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Abstract: Emotions serve various functions. The traditional emotion recog-
nition methods are based primarily on readily accessible facial expressions,
gestures, and voice signals. However, it is often challenging to ensure that
these non-physical signals are valid and reliable in practical applications.
Electroencephalogram (EEG) signals are more successful than other signal
recognition methods in recognizing these characteristics in real-time since
they are difficult to camouflage. Although EEG signals are commonly used
in current emotional recognition research, the accuracy is low when using
traditional methods. Therefore, this study presented an optimized hybrid
pattern with an attention mechanism (FFT_CLA) for EEG emotional recog-
nition. First, the EEG signal was processed via the fast fourier transform
(FFT), after which the convolutional neural network (CNN), long short-term
memory (LSTM), and CNN-LSTM-attention (CLA) methods were used to
extract and classify the EEG features. Finally, the experiments compared and
analyzed the recognition results obtained via three DEAP dataset models,
namely FFT_CNN, FFT_LSTM, and FFT_CLA. The final experimental
results indicated that the recognition rates of the FFT_CNN, FFT_LSTM,
and FFT_CLA models within the DEAP dataset were 87.39%, 88.30%,
and 92.38%, respectively. The FFT_CLA model improved the accuracy of
EEG emotion recognition and used the attention mechanism to address the
often-ignored importance of different channels and samples when extracting
EEG features.

Keywords: Emotion recognition; EEG signal; optimized hybrid model;
attention mechanism

1 Introduction

Emotional recognition is essential in daily life and plays a vital role in human-computer inter-
action, medical care, and other areas [1]. Physiological signals can generally be used to measure
emotional conditions via galvanic skin responses, electromyography, heart rate, respiratory rate, and
electroencephalograms (EEG). The EEG signal is a typical physiological signal, which involves the
overall response of the electrical activity of the cerebral cortex nerve cells or scalp surface and contains
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a large amount of physiological and pathological information. Since these signals are non-invasive,
quick, and inexpensive, they are widely used for emotional recognition [1,2].

Emotional recognition using EEG signals represents a significant research area in emotional
computing. The feature extraction and classification of EEG signals form the basis of emotional
recognition. As shown in Fig. 1, the feature extraction of traditional EEG signals mainly involves
time-domain features, frequency domain features, time-frequency domain features, nonlinear dynamic
analysis, and spatial domain features [3]. This article uses EEG functionality as a frequency-time
domain feature. On the one hand, it refers to the work involving EEG feature processing in our previous
paper. On the other hand, the results have confirmed that using this method for processing simplifies
the subsequent experiments and improves the accuracy of the model.

Figure 1: Classification of the EEG features

Deep learning methods are used to classify EEG signals according to their extracted character-
istics [3,4]. On the one hand, the deep learning method can be considered a classifier after feature
extraction [5]. For example, Zheng et al. extracted differential entropy (DE) features from multi-
channel EEG signals using a deep belief network (DBN) as a classifier [6]. Wang et al. used DE
functions as input data with a comprehensive dynamic graph learning system as classifiers [7]. On
the other hand, many deep learning methods are data-driven and work end-to-end without first
extracting the functionality of the EEG signal. For example, Cho et al. proposed a novel method for
recognizing emotions using three-dimensional convolutional neural networks (3D CNNs), efficiently
representing the spatiotemporal attributes of EEG signals [8]. Liu et al. proposed an effective multi-
level features guided capsule network (MLF-Caps Net) for EEG emotion recognition and achieved
good performance [9]. However, EEG emotional recognition remains challenging. Therefore, this
paper examines these two aspects from a global perspective and considers a hybrid model to extract
and classify EEG signals.

First, FFT technology is used to process the EEG time-frequency characteristics, after which a
CNN is used to extract the spatial features of the processed data for classification. LSTM is employed
to extract and classify the time features of the processed data. Finally, inspired by the cascading
recurring convolutional network, this paper combines the CNN and LSTM models to extract the
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spatial and temporal characteristics of the EEG signals. Furthermore, a channel attention mechanism
to address the often-ignored importance of different channels due to the use of CNN to extract spatial
characteristics [10,11]. A self-attention mechanism is used to approach the importance of samples
when using LSTM to extract temporal features [12].

