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Abstract: Distributed denial-of-service (DDoS) attacks are designed to inter-
rupt network services such as email servers and webpages in traditional
computer networks. Furthermore, the enormous number of connected devices
makes it difficult to operate such a network effectively. Software defined
networks (SDN) are networks that are managed through a centralized control
system, according to researchers. This controller is the brain of any SDN,
composing the forwarding table of all data plane network switches. Despite
the advantages of SDN controllers, DDoS attacks are easier to perpetrate
than on traditional networks. Because the controller is a single point of
failure, if it fails, the entire network will fail. This paper offers a Hybrid
Deep Learning Intrusion Detection and Prevention (HDLIDP) framework,
which blends signature-based and deep learning neural networks to detect
and prevent intrusions. This framework improves detection accuracy while
addressing all of the aforementioned problems. To validate the framework,
experiments are done on both traditional and SDN datasets; the findings
demonstrate a significant improvement in classification accuracy.

Keywords: Software defined networks (SDN); distributed denial of service
attack (DDoS); signature-based detection; whale optimization algorism
(WOA); deep learning neural network classifier

1 Introduction

Nowadays, the increasing use of Internet services like, data centers, electronic trade and cloud
computing [1,2], causes computer network’s size increases drastically and becomes hardly managed.
Software defined networks (SDN) with its centralized management [3,4], dynamic and programmable
architecture becomes more suitable for huge networks rather than using traditional computer net-
works. The general working strategy of Distributed Denial of Service (DDoS) attacks depends on
sending an enormous number of packets to network resources to hamper or even block the reachability
of legitimate users [5,6]. However, by deeply studying the structure of both computer networks
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architecture (traditional and SDN), DDoS attacks specific to SDN characterized by some points.
First, SDN attacks aim to exhaust only the network’s controller, while traditional networks have many
points where attacks can be launched [7]. Second, the attacking packets usually pretend to have fake
destination IP addresses, but in traditional networks, the destination IP addresses should be the IP of
the targeted server to down [7].

Most of the detection and defense techniques used with SDN are literally a transplanting of tra-
ditional network techniques without taking in account the own characteristics of SDN environments.
The processes of attack detection and defense are implemented on the SDN controller which increases
computation overhead on the processor as well as the communication between SDN controller and
switches (south bound) [7]. Several optimization techniques have been deployed to overcome these
problems, as Genetic Algorithm (GA) [8], Firefly Algorithm (FF) [9], Particle Swarm Optimization
(PSO) [10] and Whale Optimization Algorithm (WOA) [11]. Many of them have their limitations; such
GA is more complex, depends on the initial population, and may fail to parameter convergence [8].
PSO has a poor control on discrete optimization problems and easy falls in local optima [10]. Due to
these limitations, many hybridized and improved techniques have been applied to the original versions
of Machine Learning (ML) to enhance their performance.

This paper deploys the detection of suspicious traffic at the data plane (switches) to alleviate both
processing and communication overhead. The process of classifying suspicious packets executed at
the controller plane is carried out by two techniques, signature-based [5,12] and deep learning-based
to improve the accuracy and reduce the time of the classification process [13–15]. In signature-based
technique every packet passes through the network have a unique pattern (signature) that is composed
by intermediate routers while traversing through the network [16]. Signatures of malicious packets are
stored in an attack signatures database, to be used later for identifying any attack packet that has a
signature included in it. This technique has a high accuracy and a low false negative rate, but can’t
detect new (day zero) attacking packets that are not involved in the attack signatures database [17].

An optimized Neural Network (NN) with a set of optimal extracted features is used to classify
and detect new offensive packets as part of the proposed deep learning technique. Combining both
techniques allows the network to learn new attack patterns and append them to the attack signature
database automatically for future use [13]. The contribution of this paper is as follows:

• Developing DDoS attack detection system that uses both signature-based and deep learning
techniques to enhance the detection accuracy in SDN networks.

• Using the Neural Network to select the effective traffic feature set and to tune it (number of
hidden layers and number of neurons in each layer), for decreasing the detection time and
increasing the accuracy of the detection process.

