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Abstract: Recently, the path planning problem may be considered one of
the most interesting researched topics in autonomous robotics. That is why
finding a safe path in a cluttered environment for a mobile robot is a significant
requisite. A promising route planning for mobile robots on one side saves
time and, on the other side, reduces the wear and tear on the robot, saving
the capital investment. Numerous route planning methods for the mobile
robot have been developed and applied. According to our best knowledge,
no method offers an optimum solution among the existing methods. Particle
Swarm Optimization (PSO), a numerical optimization method based on the
mobility of virtual particles in a multidimensional space, is considered one of
the best algorithms for route planning under constantly changing environmen-
tal circumstances. Among the researchers, reactive methods are increasingly
common and extensively used for the training of neural networks in order to
have efficient route planning for mobile robots. This paper proposes a PSO
Weighted Grey Wolf Optimization (PSOWGWO) algorithm. PSOWGWO
is a hybrid algorithm based on enhanced Grey Wolf Optimization (GWO)
with weights. In order to measure the statistical efficiency of the proposed
algorithm, Wilcoxon rank-sum and ANOVA statistical tests are applied. The
experimental results demonstrate a 25% to 45% enhancement in terms of Area
Under Curve (AUC). Moreover, superior performance in terms of data size,
path planning time, and accuracy is demonstrated over other state-of-the-art
techniques.
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1 Introduction

Mobile robots are used in different fields to carry out critical unmanned tasks, including military
operations, industrial automation and rescue operations [1]. In order to achieve efficiency in the use
of mobile robots, route planning is one of the essential parameters. Route planning can be defined as:
in any working environment; a mobile robot selects an optimum or suboptimal route that will take the
robot from a starting state to the goal state based on predefined performance criteria [2]. An efficient
route planning algorithm on one side will save the time to reach the goal state, and on the other side,
it will also keep the robot safe from wear and tear. Due to above mentioned significant role of route
planning algorithm, the topic is now becoming popular among the research community [3,4].

Mobile robots are necessary to respond under real-time constraints, which cannot be realized by
hardware with restricted computational power. Moreover, mobile robots are essential to be controlled
simultaneously by single or multiple users. Nonexistence of scalability, absent real-time performance,
and allowing one mobile robot to be controlled at a time reflect challenging concerns in the literature
of finding the best route of mobile robots. While designing a mobile robot route, three requirements are
generally considered. Firstly, environment modeling is performed. In environment modeling, a natural
map in which a mobile robot must operate is translated to a map features format that can easily be
stored. The second requirement is the need for optimization criteria, while the third requirement is the
path discovery algorithm [5]. A path search method is used to establish a collision-free route between
the home and destination points in the state space that meets the optimization criteria i.e., path length,
smoothness, safety degree, etc.

Efficiency and accuracy in route planning can be achieved firstly by designing an environment
model that will better understand the environmental factors. Environmental modeling will significantly
reduce the complexity involved in route planning. Different approaches can be used as techniques for
environment modeling, including the framework space approach, the free space approach, the cell
decomposition approach, the topological approach, and the probabilistic roadmap approach [5].

An optimization criterion must be set in the route planning process. Several variables can play
an important role and can be included in the criteria for optimization inside the rote planning for
mobile robots. Three often used optimization criteria are path length, smoothness, and degree of safety.
Heuristic approaches and artificial intelligence algorithms are the two broad types of methods used to
design route planning or optimization algorithms. Metaheuristic algorithms solve unexpected issues
because of having intelligence and prior knowledge of random search the two elements of population-
based heuristic algorithms [6]. Metaheuristic algorithms select exploration to thoroughly examine the
search space, while metaheuristics select the exploitation stage for the area’s local search.

This paper proposes the PSOWGWO algorithm to combine the hunting behavior of Grey Wolf
Optimization (GWO) and the social behavior of Particle Swarm Optimization (PSO) to have efficient
route planning for mobile robots. The optimization procedure begins with a random set of agents
in the proposed optimizer. To measure the statistical efficiency of the proposed algorithm, Wilcoxon
rank-sum and ANOVA statistical tests are applied. Moreover, the algorithm’s superior performance
in data size, path planning time, and accuracy is tested over other state-of-the-art techniques.

