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Abstract: In this work, we developed and implemented a voice control
algorithm to steer smart robotic wheelchairs (SRW) using the neural network
technique. This technique used a network in network (NIN) and long short-
term memory (LSTM) structure integrated with a built-in voice recognition
algorithm. An Android Smartphone application was designed and configured
with the proposed method. A Wi-Fi hotspot was used to connect the software
and hardware components of the system in an offline mode. To operate and
guide SRW, the design technique proposed employing five voice commands
(yes, no, left, right, no, and stop) via the Raspberry Pi and DC motors. Ten
native Arabic speakers trained and validated an English speech corpus to
determine the method’s overall effectiveness. The design method of SRW was
evaluated in both indoor and outdoor environments in order to determine
its time response and performance. The results showed that the accuracy
rate for the system reached 98.2% for the five-voice commends in classifying
voices accurately. Another interesting finding from the real-time test was that
the root-mean-square deviation (RMSD) for indoor/outdoor maneuvering
nodes was 2.2∗10–5 (for latitude), while that for longitude coordinates was a
whopping 2.4∗10–5 (for latitude).

Keywords: Network in network; long short-term memory; voice recognition;
wheelchair

1 Introduction

Disabled people in public places have a complex time maneuvering wheelchairs. Those people also
depend on others to assist them in moving their wheelchairs [1]. According to [2], People with limited
mobility make up 40% of those unable to steer and maneuver wheelchairs adequately, compared to the
9%–10% who have been taught to operate power wheelchairs. Furthermore, clinical studies indicate
that nearly half of 40% of disabled with impaired mobility cannot control an electric wheelchair. More
than 10% of those disabled who use electric wheelchairs have had an accident within the first four
months [3]. Accordingly, to provide a better quality of life for wheelchair users, it has been developed
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with various technologies fitted with a navigation and sensor system that works automatically [4–7].
These wheelchairs are known as Smart Robotic Wheelchairs (SRW) due to the introduction of more
choices for controlling the chair, improved safety, and comfort over conventional wheelchairs [8,9].

Generally, to perform autonomous activities, the SRW must be capable of navigating safely,
avoiding obstacles, and passing through doorways or any other confined space [10]. In SRW, which is
controlled via a joystick intelligent control system unit, the operation of this system has proven to be
the most significant development [11]. However, people with disabilities in their upper extremities will
have difficulty using the joystick smoothly. As a result, situations requiring quick response could result
in tragic incidents [12]. Therefore, several researchers have started to develop SRW based on human
physiological signals. For example, the human-computer interface (HCI) operates a wheelchair by the
use of physiological signals such as the electrooculogram (EOG), the electromyogram (EMG), and
the electroencephalogram (EEG) [13–15]. On the other hand, brain-computer interfaces (BCIs) have
advantages for translating brain signals into action for wheelchair control [16]. The hybrid BCI (hBCI)
approach, which integrates EEG and EOG, increased wheelchair accuracy and speed. However, the
technology of EEG-BCI has several limitations in terms of low resolution and signal-to-noise ratio
(SNR). Additionally, hBCI encounters difficulties simultaneously controlling speed and direction [17–
19].

In general, different researchers have significantly enhanced the development of SRWs with
autonomous functions via voice recognition technology. The strategy described in [20] illustrated the
result of an intelligent wheelchair system using a voice recognition technique in conjunction with a
GPS tracking model. By using a Wi-Fi module, voice commands were transformed into hexadecimal
number data and used to drive the wheelchair in three different speed phases. Additionally, the system
utilized an infrared (IR) sensor to identify barriers and a mobile application to determine the patient’s
location. A similar work conducted by Raiyan et al. [21] utilizes an Arduino and Easy VR3 with
a voice recognition module to drive an autonomous wheelchair system. This study demonstrated
that the implemented system robustly guided the wheelchair with less complex data processing
and without wearable sensors. A different novel study employs an adaptive neuro-fuzzy to steer a
motorized wheelchair [22]. The study was created and executed using real-time control signals supplied
by voice instructions via a classification unit. This architecture’s proposed system for tracking the
wheelchair uses a wireless sensor network [22]. Despite the highly advanced methodologies presented
by researchers in this field, the high cost, and precision required for distinguishing, categorizing, and
identifying the patient’s voice continue to be the primary obstacles.