• Validating the proposed framework using both traditional and SDN datasets to ensure it can
handle both environments.

The remainder of this paper is organized as follow: the next section gives an overview of the related
work, Section 3 describes the proposed framework in detail, Section 4 presents the experimental results
and performance evaluation and finally Section 5 concludes the paper.

2 Related Works

Different detection and defense approaches are implemented by research community of defense
since the first reported DDoS attacks in 1999 [18]. This section discusses two integrated categories of
anomaly-based detection techniques, statistical approaches and artificial intelligence approaches.
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2.1 Statistical Detection Approaches

Also called entropy-based approaches, entropy is the measure of the randomness in a dataset.
Since every feature of normal network traffic has a special distribution pattern, for example a balance
between the count of source and destination IP addresses in normal flow. This entropy pattern will
deviate in attack flows since the number of destination IP addresses greatly increases than the number
of source IP addresses. Despite this approach is characterized by a fast response and a low computation
overhead of processing a large traffic volume. Its detection accuracy is greatly affected by the proper
selection of the threshold value for a certain traffic feature to reduce the ratios of false positive and
false negative.

In [19] authors proposed a hybrid system for attack detection that merges both entropy and traffic
volume characteristics, which offers good results than using each technique alone. Kalkan et al. [20]
introduced a joint entropy-based scoring system (JESS) to defend attacks in SDN environments, by
utilizing Joint entropy they can defend even unfamiliar attacks efficiently. Lima et al. [21] suggested a
system based on statistical analysis of traffic entropy in SDN environments.

Wang et al. [22] proposed a flow statistics process in SDN switches, then performed lightweight
entropy-based detection model executed in the edge switches to reduce the communication overhead
between the data plane and controller plane. Ahmed et al. [23] introduced a new structure called
application fingerprints to express packet attributes and traffic flow level statistics to differentiate
legitimate packets from attack packets. However, this approach is not proper for online systems, since
some flow attributes such total bytes, number of packets between source and destination and flow
duration cannot compute their statistics while gathering them. In [24] authors introduced new hybrid
approaches where flow level statistics or entropy based are combined with some techniques of Machine
Learning (ML) or Artificial Neural Networks (ANN) to overcome some limitations of flow statistics
approaches. The ML and ANN mechanisms will be introduced in detail in the next subsection.

2.2 Artificial Intelligence (AI) Detection Approaches

Buczak et al. [25] introduced summaries for different methods of Machine Learning (ML) and
Data Mining (DM) used for attack detection, such Support Vector Machine (SVM), k-Nearest
Neighbor (k-NN), Random Forest (RF), etc. over recent years, with the abundance of real network
traffic datasets. These methods perform better results in traffic classification field.

He et al. [26] suggested a new source side (active defense) machine learning technique instead of
defending attacks at destination side (passive defense) preventing malicious network flows from being
sent outside the attacking network. This showed a high accuracy and low false positive rates. Hoon
et al. [27] introduced the concept of dataset feature selection which reduces the feature engineering
processes and increasing classification accuracy. Few papers addressed the implementation of Deep
Learning (DL) approaches in attack detection; authors in [28] combined the entropy-based techniques
with DL methods to easily control the problem of setting accurate threshold. Conducted experiments
showed a high accuracy. Yin et al. [29] proposed a deep learning attack detection model deploying a
Recurrent Neural Network (RNN) to perform binary and multiclass classification. They compared
its performance with a set of known Machine Learning (ML) models such SVM, Random Forest
(RF) and Artificial Neural Networks (ANN). Their proposed model showed a higher performance
from point of accurate classification. Wu et al. [30] introduced a multiclass Convolutional Neural
Network (CNN) intrusion detection system, deploying CNN to select highly related features from
the massive data gathered to improve the classification accuracy and reduce computation overload.
Over traditional ML algorithms, CNN showed better performance. Kwon et al. [31] studied the
performance of three different models of CNN (shallow, moderate and deep) to check the effect of
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depth of the CNN to the detection performance. The models are verified using two datasets NSL-
KDD [32] and MAWILab [33] showing that shallow CNN model with a single convolutional layer
and single maximum pooling layer performed best.

