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Abstract: Brain cancer detection and classification is done utilizing distinct
medical imaging modalities like computed tomography (CT), or magnetic
resonance imaging (MRI). An automated brain cancer classification using
computer aided diagnosis (CAD) models can be designed to assist radi-
ologists. With the recent advancement in computer vision (CV) and deep
learning (DL) models, it is possible to automatically detect the tumor from
images using a computer-aided design. This study focuses on the design of
automated Henry Gas Solubility Optimization with Fusion of Handcrafted
and Deep Features (HGSO-FHDF) technique for brain cancer classification.
The proposed HGSO-FHDF technique aims for detecting and classifying
different stages of brain tumors. The proposed HGSO-FHDF technique
involves Gabor filtering (GF) technique for removing the noise and enhanc-
ing the quality of MRI images. In addition, Tsallis entropy based image
segmentation approach is applied to determine injured brain regions in the
MRI image. Moreover, a fusion of handcrafted with deep features using
Residual Network (ResNet) is utilized as feature extractors. Finally, HGSO
algorithm with kernel extreme learning machine (KELM) model was utilized
for identifying the presence of brain tumors. For examining the enhanced
brain tumor classification performance, a comprehensive set of simulations
take place on the BRATS 2015 dataset.
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1 Introduction

The death rate because of brain cancer is the maximum in Asia [1]. Brain cancer grows in the spinal
cord or brain [2]. The many symptoms of brain cancer involve frequent headaches, coordination issues,
changes in speech, mood swings, seizures, memory loss, and difficulty in concentration. Brain cancer
is a type of cancer that remains in the central nervous system or brain [3]. It can be classified as to
distinct types based on the origin, nature, progression stage, and rate of growth [4]. Either, it is benign or
malignant. Benign brain cancer cells hardly attack adjacent healthy cells, have a slower progression rate
(for example, pituitary cancers, meningiomas, astrocytoma), and dissimilar boundaries. Malignant
brain cancer cells (for example higher-grade astrocytoma, oligodendrogliomas, and so on) willingly
invade adjacent cells in the spinal cord or brain, have rapid progression rates and fuzzy borders [5].
Further, it is categorized into two kinds according to the origin: primary and secondary brain cancers.

Primary cancer directly originates in the brain. When cancer develops in the brain because of
cancer present in some other body organs like stomach, lungs, and so on, also it is called a metastasis
or secondary brain cancer. Furthermore, grading of brain cancer can be performed according to the
growth rate of tumorous cells. Also, Brain cancer is considered by the progression phases (Stage-0, 1,
2, 3, and 4). Stage-0 represents tumorous cancer cells that are abnormal, however, it doesn’t spread
to neighboring cells [6]. Stages-1, 2, and 3 denote cells that are tumorous and spread quickly. Lastly,
in Stage-4 cancer spread all over the body. It is certain that a considerable number of people were
saved when cancer was identified at an earlier phase via cost-effective and fast diagnoses methods [7].
But it is complex for treating cancer at the highest stage where the survival rate is lower. The imaging
modalities like magnetic resonance imaging (MRI), or computed tomography (CT) of the brain are
safer and faster methods when compared to biopsy. This imaging modality assists radiotherapists to
observe disease progression, discover brain disorders, and in operational procedures [8].

Brain image reading or brain scans to cure disorder is subjected to inter-reader accuracy and
variability based on the ability of the doctor [9]. Various studies have been conducted for developing a
robust and accurate solution for the automated classification of brain cancer. But, because of higher
inter and intra contrast, shape, and texture dissimilarities, it remains a challenge. The conventional
machine learning (ML) method is based on hand-engineered features that restrain the strength of the
solution. While the deep learning-based approach extracts useful features that provide good results
[10]. Deep learning (DL)-based technique requires a huge number of interpreted information for
training, and acquiring this information is a difficult process. Kang et al. [11] presented a technique
to brain tumor classifier utilizing an ensemble of deep feature and ML techniques. During this
presented structure, can be adapted the model of transfer learning utilizes a different pre-trained deep
convolutional neural network (DCNN) for extracting deep features in brain MRI. The extracting deep
feature is then estimated by different ML techniques.