Recently, numerous researchers have employed the convolutional neural network (CNN) technol-
ogy to overcome the inaccuracy of identifying and classifying patients’ speech [23,24]. This technology
converts speech commands into spectrogram visuals, then fed into CNN. This technique has been
shown to improve the accuracy of speech recognition. In this context, Sharifuddin et al. [25] introduced
an inelegant design using CNN to steer SRW based on four voice commands. The method used data
collected from the google website and applied Mel-frequency cepstral coefficient (MFCC) to extract
voice commands. Authors claim that the results of the vice commend classification using CNN have
an accuracy of 95.30%. Similarly, Sutikno et al. [23] developed a voice-controlled wheelchair-using
CNN and long short-term memory (LSTM) based on five commends. The developed method used
data obtained from recording several subjects using sound recorder pro and sox sound exchange. This
method demonstrated that the vice commands classification using CNN and LSTM has accuracy
above 97.80%. Although many of the research results that have been conducted are significantly high,
computers are still used in these methods to perform complex operations on CNN.
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However, due to the extensive calculations required to attain high accuracy, employing CNN
in smartphones is still developing [26]. This article proposes to design a voice control method for
robotic wheelchairs by using CNNs and LSTM models [27]. The system used a smartphone to build
an interactive user interface that can be controlled easily by delivering a voice command to the system’s
motherboard via the mobile application. The objective of this study was accomplished by developing
and implementing a mobile application, a voice recognition model, a CNN model, and an LSTM
model. Additionally, all safety considerations were taken into account while driving and navigating
in both indoor and outdoor environments. The results indicated that the built system was remarkably
resilient in terms of response time and correct execution of all orders without delay.

2 Materials and Methods
2.1 Architecture of the System

The implementation of the proposed architecture system is divided into two stages, as illustrated in
Fig. 1. In the first stage, an Android mobile application was developed using the Flutter programming
language [28,29]. Six steps were used to create and program the application (named voice control),
as shown in Figs. 2a and 2b. The voice control application appears in the application list when
accessed. After granting the application access to the microphone, it attempts to recognize the words
and highlights them in the interface recognition, as depicted in Fig. 2c. The second stage consists
of assembling hardware devices, including mechanical parts and a control unit, as shown in Fig. 3.
The mechanical parts are composed of a standard wheelchair, two motor pairs (3.13.6 LST10 24v
DC 120 rpm), and an NP7–12 12v 7ah lead acid battery. At the same time, the control unit includes
Raspberry pi4 (GPU: Broadcom Video Core VI, Networking: 2.4 GHz, RAM: 4 GB LPDDR4
SDRAM, Bluetooth 5.0, microSD), and Relay Module (5 V 4-channel relay interface board).

Figure 1: Overall system architecture
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Figure 2: Android app interface created for controlling powered wheelchair and its voice command
prediction ratio: (a) Steps of creating the application (a) Main of voice control app, (b) Mode screen
(Right, Left, No, Yes, and stop)

2.2 Development of Voice Recognition Model

Feature extraction is used to produce a frequency map for each audio file, which displays how
the signal evolves over time. As a result, speech analysis systems used the Mel-frequency cepstral
coefficients (MFCC) coefficients to extract this information [30]. An important part of character
extraction is preventing numerical instability by putting it through a finite impulse response filter
(FIR), which is a single-coefficient, digital filter as:

q(n) = v(n) − ξv(n − 1) (1)

where q(n) and v(n) are the output filter and the original voice signal respectively. The number of
sampling is denoted by n, and ξ given as 0 < ξ ≤ 1.
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Figure 3: Mechanical assembly of wheelchair

It is necessary to use framing and windowing [w(n)] in order to maintain the samples within frames
and reduce signal discontinuities as:

w(n) =
⎧⎨
⎩(1 − α) − α cos

(
2πn

N − 1

)
n = 0, 1, . . . , N − 1

0 otherwise
(2)

where α is a constant, and N represent the number of frames.

