
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.029009

Article

Analysis of Eigenvalues for Molecular Structures

Muhammad Haroon Aftab1, Kamel Jebreen2,*, Mohammad Issa Sowaity3 and Muhammad Hussain4

1Department of Mathematics and Statistics, The University of Lahore, Lahore, 54000, Pakistan
2Department of Mathematics, An-Najah National University, Nablus, P400, Palestine

3Department of Mathematics, Palestince Polytechnic University, Hebron, P766, Palestine
4Department of Mathematics, Comsats University Islamabad, Lahore Campus, Lahore, 54000, Pakistan

*Corresponding Author: Kamel Jebreen. Email: Jebreen20@yahoo.com
Received: 22 February 2022; Accepted: 30 March 2022

Abstract: In this article, we study different molecular structures such as Poly-
thiophene network, PLY(n) for n = 1, 2, and 3, Orthosilicate (Nesosilicate)
SiO4, Pyrosilicates (Sorosilicates) Si2O7, Chain silicates (Pyroxenes) (SiO3)n,
and Cyclic silicates (Ring Silicates) Si3O9 for their cardinalities, chromatic
numbers, graph variations, eigenvalues obtained from the adjacency matrices
which are square matrices in order and their corresponding characteristics
polynomials. We convert the general structures of these chemical networks
in to mathematical graphical structures. We transform the molecular struc-
tures of these chemical networks which are mentioned above, into a simple
and undirected planar graph and sketch them with various techniques of
mathematics. The matrices obtained from these simple undirected graphs
are symmetric. We also label the molecular structures by assigning different
colors. Their graphs have also been studied for analysis. For a connected
graph, the eigenvalue that shows its peak point (largest value) obtained
from the adjacency matrix has multiplicity 1. Therefore, the gap between
the largest and its smallest eigenvalues is interlinked with some form of
“connectivity measurement of the structural graph”. We also note that the
chemical structures, Orthosilicate (Nesosilicate) SiO4, Pyrosilicates (Sorosili-
cates) Si2O7, Chain silicates (Pyroxenes) (SiO3)n, and Cyclic silicates (Ring
Silicates) Si3O9 generally have two same eigenvalues. Adjacency matrices
have great importance in the field of computer science.

Keywords: Vertex degree; edges; eigenvalues; characteristics polynomials;
adjacency matrices; graphical model; genetics; polythiophene; silicates

1 Introduction

Combinatorics is also known as combinatorial mathematics. The study of eigenvalues of networks
or diagrams plays a vital role in combinatorics. In 1957, Von Collatz et al. [1] presented the eigenvalues
obtained from the adjacency matrix of the given graph.
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Let’s suppose M is a p × p matrix with real numbers entries. Eigenvector of M is defined in such
a way that vector Mx is parallel to x or simply it can be defined as Mx = λx, λ ∈ R. Whereas λ is
known as the eigenvalue of M and belongs to the eigenvector V . We can find the eigenvalue λ if and
only if the matrix obtained from [M −λI ] is singular that is determinant of [M −λI ] = 0. The algebraic
equation obtained is of degree p has number of p roots. The eigenvalues of any network are in fact the
eigenvalues of the given matrix known as adjacency matrix. The maximum absolute eigenvalue of a
graph is called as its spectral radius. Eigenvalues has its extreme importance in the field of frequency
analysis, differential equations, physics, computer graphics and in many more subjects [2,3].

2 Material and Methods

To understand the eigenvalues of a molecular structure, firstly, we construct a mathematical
graph of the molecular structure by converting it into a planar graph. And then we label its vertices
in two different ways, by numbering and coloring. After that we construct its adjacency matrix to
get the eigenvalues. Suppose τ is a simple, finite, and undirected graph having vertex set V (τ ) =
{1, 2, 3, . . . , n}. Then its adjacency matrix can be computed as the n × n matrix Mτ = Mij for

that

Mij =
{

1, if i and j are adjacent
0, otherwise

The adjacency matrix cannot be written uniquely as we can construct the matrix in several different
ways i.e., by changing the position of rows or columns and then by relabeling them, by changing the
names of vertices of the graph etc.