Authors in [34] converted the suspicious traffic traces into arrays that contain flow features by
combining both CNNs and RNNs, testing their model on ISCX2012 dataset [35] showing good results
from point of reducing classification error from 7.517% to 2.103% relative to conventional machine
learning algorithms. Despite the efficiency of deep learning algorithms for detecting DDoS attacks,
they are time-consuming, resource-intensive, and require large numbers of model parameters to be
trained.

3 The Proposed Hybrid Deep Learning Intrusion Detection and Prevention (HDLIDP) Framework

Traditional networks’ routers are assigned many customary duties like determining packets routes,
assigning priorities, carrying out policies specified by the network administrator and many others, so
they cannot detect and respond to DDoS attacks automatically. By leveraging SDN architecture, these
attacks can be processed automatically and yield a fast and accurate response. Fig. 1 illustrates that.

Figure 1: Traditional vs. SDN network architectures

Figure 2: SDN three layers architecture
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Three layers SDN architecture is show in Fig. 2, the switching task is split between a data layer
and a control layer that are implemented on separate devices. The data plane is mainly responsible
for forwarding network packets, while the brain or control plane performs all intelligent tasks in the
network. In standard SDN, the control layer performs both the attack detection and defense tasks
this may increase the controller’s CPU utilization and communication workload through southbound
interface, observe hourly the traffic flowing through switches to detect the DDoS attack.

The proposed framework (HDLIDP) may help to overcome this defect. It is made up of two layers,
Data Layer Detection (DLD) and Control Layer Defense (CLD) as depicted in Fig. 3.

Figure 3: The proposed (HDLIDP) framework

3.1 Data Layer Detection (DLD)

This layer detects any suspicious flows and raises an alarm to the control layer for accurately
classifying whether it is an actual DDoS attack or legitimate burst traffic then carrying out proper
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response. This way the load on CPU Controller and the traffic overload through southbound interface
may decrease drastically, it is designed as two modules:

3.1.1 Legitimate Traffic Module

Packets in SDN arrive first at the data plane devices, these packets may be classified into four
categories: Known traffic that is already found in the switch’s forwarding table; hence it is forwarded
to its proper destination. The second type is a new legitimate traffic, when the switch does not find
matching entries in its forwarding table, and after sending a pktIN message to the controller it will
get a reply with a suitable forwarding route to be registered in its forwarding table for future use. The
other two categories occur when the switch receives a suspicious packet. Such a packet does not have
a matching entry in the forwarding table, and the controller does not able to determine its forwarding
route, due to tampering in the source and/or destination IP addresses of it. All DDoS detection systems
are concerned about the arrival rate of the last two categories of received packets (suspicious).

3.1.2 Suspicious Traffic Module

The maximum packets counter method is utilized at the data plane to calculate the suspicious
packet’s arrival rate within a predefined time window. In the framework, when a switch classifies the
received packet as a suspicious flow, the suspicious flow counter is incremented (Susp++) and its
features appended in both current interval and training datasets. Then, the value of the Susp variable
is compared with the value of predefined adaptive maximum attacking packets (Val). The detection
is in safe condition if Susp value is less than Val, so dropping this packet and processing any new
incoming one.

Otherwise, if Susp equals or exceeds the predefined value (Val), the detection system calculates
the time window, packets’ arrival rate (PR) and initializes all counters. If the packets’ arrival rate (PR)
exceeds the predefined value, a suspicious alarm is raised to the control layer.

3.2 Control Layer Defense (CLD):

This layer is composed of two modules, Signature Based Detection and Deep Learning Classifi-
cation.