In this method, the spectral analysis is achieved using fast Fourier transform (FFT) to calculate
the magnitude spectrum for each frame as:

q(k) =
N−1∑
n=0

q(n)e
−j2πkn

N , k = 0, . . . , N − 1 (3)
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The spectrum is subsequently processed according to MFCC using a bank of filters; where Mel-
filter-bank can be written as:

Hm[fk] = fk − f [m − 1]
f [m] − f [m − 1]

(4)

It is possible to write the boundary points (f [m]) by taking the lowest (fl), and highest (fh) values
on the filter-bank in terms of hertz and frequency as:

f [m] =
(

N
Fs

)
B−1

(
B(fl) + m

B(fh) − B(fl)

M + 1

)
(5)

where M, and N are the number of filters and the size of the FFT respectivily. The term B is
representing the Mel-scale which calculated by:

B(f ) = 1125 ln(1 + f
700

) (6)

In this work, we used an approximate homomorphic transform to remove noise and spectral
estimation errors as:

S[m] = ln

[
N−1∑
k=0

∣∣q[k]2Hm[k]
∣∣] , 0 < m ≤ M (7)

In the final step of MFCC processing, Cosine Transformer (DCT) are employed to provide high
decorrelation properties as:

cl[n] =
√

2
M

M∑
m=1

Sl[m] cos
[

nπ

M

(
m − 1

2

)]
, n = 0, 1, . . . ., L < M (8)

The first and second derivatives of (8) are used to obtain the feature map:

�cl[n] =

p∑
p=1

P
(
cl+p[n] − cl−p[n]

)
2

p∑
p=1

P2

, �2cl[n] =

p∑
p=1

P
(
�cl+p[n] − �cl−p[n]

)
2

p∑
p=1

P2

(9)

The database was thus developed and used by CNN, and it applies to all recordings that have been
recorded.

2.3 Development of CNN Model

This study used the NIN structure as the core architecture for developing mobile applications
[27,31]. NIN is a CNN technique that does not employ fully connected (FC) layers. Instead, NIN
uses global pooling rather than fixed-size pools to take images of any size as inputs. This technique
is helpful for mobile applications because it allows users to fine-tune the speed-accuracy trade-off
without compromising network weights.

In order to develop CNN, we employ a multi-threading technique. The smartphone used in this
technique has four CPU cores, making it simple to divide a kernel matrix into four sub-matrices and
divide a row into four sub-matrices. To obtain the output feature maps, it is necessary to conduct four
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generalized matrix multiplication (GEMM) operations simultaneously. The cascaded cross channel
parametric pooling (CCCPP) technique was also utilized to compensate for the loss of the FC layers.
Because of this, our CNN model comprises input and output, twelve convolution layers, and two
succeeding layers.

2.4 Development of LSTM Model

We adopted LSTM model as a vanilla structure [32]. The architecture of this model consists of a set
of recurrently connected sub-networks, known as memory blocks. In specific, the model is composed
of a cell, an input gate, an output gate, and a forget gate. The mechanism of the LSTM model start
works by identifying and eliminating of last outputs data (ht−1) and current inputs data (Xt) using the
sigmoid function (σ ). This step is achieved by forgetting gate (ft) function, which is given by:

ft = σ(Wf [ht−1, Xt] + bf ) (10)

where Wf and bf are weight matrices and bias weight vector respectively. In the second step, the model
will store and update the new input data in the cell state (Ct) using the sigmoid layer and tanh layer.
The sigmoid layer decides to update or neglect the new data using (1 or 0), while the tanh layer gives
weighs to the passing data using (1 or −1). Then, the old memory data (Ct−1) added to the new memory
of the cell state as:

it = σ(Wi[ht−1, Xt] + bi)

Kt = tanh(Wc[ht−1, Xt] + bc)

Ct = Ct−1ft + Ktit (11)

In the final step, the output value (ht) is calculated based on the sigmoid gate (Ot) and the new
values created by Ct and tanh layer as:

Ot = σ(W0[ht−1, Xt] + b0) ht = Ot tanh(Ct) (12)

Fig. 4 illustrates the diagram of the proposed CNN with LSTM neural network.

The flowchart in Fig. 5 depicts the signal flow for controlling wheelchair system.

3 Experimental Procedure

In the Health and Basic Sciences Research Center at Majmaah University, the English speech
corpus of isolated words was used to evaluate the proposed system. Ten native Arabic speakers were
selected to pronounce five words with a total of 2,000 utterances. The data was recorded using a
20 kHz sample rate and 16-bit resolution. Then, using the reinforcement method, this data set was
supplemented with additional audio cues. The supplementary dataset contains 2,000 speech altered in
pitch, velocity, dynamic range, noise, and forward and backward time shift. The new data set (original
and supplemented) contains 4000 utterances and is divided into two parts: a training set (training and
validation) containing about 80% of the samples (3200), and a test set containing the remaining 20%
of the sample (800).
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Figure 4: The CNN with LSTM neural network

To quantify the predictive accuracy and quality for the proposed system, we compute the F-score
as:

F − score = 2
(

P ∗ R
P + R

)
(13)

where P and R indicate for precision and recall, respectively, and are defined as follows::

P = Tp

Tp + FP

(14)

R = Tp

Tp + FN

(15)

here, FP, FN, and Tp are false positive, false negative, and true positive respectively.