To organize this paper, related work is presented in Section 2. The proposed model is explained
in Section 3, while results are shown and discussed in Section 4. Finally, the conclusion and future
directions are discussed in Section 5.
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2 Literature Review

Map facilities have interested extensive studies on the fast computation of driving directions
in road networks. Finding the best route amongst two points can be modeled as the shortest
path problem on weighted graphs. The field of mobile robots is continuously gaining popularity
among the research community. To solve the issues of identification, and categorization Dynamic
Neural Networks (DNNs) have previously shown a significant degree of proficiency [2,4]. Advanced
application examples of DNNs include recognizing deformable objects, estimating their state and pose
for grasping, semantic task, path specification, and recognizing object and surface properties such as
sharp objects that could harm human collaborators or wet/slippery floors. This section of the paper
discusses current mobile robots and route planning work.

The development of low-cost sensing technology has benefited robots by delivering an abundance
of potentially rich and multimodal data. However, the concerned issue still is the techniques for
deriving meaningful and usable state representations from such data. To solve this issue, numerous
machine learning techniques and algorithms exist, including Artificial Neural Network (ANN),
Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Decision Tree (DT) [2,4]. The main
objective of all these algorithms is to generalize and forecast data. ANN is an intelligent mathematical
model inspired by the biological nervous system. The Multilayer Perceptron (MLP) architecture is one
of the most often used feedforward ANN designs. MLP comprises a single input layer, one or more
hidden layers, and a single output layer. The structure of MLP is shown in Fig. 1.

Figure 1: Structure of multilayer perceptron

Metaheuristic algorithms solve unexpected issues because of having intelligence and prior knowl-
edge of random search [7,8]. Exploration and exploitation are two elements of population-based
heuristic algorithms. Metaphors employ algorithms to represent natural phenomena or human
behavior in contemporary life. PSO is another optimizer that mimics individual movements and
interactions in a bird flock or fish school. Every individual is moved by their own best-known location
and by the best position of the swarm. It is a stable, easy to execute, and appropriate cooperation model,
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but the difficulty is finding initial parameters. Some applications of PSO include gene clustering,
antenna design, vehicle routing, control design, and dimensional reduction [9].

The Differential Evaluation (DE) optimizer is based on the concept of survival of the fittest.
DE starts with a random population, and a new candidate is created by mixing old candidates with
mutant solutions. This optimizer’s strong convergence promotes population variety and adaptation in
the context of changing conditions. It takes a long time to converge, and it is also hard to determine the
parameters [7]. The GWO algorithm simulates the leadership, social structure, and hunting behavior
of grey wolves [9–13]. The first two stages are encircling and attacking the victim. This optimizer
must have a balance between exploration and exploitation [14]. Due to high search accuracy, it is easy
to execute, but it causes premature convergence as the variables to increase the performance of the
algorithm decreases. It’s used in feature selection, clustering, robotics, and route finding.

Sundran proposed genetic optimization technique with B Spline deals with the static environment
for global route planning [15]. An Enhanced Artificial Potential Field (E-APF) generates navigation
trajectories, and Sudhakara et al. used this E-APF technique for the route planning of the mobile
robots [16]. Based on the inertia moment parameter, an optimization technique for route planning
of mobile robots is proposed by Lu et al. [3]. Applications of Genetic Algorithm (GA), Differential
Evolution (DE), PSO, and Cuckoo Search Algorithm (CSA) in a dynamic environment are studied by
Wahab et al. [7]. By keeping the balance between intensification and diversification, Das et al. worked
to select the deadlock-free shortest path. Alam et al. proposed a collision-free PSO-based algorithm for
shortest path selection for mobile robots with static obstacles [17]. Sanyal studied different available
solutions for route planning of mobile robots under static and dynamic environments [18]. After
conducting the above extensive review of the literature, it is concluded that Area Under Curve (AUC) is
one of the essential parameters that still needs improvement in the context of route planning in mobile
robots [19–21].

2.1 Problem Formulation

The mobile robot path planning challenge is typically conveyed as follows: for an assumed mobile
robot and a depiction of an environment, it is required to find a path among two stated locations, a start
point and an endpoint. The path should be free of collision and satisfies certain optimization criteria.
According to this definition, a path planning problem is considered an optimization problem. Most of
the recent methods stated above and in the recent literature used to solve the path planning problem
are according to two factors, (i) the path planning algorithms (local or global) (ii) the environment
type (dynamic or static).