3.2.1 Signature Based Detection Module

Traceback enabled routers utilize one of two techniques to insert their identification ID numbers
in the packet’s header, Deterministic Packet Marking (DPM) [36] or Probabilistic Packet Marking
(PPM) [37]. The accumulation of all IDs along the packet’s path forms what is called path’s signature.
It is used to characterize the exact route of received packet regardless of its source IP address that could
be easily forged. After isolating attacking traffic, its signature is stored in attack signature database
for future use.

3.2.2 Deep Learning Classification Module

Is the conclusive classification stage that identifies the fourth category of suspicious packets.
Because of the large-scale exploration of the search space, the simplicity of implementation, the wide
range of applications and its potential development [10], the Whale Optimization Algorithm (WOA) is
used to select the optimal set of features and to tune parameters of the classification Neural Network.

The WOA is an optimization algorithm that mimics the hunting mechanism of humpback whales
in nature. Whales prefer to hunt in a group of whales, initially every whale searches globally for a
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prey in a random direction, this process is called exploration phase, the following mathematical model
illustrates it.
�D =

∣∣∣ �C �Xrand − �X
∣∣∣ (1)

�X (t + 1) = �Xrand − �A �D (2)

where: �Xrand is a random position vector (random whale) and t indicates the current iteration.

Since the optimum position of the prey in the search space is not known previously, the group of
whales will communicate to identify the current best elected solution. The other whales will update
their direction towards the current elected whale; this step is called exploitation phase, modeled as
follows:
�X (t + 1) = �D′ebt cos (2πt) + �X∗ (t) (3)

where: �D′ =
∣∣∣ �X∗ (t) − �X(t)

∣∣∣ indicating the ith of whale the prey (best solution obtained so far), b is

constant defining the shape of legitimate spiral and t is a random number in [−1,1].

�X (t + 1) =
{ �X∗ (t) − �A �D, p < 0.5

�D′ebt cos (2πt) + �X∗ (t) , p ≥ 0.5
(4)

where: p is a random number in [0,1].

In encircling prey, after defining the best search agent, the other search agents will try to update
their positions towards the best search agent. This behavior is represented by the following equations:

�D =
∣∣∣�C. �XP (t) − �X(t)

∣∣∣ (5)

�X (t + 1) = �XP (t) − �A. �D (6)

where: �XP is the position vector of the prey, �X is the position vector of a whale and �A and �C are
coefficient vectors.

The pseudo of WOA is shown in Algorithm 1.

Algorithm 1: Pseudo code of selecting optimal set of traffic features using WOA and NN as the fitness
function
Input: The full set of network traffic features
Output: The optimal set of features
Initialize the algorithm parameters (SearchAgentsNo = 50, dim = 4, LB = 0, UB = 1023 and MaxIter
= 500) as shown in Tab. 1.
Initialize the relevant parameters of the WOA (a, A, C, I, p and the positions X of whales)
1. Each Whale has a position of 4 random values (ranging from LB to UB) each of 10 bits (= 40
bits) representing the selected set from network traffic 40 features
2. StartTime = Time( )
3. Calculate the Optimization (lowest error value) of each Whale in the population of 40 whales using
the neural network and its input as the Whale position (or selected set of features)
4. While (t < MaxIter)
5. For each Whale (from 50 Whale)
6. Update a, A, C, I and p

(Continued)
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Algorithm 1: Continued
7. If (p < 0.5)
8. If (|A| < 1)
9. Update the position of the current Whale by Eq. (6) (i.e., encircling prey)
10. Else (i.e., |A| ≥ 1)
11. Select a random search agent (X_rand)
12. Update the position of the current Whale by Eq. (2) (i.e., exploration phase)
13. End If
14. Else (i.e., p ≥ 0.5)
15. Update the position of the current Whale by Eq. (3) (i.e., exploitation phase)
16. End If
17. End For
18. Check if the position (features value > 40) of any Whale goes beyond the LB or UB and amend it
19. Calculate the optimization of each Whale using the neural network
20. Update X∗ (the set of features giving the lowest error value)
21. t = t +1
22. End While
23. Execution Time = StartTime − Time( )
24. Return X∗

