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Abstract: Acoustic scene classification (ASC) is a method of recognizing
and classifying environments that employ acoustic signals. Various ASC
approaches based on deep learning have been developed, with convolutional
neural networks (CNNs) proving to be the most reliable and commonly
utilized in ASC systems due to their suitability for constructing lightweight
models. When using ASC systems in the real world, model complexity and
device robustness are essential considerations. In this paper, we propose a
two-pass mobile network for low-complexity classification of the acoustic
scene, named TP-MobNet. With inverse residuals and linear bottlenecks, TP-
MobNet is based on MobileNetV2, and following mobile blocks, coordinate
attention and two-pass fusion approaches are utilized. The log-range depen-
dencies and precise position information in feature maps can be trained via
coordinate attention. By capturing more diverse feature resolutions at the
network’s end sides, two-pass fusions can also train generalization. Also, the
model size is reduced by applying weight quantization to the trained model.
By adding weight quantization to the trained model, the model size is also
lowered. The TAU Urban Acoustic Scenes 2020 Mobile development set was
used for all of the experiments. It has been confirmed that the proposed model,
with a model size of 219.6 kB, achieves an accuracy of 73.94%.

Keywords: Acoustic scene classification; low-complexity; device robustness;
two-pass mobile network; coordinate attention; weight quantization

1 Introduction

The goal of acoustic scene classification (ASC) is recognition and classification using audio signals
to identify an environment [1], thereby enabling a wide range of applications including surveillance [2],
intelligent wearable devices, and robot sensing services. As in other fields, ASC problems have been
approached using deep learning, including deep neural networks [3,4], convolutional neural networks
(CNN) [5], recurrent neural networks [6], and convolutional recurrent neural networks [7]. Of these,
CNNs are used widely for ASC problems because they perform reliably when using spectrogram
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images of audio data for training [8]. There have been various ASC studies using CNNs. Piczak et al.
[5] introduced CNNs into ASC and environmental sound classification and evaluated their potential,
and since then various CNN models have been proposed for ASC [9,10] and there have been several
studies of low-complexity CNN models [11–13].

Additionally, model complexity and device robustness are important issues when applying ASC
systems in the real world, and ASC systems are also used in low-performance devices such as mobile
devices. In this paper, we propose a two-pass mobile network for low-complexity classification of the
acoustic scene, named TP-MobNet. MobileNetV2 [12] and MobNet [14] are the foundations for TP-
MobNet. Inverse residuals and linear bottlenecks are used, just as they were in the two preceding
models. In addition, the proposed two-pass approaches and coordinated attention are used. The
proposed two-pass technique has an impact on feature resolution training. Also, weight quantization
is used to reduce model size. The TAU Urban Acoustic Scenes 2020 Mobile development set [15] was
used for all of the experiments. The proposed TP-MobNet in the single model and ensemble model
showed 72.59% and 73.94% accuracy, respectively, with model sizes of 126.5 and 219.6 kB.

This paper is organized as follows. Section 2 presents related work involving various ASC methods.
Section 3 analyzes in detail the proposed method of TP-MobNet using coordinate attention. Finally,
Sections 4 and 5 present the experimental results and conclusions, respectively.

2 Related Work

The use of CNN has been widely explored over the years in the task of ASC. In this section,
we describe various modifications in CNN or additional that have been proposed to improve the
performance of ASC. Starting with the CNN-based ASC model in Sections 2.1, 2.2 describes
the mobile-network-based ASC model. It then proceeds to explore previous studies involving the
combination of attention and two-pass methods with CNN and mobile-network models.

2.1 ASC Models Based on CNNs

As part of the detection and classification of acoustic scenes and events (DCASE) series, ASC
appears in every edition of task [16]. The baseline system for DCASE 2021 Task 1a task implementa-
tion uses a deep CNN, which was proposed by Valenti et al. [17] as a training strategy that takes full use
of the limited datasets available. Batch normalization and adjustments to layer widths were applied to
the original system. There have been several entries based on adaptations of the CNN-based network
since Valenti et al. [17] recommended employing a CNN to identify short sequences of audio data in
the DCASE challenge.