2.2 Plan of Solution

Overcoming the problem depicted above requires considering the following three objectives to
obtain accurate and efficient solutions, (i) path safety, path length, and path smoothness (related to the
energy consumption). (ii) test the proposed PSOWGWO; realistic scenarios for the path’s calculation
have been used. (iii) comparison of the proposal with other state-of-the-art approaches, showing the
advantages of PSOWGWO. In particular, to evaluate the obtained results, we applied specific quality
metrics. Moreover, a statistical analysis is also performed to demonstrate the statistical evidence of the
obtained results.
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3 The Proposed PSOWGWO Model

Due to efficient computing and capacity to cope with an unpredictable environment, it is noticed
that smart strategies for robot navigation problems are gaining much attraction from the research
community. In this paper, an algorithm PSOWGWO, based on PSO and an enhanced weighted GWO
based algorithm, is designed and applied in order to provide an efficient solution for route planning
of mobile robots. The proposed model mainly consists of 4 main steps, as shown in Fig. 2.

Figure 2: Structure of the proposed model

The first step is the preprocessing step that includes configuration parameters for the proposed
optimization and population for search space. The second step is about training deep neural network
parameters in order to choose the best path, while the third step selects the best navigation path
planning. The fourth and final step statistically evaluates the quality of proposed algorithms.

PSOWGWO combines the social behavior of PSO with the hunting behavior of GWO. In the
proposed hybrid optimizer, the optimization procedure begins with a random set of agents. The set
actively suppressed potential solutions, and following that, the fitness function for each person’s
iteration is computed, and the top three leaders are designated as alpha, beta, and delta. The
population is then split into two equal groups. The proposed hybrid method divides the population
into two groups where the first group adheres to PSO procedures and the second group adheres to
GWO processes. The first group follows the PSO procedure strictly, while the second group adheres
to GWO processes.

Fitness functions are used to determine each PSOWGWO solution’s quality. Classification error
rate and the number of chosen features are the two main variables that affects the fitness function.
A satisfactory solution is to select a subset of features with a minimum classification error rate and a
smaller number of selected features. The following equation is used to determine the quality of each
solution for E (D) represents error rate.

Fitness = h1E (D) + h2

|s|
|f | , h1 ε [0, 1] , h2 = 1 − h1 (1)

The presented PSOWGWO algorithm is shown in Algorithm 1 step by step. In this way, the search
area is thoroughly searched for potential locations, those are then exploited with the help of PSO and
weighted GWO. As shown in Fig. 3, the flowchart explains the presented PSOWGWO algorithm. The
flowchart shows that the PSO and the WGWO are executed 50/50% in statice manner during iterations.
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Figure 3: PSOWGWO optimization algorithm

The PSOWGWO algorithm complexity analysis can be explained as follows.

• Step 1: initialize PSOWGWO population: O (1).
• Step 2: initialize PSOWGWO parameters: O (1).
• Step 3: initialize iteration counter: O (1).
• Step 4: evaluate fitness function evaluation: O (n).
• Step 5: find the three best solutions: O (n).
• Step 9: update first fitness: O (Maxiter × n).
• Step 10: update second fitness: O (Maxiter × n).
• Step 11: update third fitness: O (Maxiter × n).
• Step 16: update positions by WGWO: O (Maxiter × n).
• Step 19: update positions by PSO: O (Maxiter × n).
• Step 21: evaluate fitness function evaluation: O (Maxiter × n).
• Step 22: find the three best solutions: O (Maxiter × n).
• Step 23: update PSOWGWO parameters: O (Maxiter).
• Step 24: find the best solution: O (Maxiter).
• Step 25: increase iteration counter: O (Maxiter).

Thus, from the above analysis, the complexity of the PSOWGWO algorithm is O (Maxiter × n) and
the total complexity of the algorithm can be O (Maxiter × n × d) for d variables.
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Algorithm 1: Proposed PSOWGWO Algorithm

4 Results and Discussion

Path planning for mobile robots’ results in quick and fast responses, as well as it also minimizes the
wear and tears on the robot that then results in saving the cost. For the route planning of mobile robots,
several approaches have been suggested and documented in the scientific literature. In the heuristic
technique, sub-targets are determined at each phase of the rolling calculation. These sub-targets are
then implemented using real-time planning in the current PSOWGWO algorithm. When the suggested
algorithm (PSOWGWO) is started, the sub-targets are updated with the new information gleaned from
the move, which continues until the planning job is done.