2.1 Pholythiophene Network PLYn=1, 2, 3

Polythiophenes are the polymers having five structural components and play a vital role in
industrial part because of its better thermal permanency and high ecological consistency. They
are being used in many microelectronic devices [4,5]. Let’s consider the molecular structures of
Polythiophene networks for n = 1, 2 and 3 as displayed in Figs. 1–3, respectively. Characteristics
polynomials, eigenvalues, number of vertices and edges, and chromatic numbers are computed in
Tabs. 1–3. We have displayed below two molecular graphs, one is for the construction of its adjacency
matrix and while the other one in which we have labeled different colors in such a way that no edge
has two same colors at its end nodes, is for its chromatic number.

Figure 1: Polythiophene at n = 1
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Figure 2: Polythiophene at n = 2

Figure 3: Polythiophene at n = 3

Adjacency matrices of PLY(n) for n = 1, 2, & 3 are given by:

MPLY(1)
=

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

⎞
⎟⎟⎟⎟⎠

MPLY(2)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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MPLY(3)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 1: Shows PLY(n) for n = 1, 2, & 3 and its corresponding polynomials

Molecular structure Characteristics polynomial

PLY(n), for n = 1 P (λ) = −(λ2 + λ − 1)2 (λ − 2)

PLY(n), for n = 2 P (λ) = (λ − 1)
(
λ3 − 4λ + 1

) (
λ2 − λ − 3

)
(λ2 + λ − 1)2

PLY(n), for n = 3 P (λ) = −(λ2 + λ − 1)2
(
λ3 − λ2 − 5λ + 4

) (
λ3 − λ2 − 2λ + 1

)
(
λ5 − 6λ3 + 7λ − 1

)

Table 2: Shows eigenvalues of PLY(n), for n = 1, 2, and 3

Eigenvalues PLY(1) PLY(2) PLY(3)

Value-1 2 −1.618 −1.618
Value-2 −1.628 −1.618 −1.618
Value-3 −1.618 0.618 0.618
Value-4 0.618 0.618 0.618
Value-5 0.618 2.302 −2.164
Value-6 −1.302 −2.057
Value-7 −2.115 −1.369
Value-8 0.254 −1.247
Value-9 1.861 0.145
Value-10 0.445
Value-11 0.773
Value-12 1.142
Value-13 1.802
Value-14 2.138
Value-15 2.391

Notes: Where Value-1, . . . , Value-15 show the eigenvalues.
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Table 3: Shows cardinality and chromatic numbers of Polythiophene networks for n = 1, 2, & 3

Molecular structure PLY(1) PLY(2) PLY(3)

No. of vertices 5 10 15
No. of edges 5 11 17
Chromatic number 3 3 3

Eigenvalues for Polythiophene network

Graph 1: Eigenvalues for polythiophene network

Vertices, Edges & Chromatic numbers

Graph 2: Vertices, edges & chromatic numbers

2.2 Different Silicates Networks

A silicate sheet is a ring of tetrahedrons which are joined by oxygen to other rings. A single and
basic unit of silicate sheet is represented by SiO4 which is tetrahedron in shape just like a pyramid
that has a base triangular in shape. It has one silicon atom surrounded by four oxygen atoms [6,7].
The topological structures of different silicates are studied and then identified equilateral properties
of these different silicates. We consider the molecular structures of different silicates networks such
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as Orthosilicate (Nesosilicate) SiO4, Pyrosilicates (Sorosilicates) Si2O7, Chain silicates (Pyroxenes)
(SiO3)n, and Cyclic silicates (Ring Silicates) Si3O9 are shown in Figs. 4–7, respectively. We have shown

below two types of graphs, one is used in the formation of its adjacency matrix and while other one
of which different colors are labeled adopting the way that no two same colors are adjacent through
edges, is constructed for the investigation of its chromatic number. We have computed characteristics
polynomials, eigenvalues, number of vertices and edges, chromatics numbers, largest and smallest
eigenvalues in Tabs. 4–7.

Figure 4: Orthosilicate

Figure 5: Pyrosilicates
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Figure 6: Pyroxenes

Figure 7: Ring silicates

Adjacency matrices of Orthosilicate (Nesosilicate) SiO4, Pyrosilicates (Sorosilicates) Si2O7,
Chain silicates (Pyroxenes) (SiO3)n, and Cyclic silicates (Ring Silicates) Si3O9 are given below:

MSiO4
=

⎛
⎜⎜⎝

0 1 1 1
1 0 0 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠
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MSi2O7
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0
1 0 1 1 0 0 0
1 1 0 1 1 1 1
1 1 1 0 0 0 0
0 0 1 0 0 1 1
0 0 1 0 1 0 1
0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