Dorfer et al. [18] proposed a system based on a CNN trained on spectrograms, which consisted
of two convolutions and one fully connected layer, the entire input segment. Additionally, they also
optimized their models using hyperparameter tuning.

2.2 ASC Models Based on Mobile Networks

MobNet was proposed by Hu et al. [14], coupled with a set of CNN-based models and a
mix of data augmentation strategies. Time and frequency operations and analysis were specialized
by CNN-based systems. MobNet is a mobile network that is heavily based on MobileNetV2. The
MobileNetV2 is built on an inverted residual, with bottleneck layers that are typical residual models
in reverse order as input and output of the residual block [12]. The inverted residual block expands
the input dimensions rather than lowering them, preserving information that might otherwise be
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lost in a typical residual model. To filter features in the intermediate expansion layer and reduce
the model’s complexity, MobileNetV2 employs lightweight depth-wise convolutions [12]. To retain
representational power, it then reduces nonlinearities in the narrow layers. As a result, MobileNetV2
keeps its great accuracy while lowering its complexity.

2.3 ASC Models Based on Attention and Two-pass Method

Cao et al. [19] proposed using attention to maintain details from the feature map. ResNet with an
inverted residual block was the basis for their proposed model. They included spatial attention and
channel attention module to the model to compensate for aspects such as crucial features that could be
lost in the model. In the feature map, the channel attention performs global average and max pooling,
then feeds the features into a two-layer neural network. Following the activation functions, a weight
coefficient is generated to multiply with the feature map. The spatial attention, on the other hand,
executes maximum and average pooling on a single channel dimension. This is applied to each channel
separately before being concatenated. The concatenation results are then sent into a convolution with
a sigmoid activation function to produce a weight coefficient, which is subsequently multiplied by the
feature map.

McDonnell et al. [20] proposed late fusion, which involves combining two CNN paths before the
network output. The input spectrogram is split into two parts: high frequencies and low frequencies,
which are then averaged over overlapping views rather than global views, and the two paths are then
merged in the final layer.

3 Two-pass Mobile Networks Using Coordinate Attention

We designed TP-MobNet based on MobNet and MobileNetV2, as described in Sections 3.1 and
3.2. In addition, coordinate attention is added, and the detailed mechanism is described in Section 3.3.
Also, Section 3.4 describes the weight quantization.

3.1 Baseline

The proposed baseline model, as shown in Tab. 1, is mostly made up of mobile blocks. To input
features, the first two-dimensional convolution and three mobile blocks are employed. The mobile
blocks are built for channel dimensions, and each has 32, 48, or 64 channels. The features are then
activated using the batch normalization and ReLU activation functions. The features are then given
coordinate attention after one convolution and dropout. Finally, the coordinate attention features are
supplied into the final convolution, where pooling and softmax functions are applied.

Table 1: Structure of the proposed baseline

Layer name Layer config Output feature size

Input (128, 423, 3)
Convolution stride = 2, 32, 3 × 3 (64, 212, 32)
BatchNorm & ReLU
Mobile block 1 stride = 2, 32, 3 × 3 (32, 106, 32)
Mobile block 2 stride = 2, 48, 3 × 3 (16, 53, 48)
Mobile block 3 stride = 2, 64, 3 × 3 (8, 27, 64)
Convolution stride = 1, 64, 1 × 1 (8, 27, 64)

(Continued)
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Table 1: Continued
Layer name Layer config Output feature size

BatchNorm + ReLU
Convolution stride = 1, 64, 1 × 1 (8, 27, 64)
Dropout
Attention (8, 27, 64)
BatchNorm
Convolution stride = 1, 10, 1 × 1 (8, 27, 10)
BatchNorm
Pooling (1, 10)
Softmax (1, 10)

Based on MobileNetV2, the mobile blocks are subjected to linear bottlenecks and inverted
residuals. As shown in Tab. 2, a mobile block consists of three bottlenecks: three bottleneck layers:
one bottleneck, and two residual bottlenecks. The preceding bottleneck’s output features are linearly
transmitted to the next bottleneck without being activated.