4.1 Parameter Optimization

Experimental configurations of the PSOWGWO algorithm those are used to determine the fitness
function for a specific solution are shown in Tab. 1. The number of agents is determined to 30 and the
algorithms number of runs are counted to be 20.
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Table 1: Configuration of PSOWGWO

Parameter Value

#Agents 30
#Iterations 100
Inertia max and min of PSO [0.9, 0.6]
C1, C2 of PSO [2, 2]
a WGWO 2 to 0
h1 Parameter of Fitness 0.99
h2 Parameter of Fitness 0.01
Search Domain [0, 1]
#Runs 20

Dynamic Neural Networks (DNNs) may be considered as an extension of unidirectional recurrent
neural networks, with an addition of a second hidden layer and the reversal of the direction of the
connections between the hidden layers. As a consequence, this model is capable of incorporating
information from both the past and the future. The output ut can be calculated depending on the
values of {vi}i �=t = {v1, . . . , vt}
Q

(
ut|{vi}i �=t

) = σ
(
W y

u hy
t + W z

u hz
t + zu

)
(2)

where Wu is the weight matrix connecting the hidden layer to the output layer, hy
t is calculated based on

the weight matrix that connects the input layer to the hidden layer and the weight matrix that connects
hidden to hidden layer. zu is the output layer bias vectors, and σ represents the activation function.

A DNN employs weights to perform two essential functions: the first is to determine the rate of
output impacted by the input, and the second is to govern the learning rate of the hidden layer. The
result is created by multiplying the weights assigned to the inputs and then adding them together like
linear regression. Weights are the numerical values which describe the number of neurons involved in a
specific interaction. If the inputs are vj (j = 1, . . . , n), the weights are wj (j = 1, . . . , n), and each neuron
satisfies the following equation then each neuron is said to be a spiking unit. As a consequence of this

u = f (v) =
n∑

j=1

vjwj (3)

where n is the input number. The array multiplication may be used to calculate the weighted sum, for
the most part. The bias of a neuron is an extra variable that may affect the neuron’s output in addition
to the weighted sum of the neuron’s inputs. The final products that neural cells provide is:

u = f (v) =
n∑

j=1

vjwj + H (4)

where H is the bias.

4.2 Path Planning

There are many potential paths to pick from but finding the ideal one (the one that would need
the least amount of travel or cost) is something that mathematicians and computer scientists have



CMC, 2022, vol.73, no.2 2249

been attempting to solve for years and years. The proposed model divides the issue into smaller sub-
problems that may be tackled individually. There are multiple potential answers to each sub-problem,
and the solution chosen for one point may impact the possible solutions of future sub-problems. It
is a system for addressing a sequence of subproblems, each with several alternative solutions. In the
scenario of selecting the best path, the main two issues include the selection of start point and the
next step. In order to determine the overall performance of the proposed model; it is evaluated using
a series of simulated situations, such as the one shown in Fig. 4.

Figure 4: Automatic navigation results of PSOWGWO

Automatic navigation is a fundamental problem in robotics, and numerous alternative algorithms
are developed to provide courses those are either length or time optimum. The social navigation
architecture output results using the proposed and state of the art algorithms are shown in Tab. 2
based on distance and total time parameters. The PSOWGWO algorithm is compared with PSO [22],
GWO [23,24], GA [25], WOA [26], and FA [27] algorithms. Tab. 3 shows the descriptive statistics of
the proposed PSOWGWO algorithm and compared techniques.

Table 2: Social navigation architecture of PSOWGWO and the compared algorithms

Optimization Distance (M) Total time (S)

PSOWGWO 18.3 112
PSO 20.8 140
GWO 21.9 150
GA 23.6 230
WOA 26.8 280
FA 25.3 270
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Table 3: Descriptive statistics of the PSOWGWO algorithm and compared techniques

PSOWGWO PSO GWO GA WOA FA

Number of values 10 10 10 10 10 10
Minimum 108.0 140.0 150.0 230.0 275.0 270.0
25% Percentile 111.5 140.0 150.0 230.0 280.0 270.0
Median 112.0 140.0 152.5 235.0 285.0 272.5
75% Percentile 112.0 146.3 160.0 255.0 291.3 276.3
Maximum 112.0 160.0 160.0 260.0 295.0 285.0
Range 4.000 20.00 10.00 30.00 20.00 15.00
10% Percentile 108.2 140.0 150.0 230.0 275.5 270.0
90% Percentile 112.0 159.0 160.0 259.5 295.0 284.5
Mean 111.4 143.5 154.2 241.0 285.5 274.0
Std. Deviation 1.350 6.687 4.686 12.65 7.246 5.164
Std. Error of Mean 0.4269 2.115 1.482 4.000 2.291 1.633
Coefficient of
variation