Table 1: Configuration values for the WOA optimizer

Configuration Value

MaxIter 500
SearchAgentsNo 50
Dimension No. of selected features from the dataset
No. of run repetitions 20

Fig. 4 represents the four stages deployed to determine the status of the received packet. The
first two stages (searching the switch’s forwarding table and inquiring the controller to specify the
packet forwarding path) are performed by any standard SDN environment. While the other two stages
(search attack signature DB and a deep learning classification) are appended. Algorithm 2 and the logic
diagram of the received packet flow status in Fig. 4 clarify the classification process in detail.
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Figure 4: Received packet flow status

Algorithm 2: The pseudo code of the proposed framework after tuning the Neural Network
Input: received packet at the network switch.
Output: classifying packet type to correctly direct it.
1. Stage 1: Search Forwarding Table:
2. Search for the packet in the Switch forwarding table.
3. If (exist)
4. Old and legitimate packet
5. Forward it to its proper destination
6. Get a new packet to process
7. Else
8. New packet
9. Inquire: the network controller (Stage 2:) to determine its route (if possible)
10. End if
11. End Stage 1:
12.
13. Stage 2: Inquire Network Controller:

(Continued)
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Algorithm 2: Continued
14. Determine the route of the new packet (if possible)
15. If (route found)
16. New and normal packet
17. Send its route to the inquiring switch
18. The switch adds this route to its forwarding table for future use
19. Forward the received packet
20. Get a new packet to process
21. Else
22. Suspicious packet alarm
23. Search: Attack signature DB (Stage 3:) to determine if it is an attack or suspicious
24. End if
25. End Stage 2:
26.
27. Stage 3: Search attack signature DB:
28. Search the existence of the packet’s signature in the signature Database
29. If (signature exist)
30. Old and attack packet
31. Send it back to the inquiring switch to:
32. • Block it
33. • Add it to the forwarding table for future use
34. Get a new packet to process
35. Else
36. Suspicious packet trigger
37. Conduct the Deep learning NN classifier (Stage 4:) to determine if it is an attack or legitimate

burst traffic
38. End if
39. End Stage 3:
40.
41. Stage 4: Deep Learning NN Classifier:
42. Classify the new packet
43. If (legitimate burst traffic)
44. New and legitimate packet
45. Else
46. New but attack packet
47. End if
48. Send it to the inquiring switch
49. The switch adds its state (attack or legitimate) to the forwarding table for future use
50. Forward it if a legitimate packet
51. Get a new packet to process
52. End Stage 4:

4 Experiments and Evaluation

A hybrid classification algorithm composed of Whale Optimization Algorithm (WOA) in Tab. 1
and a tuned Neural Network (NN) in Tab. 2 is used in experiments. WOA is used to select the most
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effective set of features from the used datasets, whereas the tuned ANN is used to accurately classify
the newly unknown suspicious packets, reducing the computation overhead and increasing the IDS
classification accuracy.

Table 2: Parameters of the NN structure

Structure Parameters Value

No. of hidden layers 1 or 2 or 3
No. of neurons 10
Biases Random
Activation function TanH
Initial weights Default

4.1 Benchmark Dataset

The framework is evaluated using three datasets, NSL-KDD and CSE-CIC-IDS2018 are the most
traditional network’s datasets commonly used, where the third is SDN specific dataset. First, NSL-
KDD dataset contains 4,898,430 records each of 41 features. Feature no. 42 is the records’ labels, which
may be Normal or attack; attack records are categorized into 4 types DoS, Probe, R2L or U2R.

Despite its simplicity, NSL-KDD dataset is not the ideal representation of the actual network
model, so CIC-IDS2018 dataset is used to accurately evaluate any IDS since it represents real attacks.
It has 83 features, of 2,830,540 distinct records, and categorized in the label field to 15 classes.

