivid that the designed controller keeps the inverted pendulum in an upright
position and rejects the disturbances and falling under gravitational force by
adjusting the rotation of the horizontal link.

Keywords: Mathematical modeling; linearization; linear quadratic regulator
(LQR); nonlinear system; rotary inverted pendulum

1 Introduction

The rotary inverted pendulum is an important topic of research in control engineering. It is an
effective tool to test the performance of different control approaches. It is a multi-variable nonlinear
dynamical system that is highly unstable. It has two links, one link revolves around an axis in the
horizontal plane so that the other can balance itself in an upright position [1–5]. The control of the
rotary inverted pendulum helps in designing the altitude controller of rockets and satellites due to
its nonlinear behavior. The inverted pendulum control is playing a vital role in real-life applications
ranging from robotics to aerospace, locomotive to marine systems and from flexible to pointing control
systems. Additionally, the study of dynamics and control of inverted pendulum helps in maintaining
the equilibrium of tall buildings [6–12].
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Various efforts have been reported in the literature about the design, mathematical modeling and
stable control of inverted pendulum by utilizing different control approaches. Model-based control
techniques have been used frequently but the fuzzy and non-model-based approaches have been
utilized too. Newton’s laws or energy balance approaches have been used to formulate the dynamic
model [13–15]. The fuzzy cascade control based on Hierarchical Fair Competition-based Genetic
Algorithms has been used in [16]. It consists of two fuzzy controllers which have been placed in a
cascade manner and their parameters have been optimized using the genetic algorithm. The inner
loop controls the position of the rotating arm while the outer loop provides the appropriate input to
the inner loop due to a change in the angle of the vertical arm. Simulation has been performed and
the results have been validated on the real hardware. Counter based approach has been used to design
a swing-up controller while pole placement with an integrator has been used to stabilize the vertical
arm in [17]. The study shows a settling time of 4.5 s for the swing-up controller. Similarly, stabilization
of the vertical arm has been shown through simulation. The actual implementation over the hardware
has not been reported.

Swing up and vertical stabilization have been achieved in [18] through the energy-based method.
H2/H∞ controller has been used to reduce oscillations and stabilization of the system. Lesser oscilla-
tions have been observed with the proposed controller as compared to the state feedback controller.
The only drawback is that the control signal is not optimal and requires a higher value for smaller
oscillations. In [19], Kharitonov polynomial has been formed with a PI controller. Routh Hurwitz
criteria have been utilized to design a stable controller and stability has been analyzed by using the
Nyquist plot. A swing-up controller has been designed in [20]. It is based on energy control and
feedback linearization. Simulation has been performed to show the effectiveness of the proposed
approach. The value of gain has been associated with energy convergence to zero. The higher gain
means the faster convergence. Another control approach has been reported in [21]. It consists of a
backstepping controller for swing-up and linear state feedback controllers for stabilization. Quadratic
Lyapunov approach and Sylvester’s criterion, have been used to determine a sufficient stability margin
around the equilibrium point. A comparison has been done between the proposed approach and the
classical scheme and results have been evaluated in terms of percentage to show the effectiveness of
the proposed approach [21].

Mathematical modeling and simulation of complex and multivariable systems is an active field of
research to find an optimal solution through the design and development of new algorithms. It is a
cost-effective process that provides an insight into the robustness and suitability of an algorithm for a
particular problem to be solved. It sheds light on the possible outcomes and helps in analysis through
variation of system parameters [22–37]. Therefore, it was necessary to develop a complete model of
the rotary inverted pendulum, its parameters estimation and testing over real hardware to validate
the results found in the simulation. To the best of our knowledge, no such design of controller with
linearization and analysis has been done so far. This paper describes the two-link inverted pendulum.
In the proposed research work, the following are the key developments contributions:

• To design the controller, complete mathematical modeling has been done using the Newton-
Euler, Lagrange approach

• The non-linear model has been linearized around a working point
• Feedback gains of linear quadratic regulator (LQR) controller have been evaluated using

MATLAB (2018a, MathWorks, MA, USA)
• The designed controller performance has been tested in a simulation environment as well as

it has been implemented over an inverted pendulum. It shows that the controller keeps the
pendulum in the upright position and rejects the disturbances
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The paper has been organized as follows. Section I is Introduction. In Section II, mathematical
modeling has been developed and linearization has been done around the working point. Simulation
results have been presented in Section III. Implementation over a real rotary inverted pendulum has
been done in Section IV. Section V has the conclusion and future work.

