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Abstract: In bioinformatics applications, examination of microarray data has
received significant interest to diagnose diseases. Microarray gene expression
data can be defined by a massive searching space that poses a primary
challenge in the appropriate selection of genes. Microarray data classifica-
tion incorporates multiple disciplines such as bioinformatics, machine learn-
ing (ML), data science, and pattern classification. This paper designs an
optimal deep neural network based microarray gene expression classifica-
tion (ODNN-MGEC) model for bioinformatics applications. The proposed
ODNN-MGEC technique performs data normalization process to normalize
the data into a uniform scale. Besides, improved fruit fly optimization (IFFO)
based feature selection technique is used to reduce the high dimensionality in
the biomedical data. Moreover, deep neural network (DNN) model is applied
for the classification of microarray gene expression data and the hyperparam-
eter tuning of the DNN model is carried out using the Symbiotic Organisms
Search (SOS) algorithm. The utilization of IFFO and SOS algorithms pave
the way for accomplishing maximum gene expression classification outcomes.
For examining the improved outcomes of the ODNN-MGEC technique,
a wide ranging experimental analysis is made against benchmark datasets.
The extensive comparison study with recent approaches demonstrates the
enhanced outcomes of the ODNN-MGEC technique in terms of different
measures.
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1 Introduction

Microarray classification and analysis are highly critical for earlier diagnoses and treatment of
life-threatening diseases such as cancer. It displays the maximum rate of mortality and morbidity
stands second in developing countries and in economically developed countries [1]. Generally, the
human being suffers from two hundred kinds of cancer and the microarray technique is adapted for
keeping records of them. The GLOBOCAN data, Global health observatory, United Nations World
population prospectus, and World Health Organization reported that the four increasingly common
cancer that occurs around the world are female breast, lung, prostate, and bowel cancer [2]. It is caused
by oncogenes and is associated with genome. It causes uncontrolled and abnormal cell development.

The molecular examination makes known that distinct types of cancer have distinct gene expres-
sion profiles and might be used for diagnosing distinct cancers. Higher-density DNA microarray
evaluates the activity of various genes in a similar manner. This novel technique assists in providing
good therapeutic measurement to cancer patients by identifying type of cancer [3]. Earlier diagnosis of
cancer types increases the possibility of survival for the victim. This diagnosis is frequently generated
as a classification issue [4]. Therefore, it economically becomes restrictive to have larger sample sizes.
In order to resolve these problems, microarray medicinal dataset needs dimensionality reduction [5].

There are two main problems facing the algorithm of microarray dataset: extreme amount of genes
compared with a smaller amount of samples [6]. Although, there are wide-ranging techniques and
algorithms are accessible for this higher dimension information, massive searching space (unrelated
gene) damages the classification accuracy [7]. These unrelated genes confuse the learning method and
are fed to unrelated genes that are prone to overfitting. A particular way to improve the accuracy of
the classification with a higher dimension smaller sample dataset is gene selection (feature selection)
[8]. Feature selection (FS) is the procedure of recognizing the related features from the data and
representing the higher dimension dataset with a small searching space. However, for microarray data,
the appropriate FS resolution is highly complicated as the sample size is smaller than number of genes.
Various factors need to be considered when decreasing the dimensionality of the dataset [9]. The Two
essential features are searching strategy and evaluation criteria of FS method. According to this factor,
the FS method is separated as wrapper and filter methods [10].

In [11], a hybrid model based simulated annealing (SA) algorithm, adaptive neuro-fuzzy inference
system (ANFIS), and fuzzy c-means clustering (FCM) are introduced. The presented approach is
employed for classifying five distinct cancer data sets (that is central nervous system cancer, lung
cancer, prostate cancer, brain cancer, and endometrial cancer). In [12], a Principal Component Analysis
(PCA) reduction dimension approach involves the computation of proportion for eigenvector selec-
tion. For the classification model, a Levenberg-Marquardt Backpropagation (LMBP) and Support
Vector Machine (SVM) approach have been chosen. The researchers in [13] presented a grid searching-
based hyper parameter tuning (GSHPT) for RF parameter to categorize Microarray Cancer Data. A
grid searching method is developed by a set of fixed parameters that is important in giving optimum
performance based on n-fold cross-validation. The grid searching method offers optimal parameters
includes several features to consider at all the splits, various trees in the forest. In this study, the ten-fold
cross validation is taken into account.

