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Abstract: Road potholes can cause serious social issues, such as unexpected
damages to vehicles and traffic accidents. For efficient road management,
technologies that quickly find potholes are required, and thus researches
on such technologies have been conducted actively. The three-dimensional
(3D) reconstruction method has relatively high accuracy and can be used in
practice but it has limited application owing to its long data processing time
and high sensor maintenance cost. The two-dimensional (2D) vision method
has the advantage of inexpensive and easy application of sensor. Recently,
although the 2D vision method using the convolutional neural network
(CNN) has shown improved pothole detection performance and adaptability,
large amount of data is required to sufficiently train the CNN. Therefore,
we propose a method to improve the learning performance of CNN-based
object detection model by artificially generating synthetic data similar to a
pothole and enhancing the learning data. Additionally, to make the defective
areas appear more contrasting, the transformed disparity map (TDM) was
calculated using stereo-vision cameras, and the detection performance of the
model was further improved through the late fusion with RGB (Red, Green,
Blue) images. Consequently, through the convergence of multimodal You
Only Look Once (YOLO) frameworks trained by RGB images and TDMs
respectively, the detection performance was enhanced by 10.7% compared
with that when using only RGB. Further, the superiority of the proposed
method was confirmed by showing that the data processing speed was two
times faster than the existing 3D reconstruction method.
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1 Introduction

Potholes are a type of road damage in which a bowl-shaped depression is formed in the surface of
the paved road. In recent years, the number of potholes is increasing rapidly owing to the aging of roads,
climate change and increased traffic [1]. A pothole can cause severe damages to a moving vehicle and
unexpected major traffic accidents while the process of avoiding the pothole [2–4]. To effectively solve
the problems caused by these potholes, it is crucial to quickly detect and repair the potholes. However,
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currently, potholes are being detected and reported by public officials or professional technicians,
which is quite inefficient for continuous road management [5,6]. Because this method relies on the
judgment of individual inspectors, the detection results lack consistency. Therefore, the need for
objective, reliable, and robust automatic pothole detection system is increasing [7].

Research on pothole detection is majorly divided into three types: researches using vibration
sensor-based method, three-dimensional (3D) reconstruction and two-dimensional (2D) vision-based
method. The vibration sensor-based method is a method for detecting a pattern of vibration that
occurs when a vibration sensor is attached to a vehicle that passes through a pothole. There is a
limitation that this method cannot explicitly infer the shape and volume of the pit from the data
obtained from the vibration sensor and the accuracy of detection is very low, such as vibrations caused
by joints of roads or manholes are incorrectly detected as potholes [6,8]. The 3D reconstruction method
[9,10] uses a laser sensor to generate 3D data regarding the information of the shape of the road surface
and the defect area, enabling accurate pothole detection. However, laser sensor has the disadvantage
of limited use due to its high initial and maintenance costs [11]. Accordingly, a detection system using
the “Kinect” sensor, a low-cost laser scanning device, has been proposed, but because it is not designed
for outdoor use, it often does not work properly and measures incorrect values when exposed to direct
sunlight [12,13]. As another complement, a 3D reconstruction method using a vision sensor rather than
a laser sensor has been proposed [14,15]. It is a technique for 3D reconstruction of the road surface
that estimates the depth of an object using the disparity information of two images employing a stereo
vision camera instead of using an expensive laser scanning device. Wang [16] showed 3D reconstructed
pairs of images modeled after detecting cracks through 2D images of two vision sensors. In the report
by Zhang et al. [17], a pothole was detected by the difference between an actual value and an estimated
one from the model that was fitted on the road surface after converted into 3D point cloud data (PCD)
using the disparity information obtained through two cameras. Using a stereo vision sensor, a 3D
reconstruction technique can be implemented at a low cost, but as the task of constructing the surface
becomes the main focus, many calculations are required to construct the surface, making the sensor
difficult to use in a real-time environment due to its low execution speed. There is a disadvantage that
the quality of the camera can be greatly affected if the camera is misaligned by the vibration of the
vehicle [18].