Table 2: Structure of mobile block

Layer name Layer config Output feature size

Input (H, W, Cinput)
Bottleneck stride = 2, Coutput, 3 × 3, (H/2, W/2, Coutput)
Residual bottleneck stride = 1, Coutput, 3 × 3, (H/2, W/2, Coutput)
Residual bottleneck stride = 1, Coutput, 3 × 3, (H/2, W/2, Coutput)

The feature dimension is lowered by half in the bottleneck with stride 2 through the depth-wise
convolution, as shown in Tabs. 3 and 4. Alternatively, in the residual bottleneck, which uses skip
connections, the feature dimension is retained. In addition, all bottlenecks are also applied to channel
expansion at the first convolution, and they are recovered at the last convolution.

Table 3: Structure of bottleneck

Layer name Layer config Output feature size

Input (H, W, Cinput)
Convolution stride = 1, 2Cinput, 1 × 1 (H, W, 2Cinput)
BatchNorm + ReLU
Depthwise convolution stride = 2, 2Cinput, 3 × 3 (H/2, W/2, 2Cinput)
BatchNorm + ReLU
Convolution stride = 1, Coutput, 1 × 1, (H/2, W/2, Coutput)
BatchNorm
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Table 4: Structure of residual bottleneck

Layer name Layer config Output feature size

Input (H, W, Cinput)
Convolution stride = 1, 2Cinput, 1 × 1 (H, W, 2Cinput)
BatchNorm + ReLU
Depthwise convolution stride = 1, 2Cinput, 3 × 3 (H, W, 2Cinput)
BatchNorm + ReLU
Convolution stride = 1, Coutput, 1 × 1 (H, W, Coutput)
BatchNorm residual
Add residual + input (H, W, Coutput)

3.2 Two-pass Fusion

For the proposed TP-MobNet, fusion approaches are used. Two convolution output features are
fused in the first convolution (early fusion), and the output features of the last convolution are divided
in half, as shown in Tab. 5 and Fig. 1. Coordinate attention is given to one side of the divided features
but not the other. After applying pooling and softmax to both output features, the interpolation is
processed (late fusion).

Table 5: Structure of the proposed TP-MobNet

Layer name Layer config Output feature size

Input (128, 423, 3)
Convolution Stride = (2, 1), 32, 3 × 3

Stride = (2, 2), 32, 3 × 3
(64, 423, 32)
(64, 212, 32)

Early fusion (64, 635, 32)
BatchNorm + ReLU
Mobile block 1 stride = 2, 32, 3 × 3 (32, 318, 32)
Mobile block 2 stride = 2, 48, 3 × 3 (16, 159, 48)
Mobile block 3 stride = 2, 64, 3 × 3 (8, 80, 64)
Convolution stride = 2, 32, 1 × 1 (8, 80, 64)
BatchNorm + ReLU
Convolution stride = 2, 72, 1 × 1 (8, 80, 72)
Dropout
BatchNorm
Convolution stride = 2, 10, 1 × 1 (8, 80, 10)
BatchNorm
Split (8, 40, 10)

(8, 40, 10)
Attention + pooling + softmax (1, 10) → outputA

Pooling + softmax (1, 10) → outputB

Late fusion (1 − λ) ∗ outputA + λ ∗ outputB (1, 10)
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Figure 1: Structure of the proposed TP-MobNet

The reason why two fusions are applied is as follows. The output of the convolution is computed
only by a small window. Depending on the value of the small window, overfitting may occur. Therefore,
early fusion is applied to reduce overfitting caused by windows. And coordinate attention has a low
capability for channel relationships. Late fusion is applied to capture the channel relationship in the
final output.