Although the characteristics of CIC-IDS2018 dataset have some weaknesses, first with this huge
number of records (3,119,345) and 83 features each, enormous loading and processing overhead is
required. Second, it contains some missing data. The last demerit is class imbalance problem [38], in
which different attacking classes do not have equal number of instances, some are represented by a
large number (BENIGN = 2,359,087 instances) others have few number (HeartBleed = 11 instances).
So, when using this dataset for training classifiers or detectors it will make the classifiers biasing toward
the majority class [38] degrading the classifier’s accuracy with a higher false ratio. Alleviating methods
for these shortcomings will be introduced in the Data preprocessing subsection.

Since the architecture of traditional network differs from that of SDN, which results in a major
difference in the feature sets of the data gathered from both. Mininet emulator [39] software has been
used to create a realistic virtual network, 23 features in the designed SDN topology with the total
number and different categories used in following experiments.

4.2 Data Preprocessing

Network collected dataset may include some error values like duplicate, infinity, missing or
categorical data, this may cause classification problems. These error values should be eliminated or
mitigated before training and testing phase. Duplicate records should be removed, deleting records
having outlier’s values. Techniques like one-hot encoder are used to convert categorical data into
numeric values.

Feature scaling methods (Normalization and Standardization) [40]: features having values of
varying degrees of magnitude, may hurdle the performance of some machine learning algorithms
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especially those types using gradient descent as optimization techniques. So, these scaling methods
may be used to scale their values between 0 and 1, or +a and –a.

Data imbalance reduction [41]: where some features are highly underrepresented, causing the
classifier to bias towards the majority features. Many techniques are designed to handle class
imbalance problem, one of them deployed in this paper is class relabeling. By either splitting the
majority classes into more classes or merging some minority classes to form one class.

4.3 Evaluation Metrics

Evaluating the trained model’s performance can be done using the confusion matrix and advanced
evaluation metrics are shown in Fig. 5.

Confusion 
matrix

Predicted Class Advanced evaluation
metricsPositive (P) Negative (F)

A
ct

ua
l 

C
la

ss

Positive (P) True Positive (TP) False Negative (FN) Senstivity (Recall) =
TP

(TP + FN)

Negative (F) False Positive (FP) True Negative (TN) Specificity(Recall) =
TN

(TN + FP)

Precision =
TP

(TP + FP)
F1 Score = 2 ×

Precision × Recall

Precision + Recall
Accuracy =

TP + TN

(TP + FN + FP + TN)

Figure 5: Confusion matrix and evaluation metrics

True Positive (TP): denotes the no. of positive class correctly judged as positive. False Negative
(FN): denotes the no. of positive class mistakenly judged as negative. False Positive (FP): denotes the
no. of negative class mistakenly judged as positive. True Negative (TN): denotes the no. of negative
class correctly judged as negative.

4.4 Experimental Results

Three experiments have been conducted to validate the performance of the (HDLIDP) framework.

Experiment 1: (NSL-KDD dataset): using a two hidden layers tuned ANN classifier.

Tab. 4 shows the advanced metrics obtained from the confusion matrix shown in Tab. 3. The
average results of confusion matrix when utilizing two hidden layers are 97.903, 91.690, 98.271 and
94.798 for Accuracy, Precision, Recall and F1 Score, respectively.

Table 3: Confusion matrix of NSL-KDD classifier of two hidden layers

Actual class Normal 491 19 5 1 0 516
DoS 17 358 4 1 0 380
Probe 3 1 86 0 1 91
R2L 0 1 0 12 0 13
U2R 0 0 0 0 11 11∑

511 379 95 14 12 1,011
Normal DoS Probe R2L U2R

∑
Predicted class
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Table 4: NSL-KDD metrics of the above confusion matrix

No. New
labels

Confusion matrix metrics Advanced evaluation metrics (%)

TP FN FP TN Acc. Pre. Recall F1

1 Normal 491 25 20 475 95.549 96.086 95.960 96.023
2 DoS 358 22 21 610 95.747 94.459 96.672 95.553
3 Probe 86 5 9 911 98.615 90.526 99.022 94.584
4 R2L 12 1 2 996 99.703 85.714 99.800 92.222
5 U2R 11 0 1 999 99.901 91.667 99.900 95.607