During the classification, the percentage difference (%d) equation was employed to measure the
accuracy of each voice command prediction as:

%d = |V1 − V2|(
V1 + V2

2

) ∗ 100% (16)

where V1 and V2 represent the first and second observations during the comparison process.
Indoor/outdoor navigational performance is also assessed in real time using this methodology. With
vocal commands, the wheelchair navigated around and inside a mosque at 24.893374, 46.614728
coordinates.
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Figure 5: Flowchart of the system

4 Results

Tabs. 1–3 represent the steps of voice recognition model development. Tab. 1 shows the five audio
wave shapes with training time.

The next step is to convert the audio file waves into its frequency domain by using Fourier analysis
as shown in Tab. 2.

Then, these frequency domain waves were converted into spectrograms (See Tab. 3) and used as
input in NIN model then to LSTM model respectively.



2450 CMC, 2022, vol.73, no.2

Table 1: The five audio wave shapes

Yes Training time=0.5s No Training time=0.3s Left Training time=0.4s

Right Training time=0.3s Stop Training time=0.3s

Table 2: The five singles of long-term spectrum

Yes Frequency range=15.9kHz No
Frequency 
range=16.2kHz

Left
Frequency 
range=16.3kHz

Right
Frequency 
range=16.1khz

Stop
Frequency

range=16.3kHz
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Table 3: The five singles of time-frequency spectrogram

Yes No Left

Right Stop

Tab. 4 illustrated the screen shoot of mobile application (voice command prediction ratio).
Additionally, the application displays the user’s expected word weight. It is usually a single-voice order
with greater weight than other words, indicating that no incorrect classification judgment can be made
during the classification process.

Table 4: The five words of screen shoot for mobile app

Yes No Left

Right Stop
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The confusion matrix was generated using the initial results, as shown in Tab. 5. The average
accuracy was around 82.6% of the accurate forecast for five-voice commands. We used the phrases true
positives, true negatives, false positives, and false negatives to describe the classification activity. The
computations for the voice-command prediction ratio, accuracy, and precision are shown in Tabs. 6
and 7. In terms of calculating the percentage difference between two commands when comparing
them, the example compares “STOP” to other commands. This suggests a minor risk of selecting an
inaccurate classification option. On the other hand, the difference between accurate and erroneous
predictions is quite significant, indicating a negligible risk of making incorrect predictions. The
difference exceeded 187 percent, as shown in Tab. 7.

Table 5: Normalized of confusion matrix

Actual voice command

Prediction
ratio %

Class Yes No Left Right Stop
Yes 87% 3% 3% 4% 3%
No 2% 90% 3% 2% 3%
Left 4% 1% 92% 2% 1%
Right 5% 4% 2% 87% 2%
Stop 3% 5% 3% 3% 86%

Table 6: Accuracy, precision, recall, and F-score for voice commands

Class Accuracy Precision Recall F-score

Yes 95% 0.73 0.74 0.735
No 96.3% 0.75 0.75 0.75
Left 98.2% 0.77 0.75 0.76
Right 94.8% 0.75 0.73 0.74
Stop 93.5% 0.71 0.69 0.70

Table 7: Calculation of percentage difference for stop command

Voice command Yes No Left Right Stop

Prediction ratio 3% 5% 3% 3% 86%
Percentage difference 187% 178% 187% 187% —-

An evaluation of indoor/outdoor navigation for the wheelchair was obtained to test the real-
time performance of the designed system within the public area. Fig. 6 depicts the intended route
navigation in comparison to the actual path. Tab. 8 shows the coordinate nodes of the intended and
actual pathways while traversing. The root means square deviation (RMSD) was used to represent the
difference between the planned and actual nodes in this experiment. Figures show that the RMSD for
latitude and longitude coordinates are 2.2 ∗ 10–5 and 2.4 ∗ 10–5, respectively.
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Figure 6: Navigation planned route vs. actual route