The experiment demonstrated that when early fusion and late fusion were combined, they had
similar effects on the ensemble. For the first convolution, we used several strides. In contrast to stride
(2, 1) which can only be fused along the time axis, stride (2, 2) can be fused in both directions. It was
confirmed that proper performance could only be achieved when the axis of early fusion was the same
in split operations.

3.3 Coordinate Attention

We utilize coordinate attention [21], a new method of integrating positioning information into
channel attention for mobile networks. In contrast to squeeze-and-excitation channel attention [22],
coordinate attention is decomposed into two feature encodings by bi-directional average pooling. It
can be used to train long-range relationships as well as precise position information in feature maps.

As shown in Tab. 6, two two-dimensional average poolings are used for the X and Y axes.
Thereafter, after the output features have been concatenated, the number of channels is adjusted based
on the reduction ratio r. Following BN, a swish activation and ReLU6 function are used as activation.
For each attention weight, the data is divided into X and Y axes. The attention weights are applied to
the input features by multiplying them.

Table 6: Structure of coordinate attention

Layer name Layer config Output feature size

Input (H, W, C)
Pooling stride = 1, 1 × W

stride = 1, H × 1
(1, W, C)
(H, 1, C)

Concatenation (H + W, 1, C)
Convolution stride = 1, C/r, 1 × 1 (H + W, 1, C/r)
BatchNorm + activation
Divide (1, W, C/r)

(H, 1, C/r)

(Continued)
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Table 6: Continued
Layer name Layer config Output feature size

Convolution stride = 1, C, 1 × 1, (1, W, C)
(H, 1, C)

Sigmoid attention weights
Multiplication input ∗ attention weights (H, W, C)

3.4 Weight Quantization

Our trained model is quantized for efficient integer-arithmetic-only inference [23]. Converting a
32-bit fixed-point operation to a low-precision 8-bit operation can boost the speed of the CNN model
while reducing its weight [3]. The TensorFlow Lite converter in TensorFlow Lite [24] supports an 8-bit
quantization technique.

4 Experiments

We evaluated the proposed TP-MobNet using the TAU Urban Acoustic Scenes 2020 Mobile
dataset. Sections 4.1 and 4.2 describe the specifications and processing of this dataset, Section 4.3
describes the training in detail, and Section 4.4 presents the experimental results.

4.1 Dataset

A development dataset and an evaluation dataset make up the TAU Urban Acoustic Scenes 2020
Mobile dataset (the evaluation dataset is not published). Airport, retail mall, metro station, street
pedestrian, public plaza, street traffic, tram, bus, metro, and park are the acoustic scene classifications
in the dataset. The development dataset comprises 10-s segments recorded with three genuine devices
(A–C) and six simulated devices (S1–S6), as shown in Tab. 7. The overall length and number of
segments are respectively 64 h and 23,040.

Table 7: Description of the TAU urban acoustic scenes 2020 mobile dataset

Description Num. of devices Num. of segments

Development dataset (full) 9 23,040
Development dataset (for
cross-validation, training)

6 13,965

Development dataset (for
cross-validation, test)

9 2,970

Evaluation dataset 11 7,920

The development dataset is separated into 70 percent training and 30 percent test for the cross-
validation setup. Several segments aren’t used for the balanced test dataset in this situation. In addition,
the test dataset contains only three simulated devices (S3–S6). The training and test dataset each of 13
965 and 2970 segments, respectively. The evaluation dataset consists of 10-s segments recorded with
11 devices, one of which is a real device (D) and four of which are simulated (S7–S11). There are 7920
segments in total (the evaluation dataset is not published).
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4.2 Data Preprocessing and Augmentations

All of the audio segments were recorded in mono with a sampling rate of 44 kHz and a 24-bit
resolution per sample. 2048 FFT points were done for every 1024 samples in each 10-s input segment,
and a power spectrum was derived. In that instance, there were 431 bins in one power spectrum. Then,
with 128 frequency bins, log-Mel filterbank characteristics were recovered, and mean and variance
normalization was done to each frequency bin. The normalized log-Mel filterbank features were also
used to produce delta and delta-delta, which were then stacked into the channel axis. As a result, one
of the input features was in the shape of 128 × 423 × 3.