The authors in [14] proposed a state-of-the-art Gene Selection Programming (GSP) approach
to choose appropriate genes for efficient and effective classification of cancer. GSP depends on
Gene Expression Programming (GEP) model with an improved mutation fitness function definition,
recombination operators, and determined initial population. Support Vector Machine (SVM) with
linear kernel serves as a classification of GSP. Sun et al. [15] presented an error correcting output code
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(ECOC) method for classifying multiple class microarray dataset based data complexity (DC) model.
In the study, an ECOC coding matrix is created according to the hierarchical partition of the class
space by using Minimizing Data Complexity (ECOC-MDC).

This paper designs an optimal deep neural network based microarray gene expression clas-
sification (ODNN-MGEC) model for bioinformatics applications. The proposed ODNN-MGEC
technique designs an Improved Fruit fly Optimization (IFFO) based feature selection technique
that is utilized for reducing the high dimensionality in the biomedical data. Moreover, deep neural
network (DNN) model is applied for the classification of microarray gene expression data and the
hyperparameter tuning of the DNN model is carried out using the Symbiotic Organisms Search (SOS)
technique. For examining the improved outcomes of the ODNN-MGEC technique, a wide ranging
experimental analysis is made against benchmark datasets.

2 The Proposed Model

This paper has developed an ODNN-MGEC model for gene expression data classification in
bioinformatics applications. The proposed ODNN-MGEC technique performs data normalization
process to normalize the data into a uniform scale. Followed by, the IFFO algorithm is utilized for
reducing the high dimensionality in the biomedical data. In addition, the DNN model is applied for the
classification of microarray gene expression data and the hyperparameter tuning of the DNN model is
carried out using the SOS algorithm. Fig. 1 demonstrates the overall block diagram of ODNN-MGEC
technique.

Figure 1: Block diagram of ODNN-MGEC technique

2.1 Data Normalization

In ML approaches were utilized for discovering tendencies from the dataset with comparative
estimation amongst the dimensional data point. But endeavouring for using ML, an important issue
was that there dimensional that are drastically varied scales. During this case, the min-max normalized
was utilized for reducing the different scales of dimensional. The normalization alters the data from a
particular small range by implementing linear transformation on original data. The dimensional value
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of data is normalization from the range of zero and one utilizing min-max normalized. The min-max
carries out the transformation of data by the subsequent formula as:

t = v − mind

maxd − mind

(tran−maxd − tran−mind) + tran−mind (1)

where t refers the altered value of data value v from dimensional d, signifies the new minimal value
and maxd implies the novel maximal value of dimensional d. Also, tran−mind stands for the changed
minimal value and tran−maxd signifies the transformed maximal value of dimensional d.

2.2 Algorithmic Design of IFFO Based Feature Selection

In this study, the proper election of feature subsets takes place via the IFFO algorithm. The FFO
[16] is established dependent upon foraging performance of Drosophila. The fruit fly (FF) has higher
to another species from olfactory ability and visual senses; so, it can be able to completely employ its
drive for locating food. In detail, even at a distance of 40 km in the food sources, the nose of FF is
collect different food scent which is dispersed during the air. With approaching the food source, the
FFs place the food as well as companies gathering place with support of its sensitive visual organ,
afterward, it is flying in that way. An optimum FF data are allocated with entire swarm under the
iteration, and the next iteration is based only on data of preceding optimum FF. Based on the food
search features of FF swarm, the FFO is separated as to many phases as follows [17]:

Step 1. Parameters initialized.

