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Abstract: Hitherto, Rice (Oryza Sativa) has been one of the most demanding
food crops in the world, cultivated in larger quantities, but loss in both
quality and quantity of yield due to abiotic and biotic stresses has become
a major concern. During cultivation, the crops are most prone to biotic
stresses such as bacterial, viral, fungal diseases and pests. These stresses
can drastically damage the crop. Lately and erroneously recognized crop
diseases can increase fertilizers costs and major yield loss which results in high
financial loss and adverse impact on nation’s economy. The proven methods
of molecular biology can provide accurate detection of pathogenic factors,
but these methods are not accessible to the majority of the farmers, needs
high costs or resources, and require domain knowledge to implement. Expert’s
field inspection report provides precise crop diagnosis but continuous field
inspection over the remotely placed agriculture fields is not feasible. Therefore,
cost effective approach for early detection of diseases can help farmers to take
necessary steps in time to boost up the crop production. Precision agriculture
makes use of decision support systems built using Machine Learning (ML)
or Deep Learning (DL) approaches to cut down heavy costs. Timely crop
diagnosis process can be automated with the involvement of Computer Vision,
Image Processing and Deep Learning (DL) based methods for more precise
prediction in less cost and time. Latest research shows that more accurate
image classification can be implemented using Deep Learning based Convo-
lutional Neural Network (CNN) model. In this paper, we have proposed an
automated Rice Disease Diagnosis System (RDDS) for timely, more accurate
and detailed crop disease diagnosis, which consisting of two modules, they are
Leaf Disease Identification (LDI) module for disease detection and Infection
Intensity Estimation (ITE) module for disease severity analysis. The LDI
module is based on the proposed novel RDD_CNN model that classified the
eight most harmful and commonly occurring diseases, it has obtained the best
test accuracy of 98.47% when compared to its first three versions. And the
ITE module is designed for estimating identified disease’s intensity in terms of
extent and stage of infection providing detailed and overall diagnosis report
specially designed for Brown Spot disease.
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1 Introduction

For the past few decades, rice has become a significant requirement being the basic food item
consumed by majority people all over the world [1]. The countries like India, Pakistan, Thailand,
United States etc., are well known for exporting the rice worldwide. Further production efficiency
is the most essential factor of cultivation process. The crop period of rice cultivation on an average
basis is 105 to150 days right from the stage of seeds till the harvesting of the crop, during this time
crops are susceptible to several diseases due to seasonal changes and other environmental effects which
affect the quality and quantity of the yield. Rice diseases such as Tungro, Bacterial Blight, Neck Blast,
Hispa, Brown Spot, Blast, False Smut and Stemborer are potentially harmful and commonly occurring
diseases which can cause severe loss to the yield of the rice crop [2,3]. Manual diagnosis of rapidly
spreading leaf diseases is toughest task for the rice cultivation done over vast extent of land covering
several acres within the short span of time. The similar appearance of some diseases with minute
variations can lead to confusion while diagnosing them manually without expert analysis. Further,
if wrongly treated by mistake using some other pesticide can lead to a huge loss as the infected disease
spreads which cannot be restricted by the pesticide applied and the wrong treatment done inadvertence
can lead to wastage of manpower and cost invested in pesticides for a farmer. Therefore, early and
accurate disease identification can help to provide timely treatment to avoid unexpected yield loss of
the crop and famines [4]. To secure food production in future, there is a demand for perfect detection
mechanism of the disease to evaluate the intensity or the severity of the effected disease providing more
comprehensive report which is helpful to treat the crop accordingly in time and to arrest further spread
of contagious infection. Thus, such preventive measures adopted, and timely appropriate action taken
can save farmers and their hopes which in turn result with substantial growth in productivity [5-7].
There are various pathogens of rice which give rise to bacterial, fungal and viral diseases. These can
potentially harm various parts of the plant. Fair detection of diseases based on accurate recognition of
symptoms promptly has become a demanding task [3]. There are several pests/diseases with which rice
crops are infected. We have considered the eight most notorious and harmful diseases in this paper,
which are depicted in Fig. 1. Among the considered eight rice diseases, Brown spot (BS), Blast (BL),
False Smut (FS), Neck Blast (NB) fall under fungal disease category of rice, whereas Stemborer (SB)
and Hispa (HP) are caused due to pest attack. BS infects leaves with numerous large-sized spots that
can eventually kill the entire leaf. When its infection spreads to seeds as a result unfilled grains are
formed. NB Lesions are formed on neck that appears grayish brown. It makes the neck and panicle to
fall and if occurs prior to milky phase then grains are not formed otherwise if it occurs at later stage
then grains formed are of deprived quality. FS causes reduction of grain weight and seed germination.
It transforms grain into an accumulation of orange spore balls at the start and later developed into a
mass that is greenish black. SBs can attack and damage rice plants at any phase of the plant starting
from its seedling phase to its maturity phase. They exist in six different species causing yield loss up to
20% in early-planted crops and can cause complete damage up to 100% when it is severe. Rice HP is
a pest that scratches the top layer of the leaves till they are left out with only inner epidermis. It then
tunnels all the way through leaf tissues. When it reaches severe stage, plants turn out to be less energetic
and can result in around 20% yield loss. Thus, to make sure about HP damage one must inspect for
its presence and check for long clear feeding scratches that appears as white streaks. Tungro (TG) is
caused by a virus which is spread by green leaf hopper. It affects the plant with impaired growth with
reduced tillers and appears from yellow to orange discoloration in leaves. Bacterial Blight (BB) disease
is due to bacterial ooze on the leaves, which initially starts at leaf tips, next it spreads to margin and
then infects major area of the leaf appearing as light grayish lesions resulting in entire seedlings to
dried out and die [8]. The main contributions of our research work are as follows:
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e The proposed system incorporates two important tasks of rice crop improvement i.e., disease
detection and its intensity estimation.