2 System Modeling

A free-body diagram of the pendulum with reference frames is shown in Fig. 1. It is vivid from
Fig. 1, that the horizontal link having a length r is rotating at an angle θ and the vertical arm having a
length L with mass m swings at an angle α. Reference frames are attached to moving links to calculate
the position vector with respect to a fixed frame. Tab. 1 shows the symbols used in the derivation of
system mathematical modeling.

Figure 1: Free body diagram of the pendulum with reference frames

Table 1: List of symbols used in system modeling

Symbols Description

L Length to pendulum’s center of mass
m Mass of pendulum arm
r Rotating arm length
θ Servo load gear angle (in radians)
α Pendulum arm deflection (in radians)
h Distance of pendulum center of mass from the ground
Jeq Moment of inertia of motor, gear and arm

2.1 System Model Development

The potential energy (PE) Epot of the inverted pendulum is given by:

Epot = mgL cos α (1)
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where m denotes the mass of the pendulum arm, g is the force of gravity, L is the length of the
pendulum’s center of mass and α represents the deflection of the pendulum arm. The kinetic energy
(KE) Ekin of the inverted pendulum is given by:

Ekin = mv2

2
+ Jeqθ̇

2

2
(2)

where v denotes the velocity of mass m, Jeq is the inertia of the pendulum and θ̇ denotes the angular
velocity of the horizontal link. In order to evaluate v, a position vector p of mass must be defined as:

p =
⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎤
⎦

⎛
⎝

⎡
⎣r

0
0

⎤
⎦ +

⎡
⎣1 0 0

0 cosα sinα

0 −sinα cosα

⎤
⎦

⎡
⎣0

0
−L

⎤
⎦

⎞
⎠ (3)

p =
⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣cosθ −sinθ 0

sinθ cosθ 0
0 0 1

⎤
⎦

⎡
⎣r

−Lsinα

−Lcosα

⎤
⎦ (4)

p =
⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣rcosθ + Lsinθsinα

rsinθ + Lcosθsinα

−Lcosα

⎤
⎦ (5)

where r denotes the length of the horizontal link. To evaluate velocity v, we need to differentiate the
position vector p of m as:

v = p =
⎡
⎣ẋ

ẏ
ż

⎤
⎦ =

⎡
⎣−rsinθ θ̇ + Lcosθsinαθ̇ + Lsinθcosαα̇

−rcosθ θ̇ + Lsinθsinαθ̇ − Lcosθcosαα̇

−Lsinαα̇

⎤
⎦ (6)

v2 = ẋ2 + ẏ2 + ż2 = (−rsinθ θ̇ + Lcosθsinαθ̇ + Lsinθcosαα̇)
2 + (−rcosθ θ̇ + Lsinθsinαθ̇

− Lcosθcosαα̇)2 + (−Lsinαα̇)
2

(7)

v2 = r2θ̇ 2 + L2sin2αθ̇ 2 + L2cos2αα̇2 − 2rLcosαθ̇α̇ + L2sin2αα̇2 (8)

v2 = r2θ̇ 2 + L2sin2αθ̇ 2 + L2α̇2 − 2rLcosαθ̇α̇ (9)

Substituting Eq. (9) in Eq. (2), we get:

Ekin = 1
2

mr2θ̇ 2 + 1
2

mL2 sin2
αθ̇ 2 + 1

2
mL2α̇2 − mrL cos αθ̇α̇ + Jeqθ̇

2

2
(10)

The Lagrangian LLagr is given by:

LLagr = Ekin − Epot (11)

LLagr = 1
2

mr2θ̇ 2 + 1
2

mL2 sin2
(α)θ̇ 2 + 1

2
mL2α̇2 − mrl cos αθ̇α̇ + 1

2
Jeqθ̇

2 − mgL cos α (12)

The states of the system (i.e., q ∈ (q1, q2)) are given by:

q =
[
θ

α

]
(13)
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where the working points (q1, q2) are given by:

q
1
=

[
θ◦
0

]
, q

2
=

[
θ◦
π

]
(14)

Taking the differential of Eq. (12) with respect to θ̇ to get:
δ

δθ̇
[LLagr] = mr2θ̇ + mL2 sin2

αθ̇ − mrL cos αα̇ + Jeqθ̇ (15)