MSi3O9
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 1 0 0
1 0 1 1 0 1 1 1 0
0 1 0 1 0 0 0 1 0
0 1 1 0 1 1 0 1 1
0 0 0 1 0 1 0 0 1
1 1 0 1 1 0 1 0 1
1 1 0 0 0 1 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M(SiO3)n
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 4: Shows different silicates and their corresponding polynomials

Molecular structure Characteristics polynomial

Orthosilicate (Nesosilicates) SiO4 P (λ) = (λ + 1)2
(
λ2 − 2λ − 2

)
Pyrosilicates (Sorosilicates) Si2O7 P (λ) = (λ + 1)4 (2 − λ)

(
λ2 − 2λ − 6

)
Chain silicates (Pyroxenes) (SiO3)n P (λ) = (λ + 1)7(λ9 − 7λ8 − 2λ7 + 86λ6 − 41λ5

−409λ4 + 169λ3 + 857λ2 − 155λ − 627)

Cyclic silicates (Ring Silicates) Si3O9 P (λ) = −(λ + 1)3(λ2 − 3)2
(
λ2 − 3λ − 6

)
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Table 5: Shows eigenvalues for different silicates networks

Eigenvalues SiO4 Si2O7 (SiO3)n Si3O9

Value-1 −1 −1 −1 −1.732
Value-2 −1 −1 −1 −1.732
Value-3 2.732 −1 −1 1.732
Value-4 −0.732 −1 −1 1.732
Value-5 2 −1 −1
Value-6 3.645 −1 −1
Value-7 −1.645 −1 −1
Value-8 −1.905 2.366
Value-9 −1.696 0.633
Value-10 −1.509
Value-11 −1.404
Value-12 1.228
Value-13 1.859
Value-14 2.717
Value-15 3.555
Value-16 4.555
Notes: Where Value-1, . . . , Value-16 show the eigenvalues.

Table 6: Shows cardinality and chromatic numbers of different silicates networks

Cardinality and spectrum SiO4 Si2O7 (SiO3)n Si3O9

No. of vertices 4 7 16 9
No. of edges 6 12 30 18
Chromatic number 4 4 4 4

Table 7: Shows the largest and smallest eigenvalues of all molecular graphs

Eigenvalues

Structure Largest Smallest
SiO4 2.732 −1
Si2O7 3.645 −1.645
(SiO3)n 4.555 −1.905
Si3O9 2.366 −1.732
PLY(1) 2.00 −1.618
PLY(2) 2.302 −2.115
PLY(3) 2.391 −2.164
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Eigenvalues for different silicates 
networks

Graph 3: Eigenvalues for different silicates networks

Vertices, Edges & Chromatic numbers

Graph 4: Vertices, edges & chromatic numbers

3 Discussion and Results

We have plotted different graphs based upon the computations of various molecular networks
[8,9] such as Polythiophene network PLY(n) for n = 1, 2, and 3, Orthosilicate (Nesosilicate)
SiO4, Pyrosilicates (Sorosilicates) Si2O7, Chain silicates (Pyroxenes) (SiO3)n, and Cyclic silicates (Ring
Silicates) Si3O9 to show some relations between the structure of a graph and its spectrum, whereas
the collective degree obtained from the characteristics polynomial depicts the cardinality of its vertex
set. The space between the first and the second eigenvalues has extreme importance in numerous fields
of mathematics [10,11]. If a connected graph is seen in the diagram, then the largest eigenvalue of the
calculated adjacency matrix has multiplicity 1. Consequently, the space between the maximum and its
minimum eigenvalues is associated with a type of “connectivity measure of the graph”. It has also been
observed that all four silicates graphs generally have two same eigenvalues. The largest and smallest
eigenvalues in all the above calculated networks are given below.

Whereas eigenvalue tells us about the measurement of variance in a data and spread out of data
on a line.
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Largest and smallest eigenvalues

Graph 5: Largest and smallest eigenvalues for all networks

4 Conclusion

The eigenvector having largest eigenvalue is also known as a principal component. The eigenvalue
which is less than 1 indicates that the principal component has a single original variable. The original
variable had better value than new one. It will fit with factor rotation constructing a second factor
which is associated with a single variable. The results obtained can be used for “discrete analogues of
Cheeger’s inequality in differential geometry” [12]. The eigenvalue that is chosen as the smallest value
is diligently associated to the categorization of graphs. The chromatic numbers (CN) [13,14] have also
been utilized for a proper coloring of a graph.
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