The 2D vision method uses a vision sensor such as an RGB camera, and this method can be
broadly classified into two types. 1) The computer vision method preprocesses 2D images to separate
and detect the damaged and the nondamaged areas on the road surface [19–21] and 2) the object
detection method uses a neural network [22,23]. The advantages of the 2D vision method are that a
pothole detection system can be built at a low cost using a vision sensor and a higher performance
can be expected compared with a vibration-based sensor. The vision sensor can work in an outdoor
environment [6] and has the advantage of being easy to mount on a vehicle. In the report by Koch et
al. [11], a pothole was detected by comparing the texture of the separated defective and nondefective
areas with the surrounding areas based on the threshold value of the histogram of the road surface.
Azhar et al. [24] reported the features of potholes that were extracted using the Histograms of Oriented
Gradients (HoGs) technique based on the shape characteristics and classified the potholes using the
naive Bayes classifier. However, the computer vision method can operate in real time owing to lower
computational complexity than the stereo vision method; however, its detection performance is not
satisfactory [25,26]. Moreover, it depends on lighting and sunlight and the detection performance
will be poor if the pothole surface is filled with water or foreign matters [11]. In practice, the shape
and texture of a pothole are highly irregular and the geometric features assumed during the feature
extraction step may lose their effect. Therefore, neural networks were used for improving pothole
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detection [22,23]. Ukhwah et al. [27] detected a pothole using the You Only Look Once (YOLO)
model, which is a convolutional neural network (CNN)-based object detection model, and estimated
the surface area of the pothole by comparing the pixel value with the actual distance. Meanwhile, the
method using the neural network can achieve detection and high accuracy that can cope with various
situations as compared with the conventional computer vision method; however, high accuracy can be
expected only when there is a large amount and good quality data, and the data labeling procedures
can be very labor-intensive [28].

In the existing computer vision method, the geometrical characteristics of the object must be
specified in advance to detect an object [15]. However, the characteristics that are crucial to the
detection performance change depending on the angle, sunlight, rainwater, etc. By contrast, the
method using a neural network can show higher detection performance compared with the former
method when exposed to various environments through various data and learning progress. Therefore,
in this paper, we propose a pothole detection strategy using stereo vision-based multimodal YOLOs
to secure the cost-effectiveness and real-time utilization of the pothole detection sensors. To achieve
a high detection performance of YOLO, training must be conducted using a large amount of high-
quality data, but it is challenging to obtain such data. Therefore, synthetic pothole data similar to the
actual pothole is artificially generated and added to the training data through a data reinforcement
process. In addition, high level of detection performance is not expected because the existing pothole
detection technologies using a neural network have employed only a single RGB sensor. Therefore,
to compensate for the disadvantages of the RGB vision sensors that are sensitive to the external
environment, the disparity map calculated using the stereo vision sensor is obtained and converted
into a transformed disparity map (TDM), which clears the boundary of the pothole, and then learning
is achieved using YOLO, which is separated from RGB. Thus, each pothole is detected using the RGB
sensor as well as TDM and the detection performance is improved by complementing the detected
results after they are converged.

Potholes formed by factors such as climate change, aging and pressure increase on the road lead
to a problem that must be resolved immediately when found because there is a high risk of traffic
accidents. For this purpose, the contributions of the newly proposed 2D vision-based method in this
context are as follows:

i. A new pothole detection model that is more accurate and reliable than the vibration sensor-
based method has been proposed. At the same time, by using only a stereo vision sensor, real-
time operation is possible with lower cost and much less complex data processing for pothole
detection compared to laser-based 3D reconstruction techniques.

ii. By proposing a method to utilize not only RGB images but also a more refined disparity map
through a stereo vision sensor, additional detection of recessed potholes became possible.
Through the convergence of the obtained results, the detection accuracy was significantly
improved compared to the existing 2D vision-based method.

The rest of this paper is organized as follows: In Section 2, the proposed pothole detection model
is described; in Section 3, experimental results are presented. Finally, in Section 4, conclusions are
presented.