This article uses the DEAP [13] public dataset to evaluate the model and compare the recognition
accuracy of multiple methods. The main contributions of this paper are summarized below.

1) For EEG emotion recognition, this work proposes and compares three model frameworks,
namely FFT_CNN, FFT_LSTM, and an optimized hybrid model with an attention mech-
anism (FFT_CLA). The rationale and feasibility of these three EEG emotional recognition
frameworks are verified.

2) Experiments are performed in the DEAP dataset for these three models. The average recogni-
tion accuracy of FFT_CNN, FFT_LSTM, and FFT_CLA is 88.01%, 88.85%, and 92.38%,
respectively. These results indicate little difference between the recognition accuracy of the
FFT_CNN and FFT_LSTM models, while that of the FFT_CLA model is significantly higher
than the other models.

The remainder of this paper is arranged in the following sections: Section 2 introduces related
work; Section 3 introduces the proposed method; Section 4 validates the proposed method. Finally, a
summary is provided in Section 5.

2 Related Work
2.1 EEG Emotion Recognition Steps

As shown in Fig. 2, emotion recognition based on EEG mainly includes the following steps.

1) Develop a test plan. The type of stimulus file is selected, such as music or a movie, followed
by the data to be recorded, such as the gender, the number of subjects, the duration of the
experiment [14], and the emotion to be recognized.

2) EEG signal acquisition. The number of electrodes and the test time are recorded, and the EEG
signals recorded on the electrodes are collected [15]. Finally, the emotional state of the subject
can be evaluated based on the collected EEG signals.

3) EEG signal preprocessing. A large number of artifact signals (such as oculograms and
electromyography) increase the difficulty of EEG signal analysis, making it challenging to
intuitively analyze the inner connection with emotions [16]. To facilitate follow-up research,
specific preprocessing is performed on the collected signals, such as blind source separation
and independent component analysis to obtain a specific regular signal.

4) EEG signal feature extraction. The relevant information is examined to extract the relevant
emotional features from the EEG signals, such as EEG features in the time domain, frequency
domain, and spatial domain [16,17].

5) Emotional classification of the EEG signals. The EEG signals are classified according to the
extracted features [18]. The main classifiers are Bayes, support vector machines, decision trees,
and deep learning classifiers.
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Figure 2: EEG emotion recognition steps

2.2 Fast Fourier Transform (FFT)

Fourier Transform is essential in signal processing and represents the primary method for
analyzing time-frequency [19]. However, since discrete-time Fourier transform is highly complex, this
paper uses FFT for EEG processing, which combines the initial sequence of the N sampling points into
short sequences [20]. Due to the periodicity and symmetry of the exponential factor in the calculation
formula of the discrete Fourier transform (DFT), FFT first obtains the corresponding DFT of these
short sequences and then combines them appropriately. Therefore, the goal of structural optimization
is acquired by reducing the number of repeated calculations and multiplication calculations.

2.3 Attention Mechanism

Attention is vital in human perception. For example, humans can selectively focus on salient parts
to better capture visual structure [21]. Consequently, attention mechanisms, such as channel attention
and self-attention, have been proposed for various deep learning tasks.

The basic idea of channel attention is to allow the neural network to automatically determine the
importance of the channel and then assign appropriate weights [22]. A typical representative is the
Squeeze-and-Excitation Network (SENet) architecture [23]. The channel attention mechanism can
selectively enhance the features with the most significant amount of information via the network,
allowing the post-processing process to fully utilize these features and suppress useless features to
reduce noise. During EEG recognition tasks, many methods ignore the importance of EEG channels.
This paper uses the channel attention mechanism to further explore the spatial dependence between
EEG channels [24].

Self-attention is an internal attention mechanism that associates different positions of a single
sequence to encode sequence data based on importance scores [25]. The self-attention mechanism
performs well in answering simple language questions and completing language modeling tasks. An
EEG experiment is usually divided into several input specimens to increase the number of training
samples during an EEG recognition task. However, many methods ignore the importance of different
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EEG samples [26]. This work uses the self-attention mechanism to further explore the time dependence
between EEG samples.