Now taking d/dt of Eq. (15) to get:
d
dt

(
δ

δθ̇

[
LLagr

]) = mr2θ̈ + 2mL2 sin α cos αθ̇α̇ + mL2 sin2
αθ̈ + mrL sin αα̇2 − mrL cos αα̈ + Jeqθ̈ (16)

Taking the differential of Eq. (12) with respect to θ to get:
δ

δθ
[LLagr] = 0 (17)

where:
d
dt

(
δ

δθ̇

[
LLagr

]) − δ

δθ
[LLagr] = T (18)

where T denotes the torque. By inserting Eq. (16) and Eq. (17) in Eq. (18) to get:

mr2θ̈ + 2mL2 sin α cos αθ̇α̇ + mL2 sin2
αθ̈ + mrL sin αα̇2 − mrL cos αα̈ + Jeqθ̈ = T (19)

Now differentiating Eq. (12) with respect to α and α̇ respectively to get:
δ

δα
[LLagr] = mL2 sin α cos αθ̇ 2 + mrL sin αθ̇α̇ + mgL sin α (20)

δ

δα̇
[LLagr] = mL2α̇ − mrL cos αθ̇ (21)

Now taking d/dt of Eq. (21) to get:
d
dt

(
δ

δα̇
[LLagr]

)
= mL2α̈ + mrL sin αθ̇α̇ − mrL cos αθ̈ (22)

where:
d
dt

(
δ

δα̇
[LLagr]

)
− δ

δα
[LLagr] = 0 (23)

Now simplify Eq. (23) to get:

mL2α̈ − mrL cos αθ̈ − mL2 sin α cos αθ̇ 2 − mgL sin α = 0 (24)

Finally, we get two equations (i.e. Eq. (25) and Eq. (26)) of the system as under:

r2θ̈ + 2L2 sin α cos αθ̇α̇ + L2 sin2
αθ̈ + rL sin αα̇2 − rL cos αα̈ + Jeq

m
θ̈ = T

m
(25)

Lα̈ − r cos αθ̈ − L sin α cos αθ̇ 2 − g sin α = 0 (26)

From Eq. (26), the value of α̈ is obtained as:

α̈ = r
L

cos αθ̈ + sin α cos αθ̇ 2 + g
L

sin α (27)
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Substituting the value of α̈ from Eq. (27) in Eq. (25)

r2θ̈ + 2L2 sin α cos αθ̇α̇ + L2 sin2
αθ̈ + rL sin αα̇2 − r2 cos2 αθ̈ − rL sin α cos2 αθ̇ 2

− rg cos α sin α + Jeq

m
θ̈ = T

m
(28)

Now simplifying the Eq. (28):

θ̈
[
sin2

α(L2 + r2) + Jeq

m

] + 2L2 sin α cos αθ̇α̇ + rL sin αα̇2 − rL sin α cos2 αθ̇ 2 − rg cos α sin α = T
m

(29)

θ̈ = 1

sin2
α.(L2 + r2) + Jeq

m

[ T
m

− 2L2 sin α cos αθ̇α̇−rL sin αα̇2 + rL sin α cos2 αθ̇ 2 + rg cos α sin α] (30)

Substituting the value θ̈ in Eq. (27):

α̈ =
(

r cos α

L
[
sin2

α(L2 + r2) + Jeq

m

]
)

[
T
m

− 2L2 sin α cos αθ̇α̇ − rL sin αα̇2 + rL sin α cos2 αθ̇ 2

+ rg cos α sin α] + sin α cos αθ̇ 2 + g
L

sin α (31)

2.2 System Linearization

To design the controller, mathematical modeling has been done by employing the Newton-Euler,
Lagrange method. The resulting model is nonlinear so linearization is required, which has been done
around a working point. Following are the assumptions from Eqs. (30) and (31).