The authors in [12] established a multi-level attention process to the task of brain tumor
detection. The presented multi-level attention network (MANet) comprises both spatial and cross-
channel attention that not only efforts on prioritized tumor region. The authors in [13] presented
a novel technique that utilizes DCNNs to classify brain tumors as normal and 3 distinct varieties.
The tumor has primarily segmented in the MRI utilizing an improved Independent Component
Analysis (ICA) mixture mode method. From the segmentation image, deep feature is extracted and
classified. The authors in [14] concentrated on a 3-class classifier problem for distinguishing amongst
glioma, meningioma, and pituitary tumors that procedure 3 prominent varieties of brain tumor. The
presented classifier method adapts the model of deep transfer learning (TL) and utilizes a pre-trained
GoogLeNet for extracting features in brain MRI images.
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The authors in [15] presented an intelligent diagnostic model to initial recognition of brain tumor
dependent upon radial basis function neural network (RBFNN) and effective deep feature of MRI
scan. During the segmentation element, Grab cut approach was executed to segment the tumor region.
During the feature extracting component, a CNN was employed to extract of novel deep feature in a
segmented image. The extracting deep feature is fed as to RBFNN from the classifier modules. Devnath
et al. [16] present a method for automatically detecting pneumoconiosis utilizing a deep features
based binary classification. A CNN technique pre-trained with TL in a CheXNet method is primarily
utilized for extracting deep features in the X-Ray image, afterward, the deep feature is mapped to high
dimension feature space to classifier utilizing SVM and CNN based feature aggregation techniques.

This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion
of Handcrafted and Deep Features (HGSO-FHDF) technique for brain cancer classification. The
proposed HGSO-FHDF technique involves Gabor filtering (GF) technique for removing the noise
and enhancing the quality of the MRI images. In addition, Tsallis entropy based image segmentation
approach is applied to determine injured brain regions in the MRI image. Moreover, a fusion of hand-
crafted with deep features using Residual Network (ResNet) is utilized as feature extractors. Finally,
HGSO algorithm with kernel extreme learning machine (KELM) model was utilized for identifying
presence of brain tumors. For examining the enhanced brain tumor classification performance, a
comprehensive set of simulations take place on the BRATS 2015 dataset.

2 The Proposed HGSO-FHDF Model

In this study, a new HGSO-FHDF technique has been developed for the identification and classi-
fication of brain cancer. The presented HGSO-FHDF technique comprises several steps (as shown in
Fig. 1) such as GF based pre-processing, Tsallis segmentation, fusion based feature extraction, KELM
classifier, and HGSO based parameter optimization. At the final stage, the HGSO algorithm with
KELM model was utilized for identifying presence of brain tumors.

Figure 1: Overall workflow of the proposed model
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2.1 Image Pre-processing Using GF Technique

At the primary stage, the input images are preprocessed by the use of GF technique. Gabor
transform has a unique biological background. The Gabor filter is the same as the direct representation
and frequency of the human visual scheme in terms of direction and frequency, also extracting local
data of distinct directions, frequencies, and spatial positions of an image. A main benefit of GF is
invariant to translation, scale, and rotation. The purpose why Gabor wavelet is utilized for facial
expression detection is that once expression change occurs, the main portions of the face like eyebrows,
eyes, and mouth undergoes great change because of muscle change. This part is reflected in the image
as grayscale changes. Now, the real and imaginary portions of the wavelet vary, hence the amplitude
response of the GF would be very clear, hence it is better suited for extracting local features. In image
processing, 2D Gabor filtering is commonly utilized for processing the image. The kernel function of
the 2D Gabor wavelet is given as follows:

ψuv (z) = ||kuv||2

σ 2
× e

∣∣|kuv| |2
∣∣ |z| |2

2σ 2 ×
(

eik
uvZ − e

σ2
2

)
(1)

Whereas u and v represents the direction and frequency of Gabor wavelet kernel, z = (x, y)

signifies the location of pixel in an image, σ signifies the filter bandwidth, and |kuv|2/σ 2 is utilized
for compensating the attenuation of energy spectrum defined by the frequency. The Gabor feature of
the image is attained by convolving the Gabor wavelet kernel and the facial expression image. Assume
that the gray values of (x, y) point in the facial expression image is fixed to k, it can be expressed as
follows

Guv (x, y) = I (x, y) ∗ ψuv (x, y) (2)

Whereas Guv(x, y) denotes the Gabor feature of the extracted image, ψUV(x, y) denotes the kernel
function of 2S Gabor wavelet, and ∗ indicates the convolutional process.

2.2 Tsallis Entropy Based Segmentation

Here, Tsallis entropy is applied to segment the affected regions. The entropy is related to the chaos
metric in the system. Primarily, Shannon indicated that when the physical systems are separated into
2 statistical free subsystem A & B, entropy value can be defined as follows:

S (A + B) = S (A) + S (B) (3)

Based on Shannon concept, a non-extensive entropy concept is derived as given below.