3 Method

This section presents the application of the EEG feature processing method (FFT) in this
experiment and provides a brief introduction to the proposed FFT_CNN and FFT_LSTM model
framework. Finally, the proposed FFT_CLA model is introduced in detail. FFT is typically used to
rapidly calculate the DFT of a sequence or its inverse transform [27]. Fourier analysis converts the
signal from the original domain (usually time or space) to a representation in the frequency domain
or vice versa [28]. Therefore, it can reduce the complexity of calculating the DFT from only O

(
n2

)
required for DFT definition calculation to O (n log n), where n is the data size. Two-dimensional DFT
can be achieved by sequentially calling the one-dimensional transform, consequently only requiring
the FFT of a variable.

3.1 Model Construction

After FFT, the EEG data was processed in a vector form with the same dimensions, which was
expected to require further processing. The FFT_CNN model was obtained by entering the subsequent
vector into a defined CNN, as shown in Fig. 3.

Figure 3: FFT_CNN model

The EEG signal was processed via FTT, followed by convolution and pooling. The processed
vector was fully connected (FC), after which the softmax function was used to classify and output the
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feature vector classification results. The FFT_LSTM model was acquired by entering the obtained
features into the LSTM architecture, as shown in Fig. 4.

Figure 4: FFT_LSTM model

The EEG signal was processed using FFT and sent to the LSTM unit. The softmax function was
used for the feature classification and result output of the processed FC vector.

S = (S1, S2, . . . Sn) represents the EEG sample after FFT processing and Si = [S1, S2, . . . Sm] (i = 1,
2, . . . m) is the i-th EEG sample, where sj (j = 1, 2, . . . m) represents the j-th channel of the EEG sample
Si, and m is the total number of channels for each sample [29]. To reduce the model complexity and
improve the generalization ability, the channel attention mechanism used two FC layers around the
nonlinearity, namely a dimensionality reduction layer with a parameter w1 and a bias term b1, in which
the reduction rate r and the tanh function were regarded as the activation function and a dimension
increase layer with parameter w2 and bias term b2, then

v = softmax (w2 (tanh (w1 · s + b1) + b2)) (1)

The softmax function transformed the importance of the channel into a probability distribution
V = [V1, V2, . . . Vm], which represented the importance of different channels [29,30]. Finally, the
probability was considered the re-encoding weight of the EEG sample Si = [S1, S2, . . . Sm] information
in each channel. Therefore, the j-th attention channel feature extracted via channel attention can be
expressed as follows:

cj = vj · sj (2)

Here, C = (C1, C2, . . . Cn) represents the feature extracted through the channel attention mecha-
nism, and the i-th extracted feature Ci = [C1, C2, . . . Cm] (i = 1, 2, . . . m).

For the FFT_CLA model, first, the FFT processed data were entered into the channel attention
mechanism model, after which the spatial information of the EEG signal was further extracted using
a CNN. The processed CNN data were entered into the LSTM architecture to further extract the
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time features of the EEG signal [31]. Finally, the data processed via the LSTM was entered into a
self-attention mechanism model to obtain the FFT_CLA model, as shown in Fig. 5.

Figure 5: FFT_CLA model

The EEG signal was processed via FFT, and the data was sent to the channel attention network,
CNN network, LSTM network, and self-attention network, respectively. Then, the softmax function
was used for feature vector classification and output.

The data were subjected to global average pooling (GAP) in the channel attention network. The
processed vector was then sent to the FC layer and processed using the dimensional reduction function
r and the activation function tanh. Next, the vector dimensions were adjusted, and the vector was
multiplied.

The intrinsic similarity of the EEG samples in the self-attention network was calculated using
the f (s, h) function. The obtained �et was regarded as the feature score vector from the t-th sample
�ht, after which the vector group

(�e1, �e2, . . . ,�en

)
was standardized using the softmax function. Finally,

the obtained predicted probability P and the hidden state vector group
(�h1, �h2, . . . ,�hn

)
were cross-

multiplied.