2 Methodology

RGB-based pothole detection is based on the geometric characteristics of the pothole. For
example, a pothole has characteristics such as a darker interior, rougher surface and deeper topography
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than the surrounding area; therefore, it is easy to find characteristics such as texture, color and shape of
the pothole through RGB images, but they may be difficult to detect because RGB images are sensitive
to changes in the external environment. By contrast, the stereo vision-based disparity image uses the
disparity between the two images to obtain more stable characteristics compared with the RGB image
as a quantity indicating the depth in the image. Thus, the proposed pothole detection method detects
each pothole through an independent neural network using the disparity image and the RGB image
obtained from the stereo vision sensor and derives the optimal result from the detected results. The
block diagram of the proposed pothole detection system is shown in Fig. 1, and it is largely composed
of three blocks: 1) calculating the disparity map transformed by TDM, 2) pothole detection using
YOLO and 3) decision by non-maximum suppression (NMS).

Figure 1: Block diagram of the proposed pothole detection system

2.1 TDM

Disparity map is an image showing the exact depth of an object through various corrections
using the disparity of two images and a key element for pothole detection through stereo vision-based
3D reconstruction technique. Disparity map is advantageous for 3D reconstruction-based detection
because it understands the road surface well; however, it is somewhat disadvantageous for the 2D
vision-based detection because the boundary between the pothole and the surroundings is not clear.
Therefore, in this study, the TDM is used to make a clear distinction of the pothole and the surrounding
area so that the disparity map is more suitable for 2D vision-based detection [29,30].

Assuming that the road surface and the camera are perfectly horizontal, the disparity projection
into the v-disparity region can be expressed as a linear straight line.

P (α, γ ) = α0 + α1v (1)

Here, α = [α0, α1]
T is the disparity projection model coefficients vector, γ = [u, v] is the vertical–

horizontal coordinate pixel in the disparity map, and when the disparity value of the disparity map is
d, the optimal α is estimated as follows:

αo = argmin
α

[d − γα]T [d − γα] (2)
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However, in the real environment, the camera is not perfectly in level with the ground; therefore,
the roll angle θ of the camera does not always become 0, causing distortion in the mismatch map.
Therefore, if reverse rotation is performed using θ to turn the misaligned angle parallel to the
horizontal axis, the original coordinate γ = [u, v]T of the mismatch map is converted to a new
coordinate γ ′ = [g, h]T. Therefore, the disparity mapping into the v-disparity region is expressed as
P (α, γ , θ) = α0 + α1 (vcosθ + usinθ) , and TDM is defined as follows so that the defect area is further
emphasized:

TDM = d − P (α, γ , θ) + δ (3)

where δ is a set constant such that all transformed mismatch values are nonnegative. The conversion
process of TDM is shown in Fig. 2. It can be seen that the defect area is more clearly visible than the
conventional disparity map using TDM, and this is an important factor to increase the object detection
performance.

Figure 2: Example of a TDM conversion process: (a) raw image, (b) disparity map and (c) TDM

2.2 Object Detection Using YOLO

Image recognition using CNN has made it possible to recognize images with high accuracy
through the development of various learning models and algorithms such as GoogleNet, Residual
Net (ResNet), and Visual Geometry Group 16 (VGG16). As high-level recognition became possible,
attention was naturally drawn to the object detection problem, which is an old problem in the field
of computer vision and determines the location and type of a specific object in an image. The
object detection problem has been difficult to access because it is more difficult than simple image
classification problems, such as the problem of determining the location of an object and what the
object is, and its structure is complicated. However, starting with region-based CNN (R-CNN) using
a CNN-based image classifier, with the development of various object detection models such as Fast
R-CNN and Faster R-CNN, the detection performance is gradually improving and active research is in
progress [31]. These systems calculated the bounding box and class probability of an object separately
and learned only the part that classifies the object through the neural network, which took a long
time to learn, so they were insufficient for real-time application. The YOLO framework, an object
detection system developed with more focus on real-time recognition, converts the bounding box and
class probabilities within the image to single regression problem to speed up the detection and the type
of object that sees the image once.