Initializing the parameter of FFO like maximal iteration number the population sizes, a primary
FF swarm place (X−axis, Y−axis) and the arbitrary flight distance range.

Xaxis = rands (1, 2) (2)

Yaxis = rands (1, 2) (3)

Step 2. Population initialized.

To provide the arbitrary place (Xi, Yi) and distance to the food searching of individual FF, where
i signifies the population sizes.

Xi = X−axis + RandomValue (4)

yi = Y−axis + RandomValue (5)

Step 3. Population estimation.

Primarily, compute the distance of food place to origin (D). Next, calculate the smell focus
judgment value (S) that is reciprocal of distance of the food place to origin.

Di = √
X 2

i + Y 2
i (6)

Si = 1
Di

(7)

Step 4. Replacement.

Replacing the smell focus judgment value (S) with smell attention judgment function (is named
as Fitness function) for finding the smell attention (Smell) of individual place of FF.

Smelli = Function (Si) (8)
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Step 5. Determine the higher smell attention.

Define the FF with maximum smell attention and the equivalent place amongst the FF swarm.

[bestSmellbestIndex] = max (Smell) (9)

Step 6. Retain the higher smell attention.

Recollect the maximum smell focus value and coordinates x and y. Afterward, the FF swarm fly
near the place with high smell attention values.

Smellbest = bestSmell (10)

X−axis = X (bestIndex) (11)

Y−axis = y (bestIndex) (12)

Step 7. Iterative optimization.

Enter the iterative optimized for repeating the execution of steps 2–5. The flow ends if the smell
attention is not anymore higher than preceding iterative smell attention or if the iterative number
attains the higher iterative numbers. The IFFO algorithm is derived by incorporating the concepts
of chaos theory. The chaotic method is non-linear and divergent naturally, it illustrates optimum
outcomes to global optimized. It creates oscillating trajectories and created a fractal infrastructure.
The fitness function was resultant by IFFO technique to define solution in this state generated to
obtain a balance among the 2 objectives as:

fitness = αΔR (D) + β
|Y |
|T | (13)

ΔR (D) denotes the classifier error rate. |Y | defines the size of subset that this method selects and
|T | whole count of features contained in the recent datasets. α demonstrates the parameter ∈ [0, 1]
relating to the weight of error rate of classification correspondingly however β = 1 − α implies the
importance of reducing features.

2.3 Optimal DNN Based Classification

At the time of classification process, the DNN model is used to determine the proper class label.
The basis of DNN is that the NN system is initially separated as a two-layer model and later train
the two-layer NN system layer wise and lastly get the primary weight of multi-layer NN model by
constructing the trained two-layer NN models, the entire procedure is named layer wise pre-training
[18]. The hidden state of NN model extracts features from the input layer because of its abstraction.
Therefore, the NN model using various hidden states is good at network generalization and processing
as well attain fast convergence rate. Fig. 2 showcases the structure of DNN.

DNN is a kind of feed-forward ANN with many hidden states, also all the nodes at the similar
hidden state utilize a similar non-linear function for mapping the input features from the layer below to
the existing nodes. DNN framework is flexible because of the different hidden states and nodes, hence
DNN illustrates outstanding capacity of fitting the complicated non-linear relations among inputs
and outputs. In general, DNN method is employed for classification or regression. The relationships
among inputs and outputs in DNN method is expressed by the following equation:

ν l+1 = ρ
(
zl

(
ν l

))
(14)
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zl
(
ν l

) = wl
(
ν l

) + bl, 0 ≤ l < L (15)

output = νL

Figure 2: DNN structure

In the equation, we attain the last output by converting the feature vector of the initial layer ν0 to a
processed feature vector ν l over L layers of nonlinear conversion. In the training phase, it is necessary
to describe the offset vector bl of l th layer and weight matrix wl. With the variance among the actual
and target outputs to generate a cost function, then, train DNN through backpropagation (BP) model.
Mostly the proposal of DNN method comprises the number of nodes in all the layers, transfer function
among the layers, the number of network layers, etc. The DNN method comprises the input, hidden,
and output layers. In this work, the NN layer mostly focuses on identifying the amount of hidden
states to describe the amount of layers. In NNs, hidden state has effects of abstraction and extracts
feature from the input.