e Proposed RDD_CNN model has classified 8§ most common harmful diseases with 98.47% test
accuracy.

e Image processing filters are designed to estimate total infection extent.

e Disease pixels related to initial and final stages are segmented and calculated.

e Infection Intensity Stage is determined based on the percentage of total infection extent and
stage specific disease pixels.

e For each identified disease leaf, a comprehensive diagnosis report is generated.

e Further farmer can decide which and how much fertilizers or pesticides are to be given based
on the precise information of disease i.e., type of disease and its stage or severity level, provided
by the proposed RDDS.

() Blast (BL) (f) False smut (FS) ‘ (g) Neck blast (NB) (h) Tungro (TG)

Figure 1: Some of the harmful rice pathogen

2 Literature Survey

Continuously every aspect of the growing crop can be closely monitored by capturing and
processing the images of plants to figure out any abnormal changes in the crop from time to time
along with some other sensing data [9—11]. Researchers worked in various methods typically on rice
diseases to diagnose automatically based on the captured crop images such as the technique based
on pattern recognition [12], Support Vector Machine (SVM) approaches [13,14], solutions based on
image processing [15—18] and computer vision [19] for improving the diagnosis accuracy in a reduced
time eliminating tedious manual rice field inspection. Automated deep transfer learning based on the
Shuffle Net and SVM classification model is designed especially for Panicle Blast by the authors in the
paper [20]. Developing an automated mechanism to identify accurately the infected leaf disease from
the rice plant images is toughest task due to difficulty in segmentation of symptoms related leaf area,
varied capturing conditions and similarity in symptoms of different diseases. Faster R-CNN based
deep learning model is implemented for classifying 3 classes of disease such as blast, hispa and brown
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spot [21]. In the paper [22], 5932 images that are captured from the field are considered for a pre-
trained CNN model which is a combination of ResNet 50 and SVM to classify four different classes
of diseases. The authors of paper [23] collected images from the fields, but the size of dataset is too
small so, they have employed Visual Geometry Group-16 (VGG-16) transfer learning model to classify
three classes of diseased leaf images of rice plant, which resulted in 92.4% of test accuracy. The captured
images from the rice field may contain blurred edges, noise or background area may be larger, due to
these problems accuracy may fall. To address these issues, (Fuzzy C-means with K-means) FCM-KM
combined with Faster R-CNN formulated model is developed, which classified three classes of diseases
with an overall accuracy of 97% [24]. Another Faster R-CNN based model is designed specifically for
false smut grain disease, which comprises of generation of regional proposal and object identification.
But this detector mechanism has shown with little ineffectual detection and reasons behind them are:
more number of proposals made for an object location, mismatch between anchor and proposal shape
and finally, availability of multiple anchors per object location [25]. Authors in paper [26], created their
own dataset by capturing real images from rice fields, which are pre-processed to eliminate background
from the whole leaf image. Next, disease and normal regions were clustered and proposed a novel
Jaya algorithm based on optimized Deep NN, which is used to classify four classes of diseases with
an average accuracy of 94%. Classifying eight classes of diseases and pests, CNN model achieved
94.3% mean accuracy, on training in two stages. The same dataset was classified using a fine-tuned