Mixup [25], spectrum augmentation [26], spectrum correction [14], pitch shift, speed change, and
mix audios were used as data augmentation methods for the features. In the training procedure, mixup
and spectrum augmentation were applied. A mixup with an alpha value of 0.4 was applied to each
mini-batch of input features, which were randomly masked for time and frequency.

Before training, other augmentation methods like spectrum correction, pitch shift, speed change,
and mix audios were used. Averaging the spectra from all training devices except device A was used to
generate reference device spectra for spectrum correction. The reference device spectrum was used to
adjust the spectra of device A. In addition, the acoustic signals of all training datasets were enhanced by
padding and cropping to randomly shift the pitch and change the speed. In addition, acoustic signals
from the same classes were mixed at random. As seen in Tab. 8, these data augmentations enhanced
the total amount of training data.

Table 8: Comparison of data amounts using data augmentations

Description Num. of devices Num. of segments

Development dataset (full) 9 106,560
Development dataset (for
cross-validation, training)

6 66,075

4.3 Training Details

TensorFlow 2.0 and Keras were used in all of the experiments presented here. With a 0.9 momen-
tum weight and a 10 − 6e decay, the optimizer employed stochastic gradient descent. Categorical cross-
entropy loss was also employed. With a batch size of 32, all of our models were trained for 256 epochs.
The learning rate was initially set to 0.1. The learning rate was reset at epochs 3, 7, 15, 31, 127, and
255. We selected the validation point with the highest accuracy as the best model. The late fusion
interpolation value was set to 0.5.

4.4 Experimental Results

Tabs. 9–14 provide the experimental results and details. Tab. 9 shows the experimental findings
broken down by model type and data normalization. As a starting point, we constructed two models.
Small FCNN [17] and MobNet [17] are two of them. Small FCNN had an accuracy of 64.04% and
66.09%, depending on whether or not data normalization was used. The accuracy standards for the
proposed MobNet, on the other hand, were 60.57% and 67.24%. When both models were normalized,
it was confirmed that they performed better.
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Table 9: Experimental results according to model types and applying data normalization

Description w/norm w/data augs. Params. Size [kB] Acc. [%]

Small FCNN √ 117,169 117.1 64.04√- √ 117,169 117.1 66.09
MobNet √ 38,780 124.5 60.57√ √ 38,780 124.5 67.24

Table 10: Experimental results according to data augmentations

Description w/norm. w/spec corr. w/pitch w/speed w/noise w/mix Params. Size [kB] Acc. [%]

MobNet √ 38,780 124.5 67.24√ √ √ √ √ √ 67.81√ √ √ √ √ 67.91√ √ √ √ √ 66.77√ √ √ √ √ 67.27√ √ √ √ √ 70.30√ √ √ √ √ 66.90√ √ √ √ 68.42

Table 11: Experimental results according to model hyperparameters

Description No. of filters Spectrogram split Params. Size [kB] Acc. [%]

MobNet 12 √ 38,780 124.5 70.30
12 19,873 64.23 67.58
24 69,579 95.87 70.74
32 70,634 97.42 70.81
32∗ 97,820 121.1 71.45

Table 12: Experimental results according to the proposed methods

Description No.
of
filters

w/coordinate
attention

w/two-
pass
methods

Stride
in
early
fusion

w/ensemble Params. Size
[kB]

Acc.
[%]

MobNet 32 70,634 97.42 70.81√ 70,883 98.47 71.25

(Continued)
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Table 12: Continued
Description No.

of
filters

w/coordinate
attention

w/two-
pass
methods

Stride
in
early
fusion

w/ensemble Params. Size
[kB]

Acc.
[%]