2.4 Hyperparameter Tuning Using SOS Algorithm

For optimally tuning the hyperparameters of the DNN model, the SOS is applied. Cheng and
Prayogo [19] presented SOS, a novel population based metaheuristic approach simulated by natural
ecosystems. SOS utilizes the symbiotic connection amongst 2 different species. The symbiotic connec-
tion that is general from the real world has mutualism, commensalism, and parasitism. Mutualism
is described as inter-dependable connections amongst 2 organisms in which combined organism’s
advantage in the communication. The connection amongst the bee as well as flower is instance of
mutualism connection. The bee moves amongst the flower and gather nectar and turned it as to
honey. This activity profit the flower as it allows them from the pollination procedure. The procedure
is expressed mathematically as:

Pk+1
i = Pk

i + rnd� (Pbest − MV �BF1) (16)

Pk+1
j = Pk

j + rnd∗ (Pbest − MV ∗BF2) (17)
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where Pi implies the ith member of populations and Pj refers the organisms that are chosen arbitrarily
for interacting with Pi. Combined the organisms are functioning on mutual basis to survival from the
ecosystems, rnd stands for the arbitrary number with uniform distribution amongst zero and one, MV
signifies the mutual vectors, BF denotes the benefit vectors, k defines the generation and Pbest represents
the optimum individual organisms attained from kth generation. MV and BF are computed as:

MV = Pi + Pj

2
(18)

BF = round (1 + rnd) (19)

The round function has been utilized for setting the value of BF as one or two. BF has been utilized
for identifying if the organism incompletely or completely benefits in the communication amongst
individuals in the populations.

3 Experimental Validation

The proposed ODNN-MGEC technique has been validated using three datasets namely breast
cancer, prostate cancer, and colon cancer datasets [20,21]. Breast cancer comprises 24,481 features
and 97 samples. The prostate cancer dataset has 12,600 features with 136 samples where 77 samples
are prostate tumors and 59 samples are normal. The colon cancer dataset has 2000 genes and 62
samples gathered in colon cancer patients.

Tab. 1 and Fig. 3 offer the experimental results obtained by the ODNN-MGEC technique on the
breast cancer dataset. The results depicted that the ODNN-MGEC technique has offered enhanced
classifier results under all hidden layers. For instance, with 2 hidden layers, the ODNN-MGEC
technique has obtained precn, recal, accuy, and F1SCORE of 66.81%, 66.82%, 81.88%, and 66.82%
respectively. Likewise, with 10 hidden layers, the ODNN-MGEC system has reached precn, recal, accuy,
and F1SCORE of 63.28%, 69%, 82.76%, and 66.05% correspondingly. Similarly, with 20 hidden layers, the
ODNN-MGEC methodology has achieved precn, recal, accuy, and F1SCORE of 65.64%, 71.63%, 84.61%,
and 67.61% correspondingly.

Table 1: Result analysis of ODNN-MGEC technique on breast cancer dataset

Breast cancer
No. of hidden layers Precision Recall Accuracy F1-score

2 66.81 66.82 81.88 66.82
4 63.89 65.27 79.38 63.19
6 65.52 66.87 79.66 64.38
8 66.47 67.48 82.60 61.27
10 63.28 69.00 82.76 66.05
12 62.90 63.20 84.03 65.11
14 65.23 65.01 80.10 64.33
16 62.90 71.67 82.95 67.74
18 64.97 71.18 80.33 62.84
20 65.64 71.63 84.61 67.61

(Continued)
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Table 1: Continued
Breast cancer
No. of hidden layers Precision Recall Accuracy F1-score