YOLO divides the input image into S × S grid regions and predicts B bounding boxes predeter-
mined in the region where there is an object using the CNN. The bounding box of each zone represents
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five pieces of information in (x, y, w, h, and C). (x, y) are the center coordinates and (w, h) are its
width and height of the bounding box, respectively, and C is the probability that the bounding box is
included in a specific class. C is expressed as follows as the product of the probability of including the

object Pr(object) and IOU

truth
pred which is the area where the actual and predicted values overlap each

other (IOU), which determines how accurately the bounding box is predicted:

C = Pr (object) ∗ IOU

truth
pred (4)

if the actual value and the predicted center coordinates of the bounding box exist in the same region,
the bounding box is considered to contain an object and Pr(object) is calculated as 1; otherwise it
is calculated as 0. The probability of determining which object among the classified N objects is
Pr (Classi|Object), the total number of bounding boxes is S × S × B, and N CPclass for each bounding
box is obtained as follows:

CPclass = Pr (object) ∗ IOU

truth
pred ∗ Pr (Classi|object) = Pr (Class) ∗ IOU

truth
pred (5)

Finally, the bounding box with the highest CPclass among the predicted bounding boxes B is
selected as the bounding box of the object [32].

2.3 NMS

Recently, in the case of object detection in a complex environment such as autonomous driving, if
only RGB images are used, the image may be distorted or damaged by external light sources, such as
sunlight and lighting, and there is a disadvantage that they cannot be used at night. To compensate for
this, a multisensor fusion method that overcomes the disadvantages of digital cameras by additionally
using various sensors, such as Light Detection And Ranging (LiDAR) and Radar, has been proposed
[33]. The early fusion method is characterized by the fusion of preprocessed sensor data to fully
utilize the information of the raw data. However, it is sensitive to spatiotemporal data misalignment
between sensors, such as calibration errors, different sampling rates and sensor defects. The late fusion
method combines the output of the network and has high flexibility and modularity but involves high
computational cost. The intermediate fusion method is a compromise between the early and late fusion
methods, and it is possible to learn various features through the expression of various features of the
network; however, it is difficult to find the optimal fusion method to accomplish the task of changing
the network structure.

Therefore, in this study, we propose the fusion of an RGB camera and a stereo vision sensor to
extract the depth feature of an object that cannot be obtained using an RGB camera alone and a late
fusion method to minimize the interference between the sensors and derive an optimal object bounding
box using NMS. NMS is mainly combined in the latter part of the detection model to improve object
detection performance in models such as YOLO and Sing Shot Multibox Detector (SSD) and used
for extracting the optimal bounding box.

First, for one class, we select the bounding box with the highest class probability and add it to the
final. bounding box list. Second, the selected bounding box is compared with all other bounding boxes
and IOUs, and if it is larger than the pre-defined threshold, the corresponding box is removed. Third,
among the remaining bounding boxes, the bounding box with the highest class probability is selected
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and added to the final bounding box list. Fourth, after comparing the IOU of the reselected bounding
box with the remaining bounding box, if the IOU is larger than the threshold, the corresponding box
is removed. Finally, steps 1 to 4 are repeated until there no bounding box remains.

In general, NMS in multi-object detection algorithm plays an important role in accurately
discriminating the overlapping objects when the overlapping of objects occurs, which greatly affects
the performance of the model. However, when the object to be detected is flat, such as during pothole
detection, the possibility of overlap is less; therefore, an appropriate IOU threshold setting is required
for NMS.

3 Experimental Results

The proposed pothole detection system was installed on an Intel RealSense D455 camera,
NVIDIA GTX 1080ti, and Intel Core i7-8700 CPU. The detection model using only RGB images
was defined as YOLO-R, the detection model using only the transformed inconsistency map was
defined as YOLO-TDM and the model using the converged proposed RGB image and the transformed
inconsistency map was defined as YOLO-R/TDM. We evaluated the level of improvement in detection
performance via the fusion of data augmentation and multimodal detection results to improve the
YOLO learning performance. The performance evaluation of the proposed model was conducted
based on mean average precision (mAP), and for its comparison with the research results obtained
using the existing state-of-the-arts method, the results were extracted from the report by Fan et al.
[34] and used for performance comparison. mAP expresses the area under the curve of the Precision–
Recall (PR) curve as a single value and indicates how confident the model is about the detected object.
Precision is the ratio that is correctly detected among the results detected by TP/(TP + FP), and recall
is the ratio that is correctly detected among the objects that should be detected with TP/(TP + FN),
where TP is a true positive, that is, correct detection, FP is a false positive, that is, false detection, and
FN is a false negative.