Here, it was assumed that the hidden state obtained via the LSTM structure was h = (h1, h2, . . . hT).
The correlation etj between each input position j and the current output position could be calculated
when the hidden state of the current decoder was st−1, [32]:

etj = a
(
st−1, hj

)
(3)

Expressed in the corresponding vector form:

�et = (a (st−1, h1) , a (st−1, h2) , · · · a (st−1, hT)) (4)
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Here, a represents a correlation operator, such as common dot multiplication or weighted dot
multiplication. The softmax function was used to standardize �et, after which the attention mechanism
distribution could be obtained:

�αt = softmax
(�et

)
(5)

The expanded form is:

αtj = exp
(
etj

)
∑T

k=1 exp (etk)
(6)

Using �αt, a weighted summation was performed to obtain the corresponding vector �ct:

�ct =
T∑

j=1

αtjhj (7)

From this, the next hidden state st of the decoder was calculated:

st = f (st−1, yt−1, ct) (8)

As well as the output at that location:

P = softmax
(
W�ct + b

)
(9)

where P = (P1, P2, . . . Pn), Pi (i = 1, 2, 3 . . . n) represents the prediction probability of the i-th EEG
sample, while W and b denote the weight and bias terms of the softmax function, respectively [33].
Then, the cross-entropy errors of all the labeled samples were evaluated:

L = −
n∑

i=1

Ŷi log (Pi) (10)

Here, Ŷi is the label of the i-th EEG sample. A lower cross-entropy error L increased the accuracy
of emotional recognition.

In summary, three frameworks were designed to retrieve the characteristics of raw EEG signals
and classify emotions. The first involves FFT processing, after which the processed vector was sent
to the CNN to complete the emotional classification. The second involved sending the vector to the
LSTM network after FFT processing. After FFT processing, the third adopted the channel attention
mechanism to adaptively affect the weights of the various channels to extract the internal channel
information, after which a CNN was used to extract the spatial data from the coded EEG signal.
Next, an LSTM was employed to explore the time information of different EEG samples and while
an extended self-attention mechanism was integrated to assign weights to the EEG samples according
to their importance. Finally, the spatiotemporal attention features were obtained for EEG emotional
recognition.

4 Experiment
4.1 Dataset

The experiments were conducted using the DEAP data set to evaluate the performance of the
three models. EEG data were collected from 32 healthy participants (16 males and 16 females). The
participants were physically and mentally healthy, and the EEG signals were collected via a 32-lead
electrode cap according to the international lead standard, “10–20”. EEG signals of the participants
were collected at a sampling rate of 512 Hz while they viewed 40 1-min videos. This comprised 32
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EEG and 16 additional channels, including common eye power and electrocardiogram (ECG) signals
[34]. The participants were asked to evaluate the valence, excitement, and dominance of the videos
according to a size ratio of 1 to 9 after viewing.

The frequency was decreased to 128 Hz during sampling, and 40 data channels were selected,
including 32 EEG channels, while the bandpass was filtered to 4–45 Hz. Each data sample lasted for
63 s, which included a 3-s baseline time [34,35]. The experimental data generally included preprocessing
information (downsampling, removal of noise such as ocular electricity) that could be downloaded
from the official website. The experimental data comprised 32 files, each corresponding to 32
experimental subjects, consisting of two arrays. The data format of these files is shown in Tab. 1.

Table 1: Data format table of the DEAP data set

Name Shape Contents

Data 40 × 40 × 8064 Video/trial×channel×data
Labels 40 × 4 Video/trial×label

4.2 FFT Parameter Settings

Here we first use Fast Fourier Transform (FFT) to process the DEAP data set, that is, first use
the mother wavelet function to stretch and shift the EEG signal, and then obtain a series of wavelet
coefficients. The specific parameter settings of FFT are shown in Tab. 2.