Table 8: Coordinates of outdoor navigation

Planned longitude Planned latitude Actual longitude Actual latitude

24.89347 46.614989 24.893469 46.614989
24.89348 46.61502 24.89348 46.61505
24.89349 46.615048 24.893498 46.615048
24.89351 46.61508 24.893508 46.615092
24.8935 46.615083 24.8935 46.615083
24.89349 46.615056 24.893497 46.615076
24.89346 46.61499 24.89347 46.614991
24.89345 46.614936 24.893448 46.614966
24.89346 46.614928 24.893457 46.614958
24.89347 46.614915 24.893496 46.614918
24.89354 46.614881 24.893541 46.614891
24.8936 46.614847 24.893642 46.614847
24.8936 46.614847 24.893602 46.614867
24.8936 46.614818 24.893597 46.614819
24.89348 46.614572 24.893495 46.614572
24.89348 46.614572 24.893483 46.614592
24.89351 46.614557 24.893558 46.614557
24.89351 46.614557 24.893509 46.614578
24.89353 46.614578 24.89354 46.614578
24.89362 46.614776 24.893619 46.614779
24.89367 46.614877 24.893698 46.614897
24.89367 46.614877 24.893675 46.614882
24.89366 46.614884 24.89368 46.614894

5 Discussion

The results of this work indicate that the average response time for processing the command
signal 0.5 s in order to avoid any accidents. The study also shows that the smart wheelchair program
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can be used and applied without an internet connection. Moreover, the proposed program achieves a
significant results in presence of external noise. As shown in Tab. 6, the accuracy, precision, recall, and
F-Score for the implemented system have achieved an adequate results in comparing with the previous
study in [26]. The experiment results revealed a statistically significant difference in the percentage
values of the different categories, indicating a low risk of making incorrect predictions. For example,
Tab. 7 shows that the difference between true and false predictions was about 187%. For the evaluation
of the performance of indoor and outdoor navigation, the results indicated that the wheelchair was
able to accurately maneuvering and RMSD was significantly low.

Although, this study enhances the system’s suitability for a variety of users. However, wheelchairs
require additional research in the static, motion, and moment of inertia domains. Additionally,
the existing model of voice recognition omitted a speaker identification mechanism. By identifying
a speaker, wheelchair users can only take particular directions from an authorized individual by
increasing their safety. When comparing this study with other studies regarding efficacy, dependability,
and cost, we believe that our design overcomes numerous complexities. For instance, in a recent study
conducted by Abdulghani et al. [22], an adaptive neuro-fuzzy control was constructed and tested to
track motorized wheelchairs using voice recognition. To achieve a high level of precision, the design
must incorporate a wireless network in which the wheelchair is treated as a node. In another study, a
wheelchair was driven using an eye and voice. In this study, the authors used a voice-controlled mode
in conjunction with a web camera in order to make the system more congenial and reliable [33].

Despite this work has different merits; however some limitations need to be treated and updated
in the following stages. For example, the system needs to be equipped with a variable controller and
GPS to make it more efficient and meet the needs of users. In addition, the mechanical design of the
wheelchair needs to be modified to change the torque of inertia. This change will alleviate the sudden
jump of a wheelchair during the initial start or stop.

6 Conclusions

This research developed a voice-controlled wheelchair utilizing a low-cost and reliable technology.
This technology uses a built-in voice recognition model combined with the CNN and LSTM models to
train and classify five spoken commands. The design method used an Android smartphone (Flutter-
based) app that connects with microcontrollers over an offline Wi-Fi hotspot. For the design and
implementation of the experiment, ten native Arabic speakers produced a total of 2000 utterances of
five words. The precision and usability of both indoor and outdoor navigation were tested using a range
of disturbances. All voice commands have been given a normalized confusion matrix, precision, recall,
and F-score. Voice recognition commands and wheelchair moves were demonstrated to be reliable
in real-world testing. During indoor/outdoor maneuvering, it was also discovered that the RMSD
estimated between the planned and real nodes was accurate. The ease of use, low cost, independence,
and security are only a few of the benefits of the actual prototype. The device also has an emergency
push-button as an additional safety element.

7 Future Work

The system can be enhanced with GPS technology, allowing users to design their own routes. The
system also can be equipped with ultrasonic sensors for added safety, as it will operate and ignore user
commands if the chair gets too close to an obstacle that could cause an accident. Additional research
could be done to see if users prefer voice control interfaces over brain control interfaces. The voice
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recognition model can be improved using the speaker identification algorithm to protect the disabled
person’s safety by accepting commands from only one user.
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