Sq = 1 − ∑T

i=1 (pi)
q

q − 1
(4)

where T signifies the system potential, q designates the entropic index, and pi denotes likelihood of
every state i. The Tsallis entropy Sq satisfies Shannon entropy by q → 1. The entropy value is defined
by the use of pseudo additive rule as given below:

Sq(A + B) = Sq(A) + Sq(B) + (1 − q).Sq(A).Sq(B) (5)

The Tsallis entropy is employed for identifying optimal thresholds of the images. Consider L gray
levels in the interval {0, 1, . . . , L − 1} with probability distribution pi = p0, p1, . . . , pL−1. So, the Tsallis
multilevel thresholding is defined using following equations.

f (T) = [t1, t2, . . . , tk−1] = argmax
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2.3 Feature Extraction

At the time of feature extraction, a fusion of handcrafted features using LDEP and deep features
using ResNet-152 model are fused together to generate feature vectors. The whole procedure of
computation of the LDEPi,j’ for center pixel I i,j. Consider Qi,j

n denoted the nth diagonal neighbor of
center pixel Qi,j at the distance D from a center pixel Qi,j, consider n ∈ [1, 4] and Qi,j indicates the pixel
at ith row and jth column of gray-scaled image M have m1 rows and m2 columns. Where I i,j

n and I i,j

denotes the intensity value of Qi,j
n and Qi,j, correspondingly [17].

τmax = arg max (sign (α) = 0∀α ∈ [0, 2]) (7)

τmin = arg min (sign (α) = 0∀α ∈ [0, 2]) (8)

whereas,

sign (α) =
{

1 α ≥ 0
0 α < 0

}
(9)

The values of LDEP
ij̇
n and is determined below.

LDEPi,j
n =

{
1, if n = (τmax + 8ω) or n = (τmin + 4 + 8ω)

0, otherwise
(10)

At last, the LDEPi,j
n denotes the pattern calculated over an image of size m1Xm2 as follows

LDEPi,j
n (m1 × m2) = (

LDEPi,j
1 , LDEPi,j

2 , · · · , LDEPi,j
dim

)
(11)

ResNet comprises a residual learning unit in resolving the weakening of DL models. It enables
to allow the inclusion of new inputs and outputs [18]. Fig. 2 shows the structure of residual blocks.
A major benefit is an improvement in classifier results with no inclusion of model complexities. The
ResNet152 model has been developed by the integration of 3-layer blocks, which is less complicated
compared to other models. The connections among the residual block are advantages. It helps to
maintain the data attained via training and improves model building time.
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Figure 2: Structure of Residual Blocks

2.4 KELM Based Classification

Next to feature extraction process, the KELM model has been developed for the identification
of breast cancer [19]. An extreme learning machine (ELM) resultant function under the case of single
resultant node is:

f (x) =
L∑

i=1

βiG(ai, bi, x) = β · h(x) (12)

where is the resultant weight amongst the ith node of hidden and output states and β = [β1, . . . , βL]T

represents the resultant weight vector. G(ai, bi, x) signifies the output of ith hidden state node and the
node parameter has arbitrarily created. h(x) = [G(a1, b1, x), . . . , G(aL, bL, x)]T signifies the resultant
vector of hidden state comparative to input. Then introduced the kernel function, the kernel matrix of
KELM is determined as:

�ELM = HHT : �ELM = h(xi) · h(xj) = K(xi, xj) (13)

The resultant function of ELM classification is more expressed as:

f (x) = h (x) HT

(
I
λ

+ HHT

)−1

T

=
⎡
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K(x, x1)
...

K(x, xN)

⎤
⎥⎦ (

I
λ

+ �ELM)−1T (14)

where I refers the identity matrix, λ implies the regularized co-efficient, and T stands for the trained
set label. Afterward, it can utilize this technique, it does not require knowing the particular method of
feature map h(x) then utilizing the kernel function for resultant calculation.

2.5 Optimal Parameter Adjustment Using HGSO Algorithm

At the final stage, the HGSO algorithm has been employed to optimally tune the parameters
involved in it [20]. According to Henry’s law, it reproduces the huddling performance of gas for
balancing exploitation as well as exploration from the searching space and avoiding local optimum.
The core functions needed for this work are listed as follows. Henry’s co-efficient is computed utilizing
in Eq. (15).