Table 2: FFT parameter setting

Parameter Setting

Subject [‘01’,’02’,’03’, . . . , ‘32’]
Channel [1, 2, 3, 4, 6, 11, 13, 17, 19, 20, 21, 25, 29, 31]
Band [4, 8, 12, 16, 25, 45]
Window_size 256
Step_size 16
Sample_rate 128

The 14 selected channels included 1: AF3, 2: F3, 3: F7, 4: FC5, 7: T7, 11: P7, 13: O1, 17: AF4,
19: F4, 20: F8, 21: FC6, 25: T8, 29: P8, and 31: O2. FFT decomposed the EEG signal into different
frequency bands in the following range: theta band: 4–8; alpha band: 8–12; low beta band: 12–16;
high beta band: 16–25; gamma band: 25–45. The Window_size was set to 256, representing an average
frequency band power of about 2 s. The Step_size was set to 16, which was updated approximately
every 0.125 s. The Sample_rate was set to 128, representing a sampling rate of 128 Hz.

The parameters during FFT processing were the same to compare the rationality of the three
experiments. Then, 10-fold cross-validation was used to evaluate the performance of the proposed
and baseline methods, the average of which was considered the final experimental result. The next
section discusses the experimental process and results of the three experiments.
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4.3 FFT_CNN Model Experimental Results

After FFT processing, a CNN was used for function extraction and classification. During the
experiment, the Adam algorithm was used to optimize the parameters. The Adam algorithm is an
adaptive time estimation algorithm to calculate the adaptive learning speed of each parameter. The
Adam algorithm can accelerate network convergence in practical applications, providing excellent
experimental results. After several experiments, a three-layer convolution structure was employed at a
batch size of 256, using the dropout layer to prevent overfitting. The parameter value was set to 0.2
while the training epochs were set to 200 to ultimately obtain an average classification accuracy rate
of 87.79%. The convergence curve of the model is illustrated in Fig. 6.

Figure 6: The accuracy convergence curve of the FFT_CNN model

During the training process, the precision and loss rate of the model were calculated at each
step. The loss function represented the cross-entropy loss function, while the model parameters were
adjusted to reduce the loss rate and improve accuracy. After 200 epochs, the model tended to converge,
completing the model training. Fig. 7 shows the confusion matrix of this experiment, which was used
to better evaluate the quality of the model.

The confusion matrix was used to display the actual and predicted conditions of each sample. It
reflected the portion that corresponded to the actual and predicted values, as well as the portion not
corresponding to the predicted value. As shown in Fig. 7, the confusion matrix determined whether
the actual situation of each category was consistent with the predicted situation while reflecting the
specific values of the corresponding and predicted portions. These values were used to analyze possible
problems in the model and make appropriate adjustments.

4.4 FFT_LSTM Model Experiment Results

After FFT processing, the LSTM was used for function extraction and classification. The Adam
algorithm was employed to optimize the settings during the experiment. After several experiments, the
batch size was set to 256, using the dropout layer to prevent overfilling. The parameter value was set
to 0.4, while the periods of the formation round were set to 200, obtaining a classification accuracy
of 88.30%. Although the average accuracy rate was 0.51% higher than that of the FFT_CNN model,
the time was significantly higher than that of CNN during the experiment due to the characteristics
of LSTM. The accuracy convergence curve of the LSTM model is shown in Fig. 8.
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Figure 7: The FFT_CNN model confusion matrix

Figure 8: The accuracy convergence curve of the FFT_LSTM model

During the training process, the accuracy and loss rate of the model were calculated at each step.
The loss function represented the cross-entropy loss function. This model focused on reducing the loss
ratio and improving the accuracy. After 200 epochs, the model tended to converge, completing model
training. Fig. 9 shows the confusion matrix for this experiment.
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Figure 9: The FFT_LSTM model confusion matrix

This matrix presented the difference between the predicted and actual values. It determined the
number of accurately and inaccurately predicted values, allowing for the identification of potential
problems in the model and appropriate adjustments. The classification accuracy of the two models
was obtained via 10-fold cross-validation, as shown in Tab. 3.