θ̈ = f1 =
(

1

sin2
α(L2 + r2) + Jeq

m

)
[
T
m

− L2 sin 2αθ̇α̇ − rL sin αα̇2 + rL sin α cos2 αθ̇ 2+

1
2

rg cos α sin 2α]

(32)

α̈ = f2 =
⎛
⎜⎝ r cos α

L sin2
α(L2 + r2) + Jeq

m

⎞
⎟⎠ [

T
m

− L2 sin 2αθ̇α̇ − rL sin αα̇2 + rL sin α cos2 αθ̇ 2+

1
2

rg sin 2α] + 1
2

sin 2αθ̇ 2 + g
L

sin α

(33)

The linear system can be expressed by:

ẋ = Ax + Bu, y = Cx + Du (34)

For the nonlinear system, the linearized system looks as:

⎡
⎢⎢⎣

θ̇

θ̈

α̇

α̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
δf1

δθ x=xo

δf1

δθ̇ x=xo

δf1

δα x=xo

δf1

δα̇ x=xo

0 0 0 1
δf2

δθ x=xo

δf2

δθ̇ x=xo

δf2

δα x=xo

δf2

δα̇ x=xo

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

θ

θ̇

α

α̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣

0
δf1

δT x=xo

0
δf2

δT x=xo

⎤
⎥⎥⎥⎥⎥⎥⎦

T (35)
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[
y1

y2

]
=

[
1 0 0 0
0 0 1 0

] ⎡
⎢⎢⎣

θ

θ̇

α

α̇

⎤
⎥⎥⎦ (36)

The working point is given by:

xo =

⎡
⎢⎢⎣

θo

0
0
0

⎤
⎥⎥⎦ (37)

δ

δθ
[f1] = 0 (38)

δ

δθ x=xo

[f1] = 0 (39)

δ

δθ̇
[f1] =

(
1

sin2
α(L2 + r2) + Jeq

m

)
[−L2 sin 2αα̇+2rL sin α cos2 αθ̇ ] (40)

δ

δθ̇ x=xo

[f1] = 0 (41)

δ

δα
[f1] =

(
−2 sin α cos α(L2 + r2)[
sin2

α(L2 + r2) + Jeq

m

]2

)
[
T
m

− L2 sin 2αθ̇α̇ − rL sin αα̇2 + rL sin α cos2 αθ̇ 2 + 1
2

rg sin 2α]

+
(

1

sin2
α(L2 + r2) + Jeq

m

)
[−2L2 cos 2αθ̇α̇ − rL cos αα̇2 + rL cos3 αθ̇ 2 − 2rL sin2

α cos αθ̇ 2

+ rg cos 2α] (42)

δ

δα x=xo

[f1] = mrg
Jeq

(43)

δ

δα̇
[f1] =

(
1

sin2
α(L2 + r2) + Jeq

m

)
[−L2 sin 2αθ̇ − 2rL sin αα̇] (44)

δ

δα̇ x=xo

[f1] = 0 (45)

δ

δT
[f1] =

(
1

sin2
α(L2 + r2) + Jeq

m

)
1
m

(46)

δ

δT x=xo

[f1] = 1
Jeq

(47)

δ

δθ
[f2] = 0 (48)



2904 CMC, 2022, vol.73, no.2

δ

δθ x=xo

[f2] = 0 (49)

δ

δθ̇
[f2] =

(
r cos α

L
[
sin2

α(L2 + r2) + Jeq

m

]
)

[−L2 sin 2αα̇+2rL sin α cos2 αθ̇ ] (50)

δ

δθ̇ x[f2]=xo

= 0 (51)

δ

δα
[f2] =

(
−Lr sin α(sin2

α(L2 + r2) + Jeq

m
)[

L(sin2
α(L2 + r2) + Jeq

m
)
]2

)
−

(
2Lr sin α cos2 α(L2 + r2)[
L(sin2

α(L2 + r2) + Jeq

m
)
]2

)

×
[

T
m

− L2sin2αθ̇α̇ − rLsinαα̇2 + rLsinαcos2αθ̇ 2 + 1
2

rgsin2α

]

+
(

r cos α

L(sin2
α(L2 + r2) + Jeq

m
)

)
[−2L2cos2αθ̇ ˙α−rLcosαα̇2 + rLcos3αθ̇ 2 − 2rLsin2αcosαθ̇ 2

+ rgcos2α] + cos 2αθ̇ 2 + g
L

cos α (52)

δ

δα x=xo

[f2] = mr2g
JeqL

+ g
L

(53)

δ

δα̇
[f2] =

(
r cos α

L
[
sin2

α(L2 + r2) + Jeq

m

]
) [−L2 sin 2αθ̇ − 2rL sin αα̇

]
(54)

δ

δα̇ x=xo

[f2] = 0 (55)

δ

δT
[f2] =

(
r cos α

L
[
sin2

α(L2 + r2) + Jeq

m

]
)

1
m

(56)

δ

δT x=xo

[f2] = r
LJeq

(57)