Hj(m + 1) = Hj(m) · exp(−Cj · (1/T(m) − 1/T θ )). (15)
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where T(m) refers the temperature of mth generation. T(m) = exp(−m/MaxIter). T θ = 298.15. The
population has been separated as to equivalent clusters corresponding to the amount of gas types. All
the clusters share the similar Henry’s constant value

(
Hj

)
. A primary generation co-efficient Hj (1) =

0.05 · rand(). rand() implies the function which creates an arbitrary number amongst zero and one.
Another co-efficient Cj = 0.01.rand(). The solubility has been obtained utilizing Eq. (15).

Si,j (m) = Ks · Hj (m + 1) · Pi,j (m) . (16)

where Si,j(m) signifies the solubility of gas i from the cluster j of mth generation. Ks refer the constant.
Pi,j(m) represents the partial pressure on gas i from the cluster j of mth generation. The place here relates
to the SVR parameter in this work. This function is very serious and upgrades utilizing in Eq. (17).

Xi,j(m + 1) = Xi,j(m) + F ·r·η (
Xj, opt(m) − Xi,j(m)

)
+ F ·r·α(Si,j(m)·Xopt(m) − Xi,j(m))

η = β · exp
(

−Fopt (m) + 0. · 05
Fi,j (m) + 005

)
. (17)

where Xi,j(m) denotes the place of gas i from the cluster j of mth generation. Xi,j(m+1) indicates the next
place of Xi,j(m). r stands for the arbitrary value amongst zero and one. α = 1. β refers the constant. F
represents the flag which changes the direction of searching agent and offers diversity = ±. Xj,opt(m)

defines the optimum gas from the cluster j of mth generation. Xopt(m) demonstrated the optimum gas of
mth generation. Fopt(m) signifies the fitness of optimum gas of mth generation. F(m) means the fitness of
gas i from the cluster j of mth generation. The rank and choose the amount of worse individuals (Nw)

utilizing in Eq. (18).

Nw = n · (rand (O.1) + O.1) . (18)

Assume that the worse individual recreates in the numerical range utilized in Eq. (19).

Gk = LB + ra.(UB − LB). (19)

where Gk refers the place or worse individuals. 1 ≤ k ≤ Nw. ra stands for the arbitrary value amongst
zero and one.

3 Results and Discussion

The performance validation of the HGSO-FHDF technique is tested using the Figshare dataset
[21]. The dataset includes three class labels with 150 images under Meningioma, 150 images under
Glioma, and 150 images under Pituitary classes. Fig. 3 demonstrates the sample set of test images.

Fig. 4 highlights the confusion matrices of the HGSO-FHDF model under different hidden layers
(HLs). The figure indicated that the HGSO-FHDF model has effectually recognized all the classes
under all HLs.

Tab. 1 reports comprehensive classification outcomes of the HGSO-FHDF model under different
numbers of hidden layers (HLs). The experimental values denoted that the HGSO-FHDF model has
accomplished maximum outcome under all HLs.
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Figure 3: Sample images

Figure 4: Confusion matrices of HGSO-FHDF model
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Table 1: Overall classification results of HGSO-FHDF model

Methods Sensitivity Specificity Accuracy F-score Kappa

Hidden layer-5

Meningioma 92.67 97.67 96.00 93.92 –
Glioma 93.33 96.67 95.56 93.33 –
Pituitary 95.33 96.33 96.00 94.08 –

Average 93.78 96.89 95.85 93.78 90.67

Hidden layer-10

Meningioma 92.00 95.67 94.44 91.69 –
Glioma 94.67 96.33 95.78 93.73 –
Pituitary 92.67 97.67 96.00 93.92 –

Average 93.11 96.56 95.41 93.11 89.67

Hidden layer-15

Meningioma 91.33 98.33 96.00 93.84 –
Glioma 95.33 97.00 96.44 94.70 –
Pituitary 98.00 97.00 97.33 96.08 –

Average 94.89 97.44 96.59 94.87 92.33

Hidden layer-20

Meningioma 95.33 96.67 96.22 94.39 –
Glioma 92.00 97.00 95.33 92.93 –
Pituitary 92.67 96.33 95.11 92.67 –
Average 93.33 96.67 95.56 93.33 90.00

Fig. 5 demonstrates the classifier results of the HGSO-FHDF model under HL of 5. The figure
indicated that the HGSO-FHDF model has effectually identified all the classes. For instance, with
Meningioma class, the HGSO-FHDF model has offered sensy of 92.67%, specy of 97.67%, accuy of
96%, and Fscore of 93.92% respectively. Along with that, with Glioma class, the HGSO-FHDF model has
provided sensy of 93.33%, specy of 96.67%, accuy of 95.56%, and Fscore of 94.08% respectively. Moreover,
with Pituitary class, the HGSO-FHDF model has reached sensy of 95.33%, specy of 96.33%, accuy of
96%, and Fscore of 94.08% respectively.
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Figure 5: Classification results of HGSO-FHDF model under HL-5