Summation 489.515 458.452 491.354 473.989
Average 97.903 91.690 98.271 94.798

Tab. 5 and Figs. 6 and 7 show the parameters of the ANN classification in case of single, two
and three hidden layers compared with the Genetic Algorithm (GA) and Difficult Set Sampling
Technique (DSSTE) algorithm. The DSSTE algorithm employs both Edited Nearest Neighbor (ENN)
and K-Means clustering algorithms to reduce the data set’s majority class for improving the classifier’s
training stage consequently enhances performance. The results show, using two hidden layers NN each
contains maximum of 10 neurons provides best performance and approximately good time.

Table 5: NSL-KDD comparison results among different classifier structures

Neural network structure NSL-KDD (%)

Acc. Pre. Recall F1 Time(S)

1 Hidden layer 96.396 85.988 97.016 90.989 8
2 Hidden layer 97.903 91.690 98.271 94.798 11
3 Hidden layer 96.987 89.121 97.821 92.813 15
Genetic algorithm 79.564 76.154 78.841 76.783 21
DSSTE [42] 82.840 84.680 82.780 81.660 –
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Figure 6: NSL-KDD comparison results among deep learning classifier with different hidden layers
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Figure 7: NSL-KDD Time comparison results among DL classifier with different hidden layers

Experiment 2: (CIC-IDS2018 dataset): using a two hidden layers tuned ANN classifier.

Tabs. 6 and 7 show the average results of confusion matrix as 99.849, 93.333, 99.761 and 96.325
for Accuracy, Precision, Recall and F1 Score, respectively.

Table 6: Confusion matrix of CIC-IDS2018 classifier of two hidden layers

Actual class Normal 588,462 23 98 824 0 349 16 589,772
Botnet
ARES

0 490 0 0 1 0 0 491

Brute Force 9 0 3,431 0 0 0 19 3,459
DoS/DDoS 985 7 41 72,247 0 329 17 73,626
Infiltration 0 0 0 0 9 0 0 9
Port Scan 592 3 62 324 1 38,722 28 39,732
Web Attack 0 1 0 1 0 3 540 545∑

590,048 524 3,632 73,396 11 39,403 620 707,634

Normal Botnet ARES Brute Force DoS/DDoS Infiltra-tion Port Scan Web Attack
∑

Predicted class
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Table 7: CIC-IDS2018 metrics of the above confusion matrix

No. New labels Confusion matrix metrics Advanced evaluation metrics (%)

TP FN FP TN Acc. Pre. Recall F1

1 Normal 588,462 1,310 1,586 116,276 99.591 99.731 98.654 99.190
2 Botnet ARES 490 1 34 707,109 99.995 93.511 99.995 96.644
3 Brute Force 3,431 28 201 703,974 99.968 94.466 99.971 97.141
4 DoS/DDoS 72,247 1,379 1,149 632,859 99.643 98.435 99.819 99.122
5 Infiltration 9 0 2 707,623 99.999 81.818 99.999 89.999
6 PortScan 38,722 1,010 681 667,221 99.761 98.272 99.898 99.078
7 Web Attack 540 5 80 707,009 99.988 87.097 99.989 93.099

Summation 698.945 653.330 698.325 674.273
Average 99.849 93.333 99.761 96.325

Since the framework has been designed to be deployed in real time world, so both performance
accuracy and running time should be highly improved. From Tab. 8 and Figs. 8 and 9, show that the
best accuracy is obtained when using two hidden layers NN, while the best running time obtained with
a single hidden layer NN. According to the results obtained, it is advised to deploy the framework with
two hidden layers NN as it has best accuracy and approximately good running time.