Table 3: The leave-one-out validation comparison results of the two models

Model 0 1 2 3 4 5 6 7 8 9 AVG

FFT_CNN 87.52 88.08 88.02 87.23 87.23 88.30 87.69 87.98 87.57 88.30 87.79
FFT_LSTM 87.69 89.26 89.75 88.80 87.41 88.23 88.47 86.89 88.25 88.34 88.30

Tab. 3 shows the specific results of the two models after 10-fold cross-validation. The average
recognition accuracy of the FFT_CNN model was 87.79%, while that of the FFT_LSTM model was
88.30%. Compared with the FFT_CNN model, the performance of the FFT_LSTM model improved
by 0.51%. Previous experimental analyses show that the LSTM model may be more suitable for EEG
feature assessment than the CNN model due to the time-frequency characteristics of EEG signals.
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4.5 FFT_CLA Model Experiment Results

After the FFT process, the channel attention mechanism was used for feature processing. The
processed vector was sent to the CNN model to extract the spatial information of the EEG signal and
was then transferred to the LSTM model for time information extraction. The subsequent vector was
sent to the self-observing mechanism model to complete the feature extraction process, after which
the softmax function was used for feature classification. Here, the apprenticeship rate was set to 1–4,
while the training periods were set to 200. Finally, the classification accuracy of the 32 participants
was obtained via 10-fold cross-validation, as shown in Tab. 4.

Table 4: The average classification accuracy rate of each participant

Sub Acc Sub Acc Sub Acc Sub Acc

s01 0.9787 s09 0.9125 s17 0.8250 s25 0.9262
s02 0.8650 s10 0.9612 s18 0.9087 s26 0.8775
s03 0.9650 s11 0.7750 s19 0.9475 s27 0.9575
s04 0.8700 s12 0.9150 s20 0.9787 s28 0.8937
s05 0.9075 s13 0.9225 s21 0.9625 s29 0.9825
s06 0.9112 s14 0.8787 s22 0.9162 s30 0.9575
s07 0.9400 s15 0.9575 s23 0.9512 s31 0.9187
s08 0.9575 s16 0.9675 s24 0.9750 s32 0.8987

Tab. 4 lists the average classification accuracy of each subject in the DEAP data set, indicating
an overall classification accuracy of 92.38% for the FFT_CLA model. The comparison between the
classification accuracy values of the three models is shown in Tab. 5.

Table 5: Comparison of classification accuracy of the three models

Model FFT_CNN FFT_LSTM FFT_CLA

Accuracy 87.79% 88.30% 92.38%

Compared with the previous two models, the accuracy rates of this model increased by 4.59% and
4.08%, respectively. Furthermore, it also indicated that the EEG emotional recognition accuracy was
increased to a certain extent by adding an attention mechanism.

5 Conclusion

This paper mainly focuses on EEG emotional recognition based on the FFT attention mechanism.
The public DEAP data set is used to explore the EEG emotional recognition performance of the
FFT_CNN, FFT_LSTM, and FFT_CLA models. The EEG data are subjected to FFT processing,
after which the three models are used to classify the emotional values of the processed EEG samples.
Finally, the classification performance of these models is evaluated.

The average recognition accuracy of the FFT_CNN and FFT_LSTM emotional recognition
models is 87.79% and 88.30%, respectively, which is lower than that of the FFT_CLA model at 92.38%.
Therefore, the FFT_CLA model displays significantly improved recognition ability. On the one hand,
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these results indicate that the deep learning hybrid attention model can be used to classify emotional
features. On the other hand, this model is more suitable for emotion classification than the traditional
deep learning model. In addition, of the three models, FFT_CLA displays the best classification ability
at an average accuracy of 92.38%.

This may be attributed to the fact that the channel-based mechanism of the FFT_CLA model
addresses the importance of different channels, which is usually ignored when using CNN to extract
spatial features. Furthermore, the sample-based mechanism of this model considers the importance
of samples often disregarded when using LSTM to extract temporal features. Therefore, the overall
classification accuracy of the FFT_CLA model is higher than the other models.

This paper explores EEG emotional recognition using the DEAP data set. The experimental data
indicate that some challenges remain, requiring further research.

1) The experiments in this work are conducted based on the DEAP data set. Future research
can explore different data sets to identify the optimal model suitable for universal data set
application.

2) This study uses the time-frequency domain features of EEG signals for feature analysis. Future
studies can analyze other EEG signal attributes, such as nonlinear and spatial domain features.

3) The experiments in this work employ FFT for EEG feature processing. Future research
can explore the additional EEG feature processing methods, such as multiscale principal
component analysis and empirical wavelets.
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