The linearized system is given by:⎡
⎢⎢⎣

θ̇

θ̈

α̇

α̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 mrg

Jeq
0

0 0 0 1

0 0 g

L

(
1 + mr2

Jeq

)
0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θ

θ̇

α

α̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
1

Jeq

0
r

LJeq

⎤
⎥⎥⎦ .T (58)

[
y1

y2

]
=

[
1 0 0 0
0 0 1 0

] ⎡
⎢⎢⎣

θ

θ̇

α

α̇

⎤
⎥⎥⎦ (59)
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The motor torque equation is given by:

T = Tgear − Beqθ̇ = KtKg

Rm

ηmηg(U − KmKgθ̇ ) − Beqθ̇ = KtKg

Rm

ηmηgU − θ̇ (
KtK2

g Km

Rm

ηmηg + Beq) (60)

where U is the input voltage and is a control signal. Substitute the value of T in the state-space model
and we get:⎡
⎢⎢⎣

θ̇

θ̈

α̇

α̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 mrg

Jeq
0

0 0 0 1

0 0 g

L

(
1 + mr2

Jeq

)
0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θ

θ̇

α

α̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
KtKgηmηg

RmJeq

0
rKtKgηmηg

LRmJeq

⎤
⎥⎥⎦ U −

⎡
⎢⎢⎣

0
a
0
b

⎤
⎥⎥⎦ .θ̇ (61)

where:

a = − 1
Jeq

(
KtK2

g Kmηmηg

Rm

+ Beq

)

b = − r
LJeq

(
KtK2

g Kmηmηg

Rm

+ Beq

)
⎡
⎢⎢⎣

θ̇

θ̈

α̇

α̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 a m.r.g

Jeq
0

0 0 0 1

0 b g

L

(
1 + mr2

Jeq

)
0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

θ

θ̇

α

α̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
KtKgηmηg

RmJeq

0
rKtKgηmηg

LRmJeq

⎤
⎥⎥⎦ U (62)

where, Beq denotes the viscous damping of the motor, ηg is the efficiency of the gear, ηm represents the
efficiency of the motor, Rm is the resistance of the motor, Kt is the torque constant of the motor, Kg is
the gear ratio, Km is the damping constant, Kenc is the encoder constant and U is the control voltage.

3 Controller Design and Parameters Estimation

MATLAB (2018a, MathWorks, MA, USA) has been used to evaluate the parameters of the LQR
controller. Matrices given in (A) and (B) have been evaluated using the system setup parameters and
initial conditions given in Tab. 2. Similarly, the matrix given in (C) has been evaluated using the same
set of parameters and MATLAB LQR function.

Table 2: List of system setup parameters

Parameters Parameters description Values

L Length of pendulum’s center of mass in meter 0.1675
m Mass of pendulum in Kg 0.125
r Length of rotating arm in meter 0.158
Jeq Moment of inertia of motor, gear and arm 0.0035842
Beq Viscous damping of the motor 0.004
ηg Efficiency of the gear 0.9
ηm Efficiency of the motor 0.69
Rm Resistance of the motor 2.6

(Continued)
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Table 2: Continued
Parameters Parameters description Values

Kt Torque constant of the motor 0.007683
Kg Gear ratio 70
Km Damping constant 0.0076779
Kenc Encoder constant 0.001534

A =

⎡
⎢⎢⎣

0 1 0 0
0 −20.38 54.06 0
0 0 0 1
0 −19.22 109.56 0

⎤
⎥⎥⎦ (A)

B =

⎡
⎢⎢⎣

0
35.84
0
33.81

⎤
⎥⎥⎦ (B)

K = [−1 −2.02 27.68 3.56
]

(C)

Fig. 2 shows the linearized model of inverted pendulum with LQR controller simulated in
MATLAB Simulink module. In order to analyze performance and the stability of the controller, a
horizontal link having an angle theta (θ ) has been rotated at an angle of 5.7 degrees (i.e., 0.1 radians)
after an interval of one second. The vertical arm swings at a certain angle and again come back to
zero degrees and stays in an upright position while the horizontal link moves from zero to 5.7 degrees
position. The simulation result is showing the stable behavior of the system as shown in Fig. 3. This
proves that the system is stable and the controller keeps the pendulum in a stable upright position.