VGG-16 model resulting in 97.1% mean accuracy [2]. Decision Tree approach after applying ten-fold
cross-validation achieved 97% accuracy on test dataset among the other ML approaches to classify
the three common classes of diseases but the dataset considered is too small [27]. 3 classes of disease
infected images were segmented with Otsu’s method. After segmentation, different kinds of features
were extracted using Histogram of Oriented Gradients (HOG) and further classified using SVM
and obtained 94.6% accuracy when polynomial function considered as a kernel [28]. An automatic
disease identification system is designed based on computer vision for two classes of diseases, which
involves extraction of color moments, leaf area and textual descriptors from both non-diseased leaf
and diseased leaf images to come up with a 21-Dimensional vector. Consequently, genetic algorithm
is employed to reduce complexity and producing a feature vector with compact dimensions i.e., 14-
Dimensional vector and then classified applying SVM & ANN separately. SVM model has exhibited
92.5% accuracy whereas ANN has exhibited 87.5% accuracy [29]. About 200 diseased panicle images
including a healthy class were classified in two-stages, primary stage was segmenting rice panicles
from input images using Faster R-CNN and then in secondary stage, classification was done by 3
pretrained models among which the VGG-16 model has shown highest validation accuracy percentage
that is 88.11 [30]. An application developed based on CNN model, trained on preprocessed images
has shown 90.9% detection accuracy on training set [31]. Twelve classes of disease infected images
and a healthy class were captured from various rice fields in Bangladesh. The dataset including 16770
images was constructed by preprocessing and augmenting the collected images, employed depth-wise-
separable convolutional methodology for classification which has shown 96.3% test accuracy [32].
Recent studies on image classification have shown that, Deep Learning based CNN provides enhanced
accuracy even when the given leaf image contains blurred leaf boundaries, noise and large or disease
lesions colored background area whereas conventional image processing and ML methods needs more
complex pre-processing to reduce the noise of the inputted noisy field images and, they work better
only for small datasets. We have analyzed various solutions proposed by authors from [20] to [32], it
is observed that accuracy of disease prediction is highly varied based on the factors such as, which
and how many classes of diseases are considered, image capturing conditions, size of dataset, and
ML/DL method employed for designing prediction model. Majority of the papers have not covered
most of the catastrophic diseases for classification. Eleven and eight different classes of diseases are
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considered by [32] and [2] respectively but Tungro is missed out by both the papers, which is a most
destructive and damaging rice disease commonly found in southeast and south Asia. In worst case,
when it is infected at the early growing stage, there can be total 100% loss in the crop yield [8]. All
the authors from [20] to [32], have reported the disease(s) identified from the images of rice plant but
merely, disease identification does not give a clear picture of the current stage of the disease which is
essential to the farmer to take up stage specific measures for disease control [33,34]. Hence there is a
need for a system that provides classification with an improved test accuracy while covering the most
harmful and commonly infectious diseases and provides with more detailed report of disease diagnosis
such as its infected extent and infection stage so, that the farmer is available with more accurate and
appropriate information to take further necessary actions to boost up the crop production.