Table 8: CIC-IDS2018 Comparison results among different classifiers structure

Neural network structure CIC-IDS2018 (%)

Acc. Pre. Recall F1 Time(S)

1 Hidden layer 99.003 68.714 99.077 78.392 12
2 Hidden layer 99.849 93.333 99.761 96.325 15
3 Hidden layer 99.218 78.942 99.214 84.657 23
Genetic algorithm 93.154 71.458 94.345 76.845 34
DSSTE 96.990 97.460 96.970 97.040 –

In the next experiment, the proposed framework is evaluated using SDN dataset collected from
the Mininet emulator and comparing its results with those of the framework introduced in [43].
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Figure 8: CIC-IDS2018 comparison results among DL classifier with different hidden layers
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Figure 9: CIC-IDS time comparison results among DL classifier with different hidden layers

Experiment 3: (SDN dataset): the experiment has been done on a two hidden layers ANN classifier.

Tabs. 9 and 10 shows the average values of Accuracy, Precision, Recall and F1 Score.

Table 9: Confusion matrix of SDN classifier of two hidden layers

Actual class Benign ICMP 24,352 125 146 81 178 75 24,957
Malicious
ICMP

119 15,945 91 50 108 51 16,364

Benign
TCP

147 89 18,405 63 132 61 18,897

Malicious
TCP

75 48 56 10,264 71 25 10,539

Benign
UDP

184 122 138 73 22,179 76 22,772

Malicious
UDP

79 51 60 30 72 10,524 10,816

∑
24,956 16,380 18,896 10,561 22,740 10,812 104,345

Benign
ICMP

Malicious
ICMP

Benign
TCP

Malicious
TCP

Benign
UDP

Malicious
UDP

∑

Predicted class
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Table 10: SDN metrics of the above confusion matrix

No. Traffic
labels

Confusion matrix metrics Advanced evaluation metrics (%)

TP FN FP TN Acc. Pre. Recall F1

1 Benign ICMP 24,352 605 604 78,784 98.841 97.580 99.239 98.403
2 Malicious ICMP 15,945 419 435 87,546 99.182 97.344 99.506 98.413
3 Benign TCP 18,405 492 491 84,957 99.058 97.402 99.425 98.403
4 Malicious TCP 10,264 275 297 93,509 99.452 97.188 99.683 98.420
5 Benign UDP 22,179 593 561 81,012 98.894 97.533 99.312 98.414
6 Malicious UDP 10,524 292 288 93,241 99.444 97.336 99.692 98.500

Summation 594.871 584.383 596.857 590.553
Average 99.145 97.397 99.476 98.430

Tab. 11 and Fig. 10 show a comparison in case of one, two and three hidden layers with the GA
and Automated DDoS attack detection in SDN [43] framework.

Table 11: SDN Comparison results among different classifier structures

Neural network structure NSL-KDD

Acc. Pre. Recall F1

1 Hidden Layer 99.000 96.950 99.388 98.153
2 Hidden Layer 99.145 97.397 99.476 98.430
3 Hidden Layer 99.060 97.102 99.413 98.211
Genetic Algorithm 96.201 94.253 97.142 95.981
Automated detection [43] 98.800 98.270 98.180 97.650

Figure 10: SDN comparison results among DL classifier with different hidden layers
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5 Conclusions and Future Work

Despite the importance of computer networks and its different services, it is difficult to manage
and secure a huge number of distributed devices. A Hybrid Deep Learning Intrusion Detection and
Prevention framework (HDLIDP) that is suitable for use with SDN networks has been proposed in
this paper. Signature-based and deep learning detection techniques have been deployed to improve
framework performance. A signature based technique ensure that a packet is an attack, but not that
it is legitimate, while deep learning technique classifies packets based on their type, if it is an attacker
or not, successfully taking the needed action. Both techniques may improve attack detection accuracy
and speed. The outcomes are determined by important factors such as classification accuracy and
system responsiveness. A comprehensive study has been conducted using three datasets that have
been applied to single, two, and three layers NN classifiers. Additionally, we cannot ignore the role
played by using the WOA optimizer in selecting the effective set of dataset’s features for improving
the classification process. Results revealed the superiority of the proposed framework, especially in
cases of double NN hidden layers. In future, the proposed framework could be improved by deploying
different optimization algorithms and evaluated by using more SDN environment datasets.
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