Average 64.76 67.81 81.83 64.93

Figure 3: Result analysis of ODNN-MGEC technique on breast cancer dataset

Tab. 2 and Fig. 4 provide the experimental results obtained by the ODNN-MGEC technique
on the prostate cancer dataset. The results depicted that the ODNN-MGEC technique has offered
superior classifier outcomes under all hidden layers. For instance, with 2 hidden layers, the ODNN-
MGEC method has obtained precn, recal, accuy, and F1SCORE of 96.76%, 97.76%, 96.64%, and 96.63%
respectively. Along with that, with 10 hidden layers, the ODNN-MGEC technique has obtained precn,
recal, accuy, and F1SCORE of 95.10%, 98.37%, 96.60%, and 97.62% correspondingly. Also, with 20 hidden
layers, the ODNN-MGEC approach has obtained precn, recal, accuy, and F1SCORE of 95.60%, 98.50%,
95.76%, and 96.90% correspondingly.

Table 2: Result analysis of ODNN-MGEC technique on prostate cancer dataset

Prostate cancer
No. of hidden layers Precision Recall Accuracy F1-score

2 96.76 97.76 96.64 96.63
4 95.46 98.80 95.92 95.91
6 94.19 98.18 96.51 97.78
8 95.96 98.92 96.30 97.21
10 95.10 98.37 96.60 97.62
12 95.20 98.89 96.79 96.56

(Continued)



CMC, 2022, vol.73, no.2 4285

Table 2: Continued
Prostate cancer
No. of hidden layers Precision Recall Accuracy F1-score

14 96.13 98.47 96.28 96.19
16 95.78 97.25 95.98 96.89
18 95.25 98.31 96.67 97.05
20 95.60 98.50 95.76 96.90
Average 95.54 98.35 96.35 96.87

Figure 4: Result analysis of ODNN-MGEC technique on prostate cancer dataset

Tab. 3 and Fig. 5 demonstrate the experimental results obtained by the ODNN-MGEC system on
the colon tumor dataset. The outcomes depicted that the ODNN-MGEC technique has obtainable
improved classifier outcomes under all hidden layers. For instance, with 2 hidden layers, the ODNN-
MGEC algorithm has achieved precn, recal, accuy, and F1SCORE of 67.56%, 98.99%, 75.72%, and 82.84%
correspondingly. Also, with 10 hidden layers, the ODNN-MGEC system has reached precn, recal, accuy,
and F1SCORE of 67.28%, 98.59%, 80.18%, and 81.94% correspondingly. In addition, with 20 hidden
layers, the ODNN-MGEC technique has obtained precn, recal, accuy, and F1SCORE of 71.20%, 98.61%,
81.40%, and 84.62% correspondingly.

Table 3: Result analysis of ODNN-MGEC technique on colon tumor dataset

Colon tumor
No. of hidden layers Precision Recall Accuracy F1-score

2 67.56 98.99 75.72 82.84
4 70.80 98.74 80.93 79.99
6 70.82 98.19 75.07 83.08

(Continued)
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Table 3: Continued
Colon tumor
No. of hidden layers Precision Recall Accuracy F1-score

8 68.91 98.49 84.20 79.83
10 67.28 98.59 80.18 81.94
12 67.06 99.18 84.22 84.17
14 67.69 98.10 79.03 84.40
16 68.24 99.27 83.88 79.90
18 71.09 98.78 86.96 81.26
20 71.20 98.61 81.40 84.62
Average 69.07 98.69 81.16 82.20

Figure 5: Result analysis of ODNN-MGEC technique on colon tumor dataset

In order to highlight the enhanced outcomes of the ODNN-MGEC technique, a comparison study is
made with recent methods in Tab. 4.