Figure 2: Simulation of the linear model with the controller in Simulink
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Figure 3: Simulation results of the stability analysis obtained using the MATLAB Simulink Model

4 Hardware Implementation and Validation

Hardware has been set up as shown in Fig. 4. It depicts the Rotary inverted pendulum module
coupled to the Quanser SRV02 plant in the correct configuration. Quanser SRV02 has a direct current
(DC) motor enclosed in an aluminum frame and is equipped with a planetary gearbox. The module
is attached to the SRV02 load gear and the pendulum arm is attached to the module body. In order
to keep the pendulum stable and upright, the LQR has been designed and implemented. LQR is an
excellent approach that provides optimal feedback gains to make a closed-loop system robust and
stable. It also provides a local approximation to develop optimal control for nonlinear systems [38].

The designed controller has been implemented over the real inverted pendulum. The plots of
variation in angles both in simulation and the real environment with the passage of time have been
shown in Figs. 5 and 6. The angle in degrees is along the vertical axis versus time in seconds is along
the horizontal axis as shown in Figs. 5 and 6. Fig. 6 shows the variation in the horizontal link’s angle
θ and Fig. 5, shows the corresponding adjustment in the vertical arms’ angle α. The Blue dotted line
represents the plot of the measured value and the green line represents the simulation results. It is
clear from both plots that the actual measured values obtained from the inverted pendulum are very
close to the simulated values. The presentation of the results validates the proposed controller. The
horizontal link has been rotated in both directions during the simulation and real experimentation as
shown in Fig. 5. The controller has adjusted the vertical angle and rejected the disturbances and kept
the pendulum in a stable upright position as shown in Fig. 6. The pendulum vertical arm is swinging
with a very small range showing stable behavior.
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Figure 4: Hardware implementation of the rotary inverted pendulum

Figure 5: Variation in vertical angle alpha (simulation and measured results)



CMC, 2022, vol.73, no.2 2909

Figure 6: Variation in horizontal angle theta (simulation and measured results)

5 Conclusion and Future Work

In current research work, a state-feedback controller for the rotary inverted pendulum utilizing the
LQR techniques has been designed. Mathematical modeling, linearization, simulation and validation
of the designed controller over real hardware has been carried out. It is evident from the simulation
and measured results that the designed controller is performing well and is robust enough to keep the
pendulum in an upright stable position. For future work, a non-model-based controller or a nonlinear
controller can be designed and evaluated and performance comparison can be made.

Acknowledgement: Authors would like to thank Christopher Hille for the thorough discussion.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. R. Dolatabad, A. Pasharavesh and A. A. A. Khayyat, “Analytical and experimental analyses of

nonlinear vibrations in a rotary inverted pendulum,” Nonlinear Dynamics, vol. 107, no. 3, pp. 1887–1902,
2022.

[2] O. Mofid, K. A. Alattas, S. Mobayen, M. T. Vu and Y. Bouteraa, “Adaptive finite-time command-
filtered backstepping sliding mode control for stabilization of a disturbed rotary-inverted-pendulum with
experimental validation,” Journal of Vibration and Control, vol. 26, no. 1, pp. 107754632110640, 2022.

[3] N. P. Nguyen, H. Oh, Y. Kim and J. Moon, “A nonlinear hybrid controller for swinging-up and stabilizing
the rotary inverted pendulum,” Nonlinear Dynamics, vol. 104, no. 2, pp. 1117–1137, 2021.



2910 CMC, 2022, vol.73, no.2

[4] A. de Carvalho, J. F. Justo, B. A. Angélico, A. M. de Oliveira and J. I. da Silva Filho, “Rotary inverted
pendulum identification for control by paraconsistent neural networ,” IEEE Access, vol. 9, pp. 74155–
74167, 2021.

[5] H. V. Nghi, D. P. Nhien, N. T. M. Nguyet, N. T. Duc, N. P. Luu et al., “A LQR-based neural-network
controller for fast stabilizing rotary inverted pendulum,” in IEEE Int. Conf. on System Science and
Engineering (ICSSE), Ho Chi Minh City, Vietnam, pp. 19–22, 2021.

[6] Y. Dai, K. Lee and S. Lee, “A real-time HIL control system on rotary inverted pendulum hardware platform
based on double deep Q-network,” Measurement and Control, vol. 54, no. 3–4, pp. 417–428, 2021.

[7] H.-R. Li, Z.-Y. Nie, E.-Z. Zhu, W.-X. He and Y.-M. Zheng, “Double loop DR-PID control of a rotary
inverted pendulum,” in IEEE Int. Conf. on Networking, Sensing and Control (ICNSC), Xiamen, China, pp.
1–5, 2021.