3 Proposed Rice Disease Diagnosis System (RDDS)

An automated system called RDDS is designed to provide an effective crop disease analysis
which is the most challenging and primary task of the farmer. The proposed RDD System detects the
infections that are spread over the rice field. It also provides a detailed report of the disease identified
which is necessary for the farmer to understand the precise stage of the disease infection. This rapid
critical disease analysis in absence of expert’s advice over vast remote fields forms an important basis
for the farmer to decide upon the suitable control measures to put into action to counteract spread of
disease in the field. The proposed RDDS incorporates two modules, the first module is Leaf Disease
Identification (LDI). It employs the proposed novel RDD_CNN model for identification of disease
over leaf images that are captured from the rice fields. This module annotates the leaf images with
identified disease which is then fed to next module i.e., Infection Intensity Estimation (IIE). IIE module
calculates the extent and analyzes the stage of the infection and gives a detailed leaf disease diagnosis
report to the farmer. The overall RDDS process is depicted in the Fig. 2.

3.1 Leaf Disease Identification (LDI) Module

The LDI module involves three steps as shown in the Fig. 2, out of these three steps third step
forms the core part of the module. Initial step includes periodic capturing of leaf images over the
field. The second step involves image data preprocessing, which is performed by applying resizing and
rescaling techniques. Last step employs the RDD_CNN model designed for detection of the following
considered eight diseases: BB, BL, BS, TG, NB, SB, FS and HP. Then each leaf image is labelled with
the detected disease.

3.1.1 RDD _CNN Model
Dataset Construction

Rice crops are exposed to a variety of environmental conditions like rainfall, soil nutrition,
humidity and other seasonal effects. The images of our dataset are captured directly in the rice fields
in different weather conditions, seasons and lighting. We have prepared a dataset by clumping dataset
from [21] for BB, BS, TG, BL classes of diseases, other dataset from [2] for SB, HP, FS, NB classes of
diseases and added more images captured from the rice fields. The count of samples taken per each
disease category and total count of image samples are given in Tab. 1.



1900 CMC, 2022, vol.73, no.1

S N = ~ \
/ [ Captured image from rice field ] \ —~
| ¢ i e
1 1 2 =
! : S
H . . . ' 28 2
| [ Preprocessing of leaf image ] H > AZE
' ! %2
| 1 : 5=
1 1 — =
i ' =
\ [ Leaf disease detection using RDD_CNN ] ! -
\ /
Disease annotated leaf image
. S \
.
/ [ Leaf extraction using image masking ] \\
1
! l 1 )
1 1 =
| | =3
I H £
! Extent estimation of disease color indicators using filters H é E
i i Ep=
1 ! = =
' L | S g
H g
i i s
\ L . ! & 3
! [ Estimation of total infected area ] H E E
! 7
: ¢ ' &
1
! |
Y [ Disease stage identification ] /! j
~ ” ’

Diagnosis report of diseased leaf

Necessary actions taken by farmer to recover crop from
the identified disease stage