Fig. 6 validates the classifier results of the HGSO-FHDF model under HL of 10. The figure
designated that the HGSO-FHDF model has effectively recognized all the classes. For instance, with
Meningioma class, the HGSO-FHDF model has presented sensy of 92%, specy of 95.67%, accuy of
94.44%, and Fscore of 91.69% respectively. Also, with Glioma class, the HGSO-FHDF model has
provided sensy of 94.67%, specy of 96.33%, accuy of 95.78%, and Fscore of 93.73% respectively. Also,
with Pituitary class, the HGSO-FHDF model has reached sensy of 92.67%, specy of 97.67%, accuy of
96%, and Fscore of 93.92% respectively.

Figure 6: Classification results of HGSO-FHDF model under HL-10

Fig. 7 provides the classification outcomes of the HGSO-FHDF model under HL of 10. The figure
designated that the HGSO-FHDF model has effectively recognized all the classes. For instance, with
Meningioma class, the HGSO-FHDF model has presented sensy of 91.33%, specy of 98.33%, accuy

of 96%, and Fscore of 93.84% respectively. Likewise, with Glioma class, the HGSO-FHDF model has
provided sensy of 95.33%, specy of 97%, accuy of 96.44%, and Fscore of 94.70% respectively. Likewise,
with Pituitary class, the HGSO-FHDF model has reached sensy of 98%, specy of 97.00%, accuy of
97.33%, and Fscore of 96.08% respectively.
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Figure 7: Classification results of HGSO-FHDF model under HL-15

Fig. 8 showcases the accuracy and loss graphs offered by the HGSO-FHDF technique on the
training and validation datasets under varying numbers of hidden layers. The figure portrayed that
the HGSO-FHDF technique has resulted in increased accuracy and reduced loss.

Figure 8: (Continued)
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Figure 8: Accuracy and Loss Graph of HGSO-FHDF model

For demonstrating the better outcomes of the HGSO-FHDF technique, a detailed comparison
study is made with existing techniques [22] in Tab. 2. Fig. 9 demonstrates the kappa examination of
the HGSO-FHDF model with existing techniques. The figure represented that the ResNet50, Inc. V3,
and M-Net V2 models have attained lesser kappa values of 90.52%, 88.67%, and 86.67%. Besides,
the DNet201 model has resulted in certainly improved kappa value of 90.24%. However, the HGSO-
FHDF model has reached better performance with a higher kappa of 92.33%.

Table 2: Comparative analysis of HGSO-FHDF model

Methods Accuracy Kappa

DNet201 model 94.50 90.24
ResNet50 model 93.16 90.52
Inc. V3 model 93.04 88.67
M-Net V2 model 93.19 86.89
HGSO-FHDF 96.59 92.33

Fig. 10 illustrates the accuy investigation of the HGSO-FHDF model with recent methods. The
figure portrayed that the ResNet50, Inc. V3, and M-Net V2 models have obtained lower accuy values
of 93.16%, 93.04%, and 93.19%. At the same time, the DNet201 model has gained a slightly increased
accuy value of 94.50%. However, the HGSO-FHDF model has accomplished a superior outcome with
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a maximum accuy of 96.59%. The above mentioned tables and figures reported that the HGSO-FHDF
model has resulted in maximum classification outcomes over the other methods.

Figure 9: Comparative classification results of HGSO-FHDF model in terms of accuy

Figure 10: Comparative classification results of HGSO-FHDF model in terms of kappa

4 Conclusion

In this study, a new HGSO-FHDF technique has been developed for the identification and
classification of brain cancer. The presented HGSO-FHDF technique comprises GF based pre-
processing, Tsallis segmentation, fusion based feature extraction, KELM classifier, and HGSO based
parameter optimization. At the final stage, the HGSO algorithm with KELM model was utilized
for identifying presence of brain tumors. For examining the enhanced brain tumor classification
performance, a comprehensive set of simulations occur on BRATS 2015 dataset. The comparative
study of the HGSO-FHDF technique can be utilized as a proficient approach for brain cancer
classification. Therefore, the HGSO-FHDF approach is employed as an effective tool for brain
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cancer detection. In future, advanced DL based segmentation models can be introduced to improve
classification results.
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