[8] Z. S. Mahmood, I. B. Kadhim and A. N. Nasret, “Design of rotary inverted pendulum swinging-up and
stabilizing,” Periodicals of Engineering and Natural Sciences, vol. 9, no. 4, pp. 913–920, 2021.

[9] J. A. Onwuzuruike and S. U. Hussein, “Bond graph modelling of a rotary inverted pendulum on a wheeled
cart,” International Journal of Modern Education & Computer Science, vol. 13, no. 6, pp. 25–29, 2021.

[10] A. Lal, A. Kunjumuhammed, J. Tomy, G. Urmila, M. Sivadas et al., “Stabilization of rotary inverted
pendulum using PID controller,” in IEEE 8th Int. Conf. on Smart Computing and Communications
(ICSCC), Kochi, Kerala, India, pp. 376–380, 2021.

[11] I. Chawla and A. Singla, “Real-time stabilization control of a rotary inverted pendulum using LQR-based
sliding mode controller,” Arabian Journal for Science and Engineering, vol. 46, no. 3, pp. 2589–2596, 2021.

[12] M. F. Hamza, H. J. Yap, I. A. Choudhury, A. I. Isa, A. Y. Zimit et al., “Current development on using
rotary inverted pendulum as a benchmark for testing linear and nonlinear control algorithms,” Mechanical
Systems and Signal Processing, vol. 116, pp. 347–369, 2019.

[13] O. Saleem and K. M. Hasan, “Robust stabilisation of rotary inverted pendulum using intelligently optimised
nonlinear self-adaptive dual fractional-order PD controllers,” International Journal of Systems Science, vol.
50, no. 7, pp. 1399–1414, 2019.

[14] I. Chawla and A. Singla, “Real-time control of a rotary inverted pendulum using robust LQR-based ANFIS
controller,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 19, no. 3–4, pp. 379–
389, 2018.

[15] C. Wang, X. Liu, H. Shi, R. Xin and X. Xu, “Design and implementation of fractional PID controller for
rotary inverted pendulum,” in IEEE Chinese Control and Decision Conf. (CCDC), Shenyang, China, pp.
6730–6735, 2018.

[16] S.-K. Oh, S.-H. Jung and W. Pedrycz, “Design of optimized fuzzy cascade controllers by means of
hierarchical fair competition-based genetic algorithms,” Expert Systems with Applications, vol. 36, no. 9,
pp. 11641–11651, 2009.

[17] V. Nath and R. Mitra, “Swing-up and control of rotary inverted pendulum using pole placement with
integrator,” in IEEE Recent Advances in Engineering and Computational Sciences (RAECS), Chandigarh,
India, IEEE, 1–5, 2014.

[18] A. Al-Jodah, H. Zargarzadeh and M. K. Abbas, “Experimental verification and comparison of different
stabilizing controllers for a rotary inverted pendulum,” in IEEE Int. Conf. on Control System, Computing
and Engineering, Penang, Malaysia, pp. 417–423, 2013.

[19] J. George, B. Krishna, V. George, C. Shreesha and M. K. Menon, “Stability analysis and design of pi
controller using kharitnov polynomial for rotary inverted pendulum,” Sensors & Transducers Journal, vol.
138, no. 3, pp. 104–113, 2012.

[20] K. Chou and Y. Chen, “Energy based swing-up controller design using phase plane method for rotary
inverted pendulum,” in 13th IEEE Int. Conf. on Control Automation Robotics & Vision (ICARCV),
Singapore, pp. 975–979, 2014.

[21] A. Tiga, C. Ghorbel and N. B. Braiek, “Nonlinear/linear switched control of inverted pendulum system:
stability analysis and real-time implementation,” Mathematical Problems in Engineering, vol. 2019, no. 2,
pp. 1–10, 2019.



CMC, 2022, vol.73, no.2 2911

[22] X. R. Zhang, W. F. Zhang, W. Sun, X. M. Sun and S. K. Jha, “A robust 3-D medical watermarking based
on wavelet transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp.
1043–1056, 2022.

[23] X. R. Zhang, X. Sun, X. M. Sun, W. Sun and S. K. Jha, “Robust reversible audio watermarking scheme
for telemedicine and privacy protection,” Computers, Materials & Continua, vol. 71, no. 2, pp. 3035–3050,
2022.