Figure 2: Modules of proposed rice disease diagnosis system

Table 1: Sample Image collection of various disease classes

Disease class Count of images
BB 1489

BL 944

BS 696

TG 617

NB 285

SB 201

FS 93

HP 73

Total Image Samples 4398

4 Model Construction Process

The model is designed to include 5 convolution layers and 4 max pooling layers. In the first version
i.e.,, CNN_V1, size of each max pooling layer was set to (3, 3) which is resulted in a validation accuracy
of 0.2426 and was observed that it is not being improved in further epochs. Same results were observed
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with (2, 2) size also. When the first 2 max pooling layers were set to size (3, 3) and next 2 layers with size
(2, 2) then gradual increment in accuracy was observed during epochs. It has been observed from most
of the prominent models that non-trainable parameters are made to 0. Removal of batch normalization
(BN) in our model has fulfilled the requirement of 0 non-trainable parameters. We made the number
of nodes for the very next dense layer after flattening equal to that of the number of output channels
of the last convolution layer. Finally padding was set to “same” for all layers instead of alternating its
value between same and valid. This version of our model i.e., version 2 (CNN_V?2) has obtained 88%
test accuracy, 85% training accuracy with 8 split stratified shuffle split under 100 epochs without BN.
For this version, test and validation partitions were 0.1, 0.09 respectively. Rest of the samples were
allocated for training purpose. First version of our model included both BN and drop out whereas,
version 2 included only drop out without BN. It is observed that version 2 accuracy is not up to the
mark and there is a need to still improve it so, we went for version 3 (CNN_V3). In version 3, it has been
learnt that BN speeds up training by reducing generalization error and improves regularization and
there is no additional requirement of dropout when BN is already in use but determining the correct
position for BN and how many times it must be incorporated for better improvement of accuracy is
a difficult task. Using BN with high learning rates (Ir = le — 3) is preferable. When BN incorporated
before soft max gave us better results. Next, we have observed that BN between convolution and max
pooling layers is beneficial for our model. When BN was incorporated 5 times after every convolution
layer, validation accuracy did not improve from 0.18 in epochs. Then, we have reduced the frequency
of BN to 3 times. BN were applied after 1st, 3rd, and 5th conv layers.

The training accuracy of the model improved to 97.3% and test accuracy reported was 95.09%.
Version 3 results were achieved with 3295 images under 30 epochs with (Ir = 1le — 3). In version 4, by
inference of classification report of version 3 model, the dataset size was increased to 4398 images for
better training of certain classes like BB, BL (probably because of similarity in features of disease
pairs BB, TG and BS, BL). For classes like FS, and HP had fewer images, hence this resulted in
poor Fl-score. So, to handle this imbalance in the data we have applied weight balancing mechanism
with following weights BB: 0.08, BL: 0.09, BS: 0.1, TG: 0.1, NB: 0.13, SB: 0.14, FS: 0.18, HP: 0.18
and noticed improvement in the F1-scores of individual classes after applying the appropriate class
weights, which is shown in the Tab. 2. The test folder split was increased from 10% to 15%, then the
model achieved remarkable test accuracy of 98.47%. It is observed that beyond 30 epochs there is no
significant raise in the accuracy. After several attempts to fine tune the model for considered dataset,
the version 4 has presented outstanding performance while the model executed over fewer epochs i.c.,
30. Hence version 4 is our final version of the model named as RDD_CNN.

Table 2: F1-Scores of CNN_V4 with imbalance and balanced dataset

Class BB BL BS FS HP NB SB TG

CNN_ V4 with imbalance dataset 0.97 0.99 0.99 0.62 0.78 0.92 0.95 0.98
CNN_V4 with balanced dataset 0.99 1.0 1.0 0.85 0.84 0.95 0.95 0.99

Data splitting procedure

The dataset folder is loaded using the drive mounting method. Image files are converted into
NumPy arrays and loaded in a list. Corresponding image labels are converted to binary form by Label
binarizer and loaded in a separate list. Around 15 percent of total image data were loaded into a
separate test folder by permutation of total samples with random seed is set to 42. The Remaining
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85% percent of data is again split into train and validation folders using stratified shuffle split where
n_splits = 10 with validation split receiving 13 percent of it and remaining is left out for training data.

Data Augmentation

The performance of the model is usually dependent on the quantity of the data used. The intention
behind expanding the training dataset is to have possible variations of considered images that are most
likely appear to the model. Image augmentation techniques such as zoom range and rotation, width
shift, height shift ranges, shear range, vertical flip and horizontal flip were applied to increase the
number of samples under each disease category to enhance the performance of model training process.