32∗ 97,820 121.1 71.45√ 98,053 122.1 71.82
TP-
MobNet

32∗ √ √ {2, 1} 99,557 126.5 72.59√ √ {2, 2} 99,614 126.6 72.09√ √ {1, 2} 99,603 126.5 72.56√ √ {2, 1} √ 219.6 73.94

Table 13: Device-wise and class-wise accuracies of the proposed methods

Class,
Device/Models

Baseline w/coordinate attention w/two-pass methods w/ensemble

A 74.85 76.36 74.85 75.76
B, C 71.97 70.76 72.88 72.72
S1–S3 69.60 71.62 72.22 73.33
S4–S6 71.82 71.21 72.02 74.75
Airport 68.35 60.94 73.06 73.06
Bus 81.48 83.16 85.86 85.52
Metro 76.77 74.75 76.09 80.13
Metro station 81.48 73.74 69.36 76.09
Park 82.49 85.19 82.83 83.50
Public square 56.90 57.24 62.63 63.64
Shopping mall 63.30 68.01 70.37 66.67
Street pedestrian 52.19 52.53 53.87 50.17
Street traffic 86.53 88.55 80.81 84.18
Tram 64.98 74.07 71.04 76.43
Overall accuracy 71.45 71.82 72.59 73.94

Table 14: Performance comparison between the proposed model and previous CNN models

Description w/data aug. w/weight
quant.

Params
[K].

Size [kB] Acc. [%]

DCASE 2021
baseline [27]

√ 90.3 47.7

EfficientNet-V2 [28] √ √ 62 121.8 70.5

(Continued)
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Table 14: Continued
Description w/data aug. w/weight

quant.
Params
[K].

Size [kB] Acc. [%]

SE-ResNet [29] √ √ 113 127.6 70.2
RF-regularized CNN
[30]

√ √ 64 126.2 69.5

Shallow conformer
[31]

√ 34 61.25

TP-MobNet
(proposed)

√ √ 99 126.5 72.59

The experimental results are presented in Tab. 10 by the method of data augmentation. Ablation
studies were carried out using five distinct augmentation strategies, with data normalization used as
a default. As a result of the experiment, the best performance was achieved when simply noise was
excepted, with an accuracy of 70.30%.

The experimental results are presented in Tab. 11 according to the MobNet hyperparameters. The
performance of the mobile block was confirmed in particular based on the difference in the number
of initial filters. To begin, the process of separating the spectrogram into two splits and feeding it to
the network was eliminated to decrease parameters. The accuracy climbed to 70.81% Tab when the
number of filters was raised to 32. It was validated that the accuracy standard with 121.1 KB was
increased to 71.45% using the same number of filters (displayed as 32∗) as the model proposed in 1.

The performance evaluation of several proposed strategies is presented in Tab. 12. The accuracy
was 71.82% in the case of the proposed TP-MobNet with two-pass techniques, and 72.59% in the stride
2, 1 combination in the case of the proposed TP-MobNet with two-pass methods. In this example, we
confirmed that it had the best performance of the single models proposed, with 99,557 parameters and
a size of 126.5. Various strides were used, and two models were combined to corroborate the 73.94%
accuracy.

Tab. 13 shows performance device-wise and class-wise. The majority of the proposed approaches’
performances were confirmed to be better than the baseline. It was confirmed that the ensemble model
performed better for S4–S6, which is a previously unknown device.

Finally, Tab. 14 compares the performance of previous CNN models and the proposed TP-
MobNet. The size of the single model was confirmed to be similar to previous CNN models, but
the performance was somewhat enhanced.

5 Conclusions

In this paper, we propose a two-pass mobile network for low-complexity classification of the
acoustic scene, named TP-MobNet. The proposed TP-MobNet includes two-pass fusion techniques
in a single model, as well as coordinate attention and weight quantization. Experiments on the TAU
Urban Acoustic Scenes 2020 Mobile development set confirmed that our model, with a model size of
219.6 kB, obtained an accuracy of 73.94%.
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