[24] A. M. S. Mahdy, K. Lotfy, W. Hassan and A. A. El-Bary, “Analytical solution of magneto-photothermal
theory during variable thermal conductivity of a semiconductor material due to pulse heat flux and
volumetric heat source,” Waves in Random and Complex Media, vol. 31, no. 6, pp. 2040–2057, 2021.

[25] A. K. Khamis, K. Lotfy, A. A. El-Bary, A. M. Mahdy and M. H. Ahmed, “Thermal-piezoelectric problem
of a semiconductor medium during photo-thermal excitation,” Waves in Random and Complex Media, vol.
31, no. 6, pp. 2499–2513, 2021.

[26] A. M. S. Mahdy, K. Lotfy, A. El-Bary and H. H. Sarhan, “Effect of rotation and magnetic field on a
numerical-refined heat conduction in a semiconductor medium during photo-excitation processes,” The
European Physical Journal Plus, vol. 136, no. 5, pp. 1–17, 2021.

[27] A. M. S. Mahdy, K. Lotfy, A. El-Bary and I. M. Tayel, “Variable thermal conductivity and hyperbolic
two-temperature theory during magneto-photothermal theory of semi-conductor induced by laser pulses,”
The European Physical Journal Plus, vol. 136, no. 6, pp. (1–21), 2021.

[28] A. M. S. Mahdy and E. S. M. Youssef, “Numerical solution technique for solving isoperimetric variational
problems,” International Journal of Modern Physics C, vol. 32, no. 1, pp. 2150002, 2021.

[29] Y. A. Amer, A. M. S. Mahdy, T. T. Shwayaa and E. S. M. Youssef, “Laplace transform method for solving
nonlinear biochemical reaction model and nonlinear Emden-Fowler system,” Journal of Engineering and
Applied Sciences, vol. 13, no. 17, pp. 7388–7394, 2018.

[30] Y. A. Amer, A. M. S. Mahdy and H. A. R. Namoos, “Reduced differential transform method for solving
fractional-order biological systems,” Journal of Engineering and Applied Sciences, vol. 13, no. 20, pp. 8489–
8493, 2018.

[31] A. M. S. Mahdy, “Numerical solutions for solving model time-fractional Fokker–Planck equation,”
Numerical Methods for Partial Differential Equations, vol. 37, no. 2, pp. 1120–1135, 2021.

[32] M. M. Khader, N. H. Swetlam and A. M. S. Mahdy, “The chebyshev collection method for solving
fractional order klein-gordon equation,” WSEAS Transactions on Mathematics, vol. 13, pp. 31–38, 2014.

[33] M. I. A. Othman, A. M. S. Mahdy and R. M. Farouk, “Numerical solution of 12th order boundary value
problems by using homotopy perturbation method,” Journal of Mathematics and Computer Science, vol. 1,
no. 1, pp. 14–27, 2010.

[34] A. M. S. Mahdy, Y. A. E. Amer, M. S. Mohamed and E. Sobhy, “General fractional financial models of
awareness with Caputo-Fabrizio derivative,” Advances in Mechanical Engineering, vol. 12, no. 11, pp. 1–9,
2020.

[35] A. M. S. Mahdy, K. A. Gepreel, K. Lotfy and A. A. El-Bary, “A numerical method for solving the Rubella
ailment disease model,” International Journal of Modern Physics C, vol. 32, no. 7, pp. 1–15, 2021.

[36] A. M. S. Mahdy, M. S. Mohamed, K. Lotfy, M. Alhazmi, A. A. El-Bary et al., “Numerical solution and
dynamical behaviors for solving fractional nonlinear rubella ailment disease model,” Results in Physics,
vol. 24, no. 104091, pp. 1–10, 2021.

[37] A. M. S. Mahdy, M. Higazy and M. S. Mohamed, “Optimal and memristor-based control of a nonlinear
fractional tumor-immune model,” Computers, Materials & Continua, vol. 67, no. 3, pp. 3463–3486, 2021.

[38] L. Wei and W. Yao, “Design and implement of LQR controller for a self-balancing unicycle robot,” in IEEE
Int. Conf. on Information and Automation, Lijiang, China, pp. 169–173, 2015.


	Design and Implementation of a State-feedback Controller Using LQR Technique
	1 Introduction
	2 System Modeling
	3 Controller Design and Parameters Estimation
	4 Hardware Implementation and Validation
	5 Conclusion and Future Work