It is not easy for the CNN model to collect enough data to learn depending on the type of data;
therefore, if there are less data, the model is trained using data reinforcement techniques such as
rotating some secured data or adding noise [35]. The training data of Pothole 600 [36] used in this
study was insufficient to train the YOLO network, so synthetic data (Figs. 3a and 3b) were artificially
created and added to the training data for learning. The artificially created synthetic data were used
as high-quality data for YOLO learning as they expressed the shape of the pothole more accurately
and clearly. In general, it is known that the detection performance increases when training YOLO by
adding approximately half of the existing training data [35]. Tab. 1 presents the model’s performance
before and after adding synthetic data by changing the IOU threshold. It can be seen that the overall
detection performance improved after adding the data. Among them, when the IOU threshold was
0.6, the difference was at the most improved by 6%. Therefore, it was confirmed that the addition of
synthetic data greatly helped in improving the detection performance and accuracy of CNN-based
models.
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Figure 3: Examples of pothole synthetic data and Pothole 600 data: (a) RGB synthetic data, (b) TDM
synthetic data, (c) RGB Pothole 600 data and (d) TDM Pothole 600 data

Table 1: Comparison of the performance of YOLO-R models before and after the addition of synthetic
data

Model (YOLO-R) mAP

IOU = 0.2 IOU = 0.3 IOU = 0.4 IOU = 0.5 IOU = 0.6

Before addition of data 83.15% 83.15% 83.15% 81.51% 75.18%
After addition of data 85.20% 85.20% 84.02% 82.94% 81.24%

YOLO-R, YOLO-TDM and YOLO-R/TDM were trained based on the dataset reinforced
through synthetic data, and the performance was evaluated by comparing the mAP according to the
change of the IOU threshold. The inference of the detection result depends on the IOU threshold, and
if the detection result is above the threshold, it is considered to be correctly detected. In general, an
IOU threshold of 0.5 is used because it focuses on how accurately an object is found while detecting an
object. However, when detecting a pothole, the purpose of quickly finding a pothole is larger; therefore,
the IOU threshold value was set to 0.2, and the IOU threshold value was additionally increased and
the change in detection accuracy was examined. Looking at the performance comparison results for
each detection model according to the IOU threshold change presented in Tab. 2, when the IOU is
0.2 or 0.3 (obtained through the proposed model), YOLO-R/TDM, improved up to 10.71% more
than YOLO-R, and up to 3.08% more than YOLO-TDM. Even when the IOU threshold increased
to 0.5, the accuracy of the proposed model was observed to be 8.88% and 4.31% higher than those of
YOLO-R and YOLO-TDM, respectively, and the detection performance of the proposed model was
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excellent. Therefore, it can be said that the proposed model is more suitable for quickly determining the
approximate location and number of potholes rather than detecting the exact location of the potholes.

Table 2: Performance comparison by detection model according to IOU threshold change

Model mAP

IOU = 0.2 IOU = 0.3 IOU = 0.4 IOU = 0.5 IOU = 0.6

YOLO-R 85.20% 85.20% 84.02% 82.94% 81.24%
YOLO-TDM 92.83% 92.83% 91.17% 87.51% 77.86%
YOLO-R/TDM 95.91% 95.91% 94.31% 91.82% 84.93%

Fig. 4 shows a sample of the Pothole-600 test result for each model when the IOU is 0.5. Looking
at rows 1–3, the potholes that were not detected by YOLO-R were detected through its fusion with
YOLO-TDM. In rows 4 and 5, on the contrary, potholes that were not detected by YOLO-TDM can
be detected through its fusion with YOLO-R. It was confirmed that the detection performance was
improved using the converged model. In the figure, the white bounding box is the ground truth and
the blue bounding box is the detection result.