Table 4: Comparative analysis of ODNN-MGEC technique with existing methods interms of different
measures

Methods Precision Recall Accuracy F1- score

Breast cancer

SVM-RBF 62.00 57.00 71.00 33.00
SVM-Polynomial 56.00 56.00 53.00 56.00
ODNN-MGEC 64.76 67.81 81.83 64.93

Prostate cancer

SVM-RBF 93.00 98.00 95.00 96.00

(Continued)
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Table 4: Continued
Methods Precision Recall Accuracy F1- score

SVM-Polynomial 90.00 32.00 50.00 47.00
ODNN-MGEC 95.54 98.35 96.35 96.87

Colon tumor

SVM-RBF 68.00 98.40 70.00 81.00
SVM-Polynomial 62.00 76.00 55.00 68.00
ODNN-MGEC 69.07 98.69 81.16 82.20

Fig. 6 offers the classifier results of the ODNN-MGEC technique with existing techniques on
breast cancer dataset. The results depicted that the SVM-Polynomial approach has resulted in poor
performance with precn, recal, accuy, and F1SCORE of 56%, 56%, 53%, and 56% respectively. Meanwhile,
the SVM-RBF technique has attained slightly enhanced outcomes with precn, recal, accuy, and F1SCORE

of 62%, 57%, 71%, and 33% respectively. However, the ODNN-MGEC technique has outperformed
the other methods with precn, recal, accuy, and F1SCORE of 64.76%, 67.81%, 81.83%, and 64.93%
respectively.

Figure 6: Comparative analysis of ODNN-MGEC technique on breast cancer dataset

Fig. 7 provides the classifiers of the ODNN-MGEC technique with existing techniques on prostate
cancer dataset. The outcomes outperformed that the SVM-Polynomial approach has resulted in worse
performance with the precn, recal, accuy, and F1SCORE of 90%, 32%, 50%, and 47% correspondingly. In
the meantime, the SVM-RBF method has obtained somewhat increased outcomes with precn, recal,
accuy, and F1SCORE of 93%, 98%, 95%, and 96% correspondingly. Eventually, the ODNN-MGEC
approach has outperformed the other methods with precn, recal, accuy, and F1SCORE of 95.54%, 98.35%,
96.35%, and 96.87% correspondingly.

Fig. 8 gives the classifier outcomes of the ODNN-MGEC methodology with existing algorithms
on colon tumor dataset. The outcomes demonstrated that the SVM-Polynomial method has resulted in
worse performance with precn, recal, accuy, and F1SCORE of 62%, 76%, 55%, and 68% correspondingly.
Followed by, the SVM-RBF methodology has gained somewhat superior outcomes with precn, recal,
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accuy, and F1SCORE of 68%, 98.40%, 70%, and 81% correspondingly. Lastly, the ODNN-MGEC
technique has portrayed the other methodologies with precn, recal, accuy, and F1SCORE of 62%, 76%,
55%, and 68% correspondingly.

Figure 7: Comparative analysis of ODNN-MGEC technique on prostate cancer dataset

Figure 8: Comparative analysis of ODNN-MGEC technique on colon tumor dataset

From the above mentioned result and discussion, it is apparent that the ODNN-MGEC technique
has accomplished superior outcomes over the other methods.

4 Conclusion

This paper has developed an ODNN-MGEC model for gene expression data classification in
bioinformatics applications. The proposed ODNN-MGEC technique performs data normalization
process to normalize the data into a uniform scale. Followed by, the IFFO algorithm is used to
reduce the high dimensionality in the biomedical data. In addition, the DNN model is applied for
the classification of microarray gene expression data and the hyperparameter tuning of the DNN
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model is carried out using the SOS algorithm. The utilization of IFFO and SOS algorithms pave
the way for accomplishing maximum gene expression classification outcomes. For examining the
improved outcomes of the ODNN-MGEC technique, a wide ranging experimental analysis is made
against benchmark datasets. The extensive comparison study with recent approaches demonstrates
the enhanced outcomes of the ODNN-MGEC technique in terms of different measures. In future,
the microarray gene classification performance can be boosted by the design of clustering and outlier
removal models.
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