1.212% 4.660% 3.039% 5.249% 2.538% 1.885%

Geometric mean 111.4 143.4 154.1 240.7 285.4 274.0
Geometric SD
factor

1.012 1.046 1.031 1.053 1.026 1.019

Harmonic mean 111.4 143.2 154.1 240.4 285.3 273.9
Quadratic mean 111.4 143.6 154.3 241.3 285.6 274.0
Skewness −2.277 2.076 0.3204 0.4406 0.06024 1.241
Kurtosis 4.765 4.059 −2.070 −1.893 −1.700 0.9459
Sum 1114 1435 1542 2410 2855 2740

The ANOVA and Wilcoxon Signed Rank Test statistical methodologies are used to compare
the populations in order to establish the efficiency of the proposed solution over the other available
solutions. The results of the ANOVA and two-way tests are shown in Tabs. 4 and 5. Following is an
example of how to create a statistical hypothesis for this test:

• The null hypothesis (H0) states that there is no statistically significant difference between the
groups.

• The alternative hypothesis (H1) states a statistically significant difference between the means of
two populations, which is the distinction.

Table 4: ANOVA test of PSOWGWO vs. compared algorithms

SS DF MS F (DFn, DFd) P value

Treatment (between
columns)

275917 5 55183 F (5, 54) = 1076 P < 0.0001

(Continued)
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Table 4: Continued
SS DF MS F (DFn, DFd) P value

Residual (within
columns)

2769 54 51.28 - -

Total 278686 59 - - -

Table 5: Wilcoxon signed rank test of PSOWGWO and the compared algorithms

PSOWGWO PSO GWO GA WOA FA

Theoretical median 0.000 0.000 0.000 0.000 0.000 0.000
Actual median 112.0 140.0 152.5 235.0 285.0 272.5
Number of values 10 10 10 10 10 10
Wilcoxon
Signed-Rank Test
Sum of signed ranks
(W)

55.00 55.00 55.00 55.00 55.00 55.00

Sum of positive
ranks

55.00 55.00 55.00 55.00 55.00 55.00

Sum of negative
ranks

0.000 0.000 0.000 0.000 0.000 0.000

P value (two tailed) 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020
Exact or estimate? Exact Exact Exact Exact Exact Exact
P-value summary ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗
Significant
(alpha = 0.05)?

Yes Yes Yes Yes Yes Yes

How significant is
the discrepancy?
Discrepancy 112.0 140.0 152.5 235.0 285.0 272.5

Fig. 5 shows different plots of residual and actual values to confirm the quality of the proposed
algorithm. The histogram of the performance of the analyzed strategies in comparison to the proposed
algorithm is shown in Fig. 6. The performance of several algorithms about the objective function is
observed. It should also be noted that the lowest, maximum, and average values obtained using the
proposed model are almost identical. Fig. 7 illustrates the stability of the proposed (PSOWGWO)
algorithm.
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Figure 5: Plots of residual and actual values

Figure 6: Histogram of the proposed and compared algorithms

Additionally, the ROC analysis is performed on a standard of ranking and findings from
continuous diagnostic tests. The accuracy indices derived from classification, notably the area under
the curve (AUC) that provide a meaningful comprehension of the variety. Fig. 8 demonstrates that the
AUC value of the proposed model is much higher than that of previous strategies.
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Figure 7: The performance of several algorithms against the fitness/objective function

Figure 8: ROC analysis of the PSOWGWO algorithm against PSO algorithm

5 Conclusion

In an environment with obstacles, finding a plausible route for a mobile robot is one among the
popular research areas. The goal of a route planning algorithm is to move from a given start state to
goal state within minimum time and cost. Our proposed PSOWGWO algorithms utilized the benefit of
both, PSO procedure and enhanced GWO process. The algorithm has a preprocessing phase and the
deep learning phase along with selection of best route planning. The results demonstrate the efficiency
and superiority of the PSOWGWO algorithm in terms of AUC and other performance measures.
Furthermore, The ANOVA and Wilcoxon Signed Rank Test statistical methodologies are also used to
compare the populations in order to establish the efficiency of the proposed solution over the other
available solutions.
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