The 2D vision method has a high execution speed, but the detection accuracy is not satisfactory. By
contrast, the 3D reconstruction method has high accuracy but has a disadvantage that the execution
speed is low due to the large amount of computation. The proposed algorithm showed high execution
speed and good detection performance using CNN among the 2D vision methods. Tab. 3 compares
the detection performance and data processing speed of the pothole detection state-of-the-art models
and the proposed model. In the case of the models proposed by Mikhailiuk et al. [14], Fan et
al. [29], Zhang [37], and Fan et al. [34], all the 3D reconstruction-type pothole detection methods
show high detection performance but indicate disadvantage in some models with quite low data
processing speed due to the large amount of computation for 3D reconstruction. The detection rates
the models were 73.4%, 84.8%, 98.7% and 98.7%, respectively, while the proposed system showed a
much higher detection rate than the models proposed by Mikhailiuk et al. [14] and Zhang [37] at
96.2% and showed a slightly lower detection performance than the models proposed by the other
researchers [29,34]. However, the execution speed of the proposed model was ∼6 times faster than that
reported by Fan et al. [29] and showed that the data could be processed two times faster than that of
proposed by Fan et al. recently [34]. The difference in execution speed between the model proposed by
Mikhailiuk et al. [14] and YOLO-R/TDM was very small, 0.1 ms, but YOLO-R/TDM showed 11.4%
higher detection performance. In addition, the experimental environment of the previously reported
models [14,29,34,37] is NVIDIA RTX 2080ti, while that for the proposed model is NVIDIA 1080ti,
which provides much faster execution speed, although data are processed in a relatively poor GPU
environment. It was confirmed that the proposed model is useful for real-time use. Through the fusion
of RGB and TDM, it was possible to improve the detection accuracy, which is a disadvantage of the
2D vision method, and through this, the performance similar to the 3D reconstruction method was
secured.
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Figure 4: Pothole-600 test result sample by model when IOU = 0.5: (a) YOLO-R, (b) YOLO-TDM
and (c) YOLO-R/TDM
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Table 3: Comparison of the detection performance of pothole between state-of-the-art models and the
proposed model

Dataset Method Correct detection False alarm Missed detection Runtime (ms)

Dataset 1 [37] 11 11 0 33.19
[14] 22 0 0 22.90
[29] 22 0 0 117.72
[34] 21 1 0 47.21
YOLO-R/TDM 22 0 0 23.45

Dataset 2 [37] 42 10 0 30.77
[14] 40 8 4 21.39
[29] 51 1 0 124.53
[34] 52 0 0 45.32
YOLO-R/TDM 49 9 3 24.15

Dataset 3 [37] 5 0 0 35.72
[14] 5 0 0 26.24
[29] 5 0 0 132.44
[34] 5 0 0 49.90
YOLO-R/TDM 5 0 0 23.25

Total [37] 58 21 0 33.23
[14] 67 8 4 23.51
[29] 78 1 0 124.90
[34] 78 1 0 47.48
YOLO-R/TDM 76 9 3 23.61

4 Conclusions

A pothole is a type of damage to the road surface, and it can cause traffic accidents and serious
damage to vehicles. To solve these problems, it is necessary to quickly detect and repair the pothole.
The existing pothole detection system involves public officials or professional inspectors and is
very subjective and inefficient; therefore the requirement for a safe, objective and powerful pothole
detection system is increasing. Among the various pothole detection methods, the 3D reconstruction
method is in the spotlight because it provides high accuracy; however, it is not widely used owing
to high equipment cost. It has low detection speed and there have been difficulties in its real-time
utilization. Furthermore, although the detection performance of the 2D vision method has been
improved owing to the recent development of CNNs, there are limitations that require a lot of data
learning. Therefore, in this paper, an efficient real-time pothole detection system based on the fast
2D vision method is presented. First, the lack of training data increased the learning performance
of the model by creating synthetic data, adding them to the training data, and converting them into
TDM. Afterward, each pothole was detected based on YOLO using RGB images and TDM, and the
detection performance was improved by complementing the detection results by performing fusion
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and optimization based on NMS. Consequently, a 10.71% improvement in performance was observed
when using YOLO-R/TDM compared with that using only YOLO-R and showed an execution speed
of 23.61 ms, which showed at least two times faster detection performance than the existing 3D
reconstruction method.

NMS was used for the fusion of detection results to find the optimal bounding box through
complementation among the detected bounding boxes, but there were cases where some incorrectly
detected bounding boxes could not be removed. This was reflected in the fusion result, and the false
alarm rate increased, resulting in performance degradation. Therefore, in the near future, we plan to
optimize the conditions required for extracting the optimal bounding box and design an algorithm
that simultaneously determines and removes the erroneously detected bounding box.
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