Model Description

RDD_CNN Model architecture as shown in Fig. 3, is built with 5 convolution (conv) layers with
32, 64, 64x%, 128, 128x filters each with Relu activation function. Four max pooling layers were inserted
after each conv2D layer except between 128, 128% conv2D layers. Out of 4 layers for the first 2,
pool sizes are adjusted to (3, 3) and (2, 2) for the next two pooling layers. The dimension of the last
convolution layer was found to be (7, 7, 128) in the model summary. Hence, the very next dense layer
with 128 nodes is introduced after flattening. The last dense layer has eight nodes which is equal to
the number of classes (i.e., 8) with SoftMax activation as a final layer. BN is added after 32, 64x,
128 layers and between the last dense layer and soft max layer. Model summary displayed 1,082,200
trainable parameters and 464 non-trainable parameters. Model is compiled with Adam optimizer with
decay rate equal to that of learning rate/25, learning rate equal to 1e—3 with binary cross entropy loss
function. Dropout has been eliminated in our model as BN has already been used for the same purpose.

5 Calculations and Results Discussion
Validation steps and steps per epoch were calculated as follows:
Steps_per_epoch = Training_total_samples/Batch_size. (1)

Validation_steps = Validation_total_samples/Batch_size 2)

We have considered the batch size of training and validation as the same i.e., batch_size = 32.
Training_total_samples = 3256, Validation_total_samples = 487.
Therefore, Steps_per_epoch = 3256/32 = 01.75~101, Validation_steps = 487/32 = 15.21~15.

Initially, the model is executed with 100 epochs without using above Eqgs. (1) and (2) to calculate
values for Steps_per_epoch and Validation_steps that are passed in the model.fit_generator function,
both accuracies were unstable and not improved. So, when Eqs. (1) and (2) computed values are
incorporated for the execution of the model using an early stopping method then both training and
validation accuracies found to be improved early enough i.e., under 30 epochs. The first version i.c.,
CNN_V1 model is shown the worst validation accuracy of 0.24 and there is no progress noticed in the
subsequent epochs. The succeeding model versions, CNN_V2, CNN_V3 and RDD_CNN have shown
improvement in test accuracy when it is tuned, results of them are expressed in the Tab. 3.

The RDD_CNN has attained highest training and test accuracies of 98% and 98.47% respectively
among the other model versions in a short number of epochs of 30. The training and validation
accuracy and loss graphs of RDD_CNN are as shown in Figs. 4 and 5 respectively.
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Figure 3: Proposed RDD_CNN model architecture

Table 3: Performance analysis of CNN_V2, CNN_V3 and RDD_CNN models

Model No. of epochs Training accuracy Test accuracy
CNN_V2 100 85% 88%
CNN_V3 30 97.3% 95.09%

RDD_CNN 30 98% 98.47%
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Figure 5: Training and validation loss graph

Our model accurately predicts the true disease class labels that can be observed from the test
confusion matrix depicted in the Fig. 6. Tab. 4 shows performance of the proposed RDD_CNN
model for the considered eight disease classes in terms of Precision, Recall, F1-Score, Sensitivity and
Specificity. It is observed that, RDD_CNN outperformed as a disease classifier as Precision ranges
from 0.85 to 1.00, Recall ranges from 0.80 to 1.00, F1-Score ranges from 0.84 to 1.00. Sensitivity
ranges from 0.80 to 1.00 and Specificity is constantly high that is 0.99 across all the diseases classes
that are depicted in Fig. 7 and 8 respectively. False Smut and Hispa results have shown substantial
performance whereas other classes’ results are extraordinary. BB, BL, BS, and TG classes performance
isnear to 100% with respect to various metrics. The overall performance of RDD_CNN model in terms
various performance metrics such as Precision, Recall, F1-Score and Test Accuracy is expressed in the
Tab. 5, which shows that RDD_CNN is equally outperforming with respect to other metrics apart
from accuracy. These results express the potential of RDD_CNN as rice disease classifier.
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Figure 6: Confusion matrix of the test data

Table 4: Performance analysis of RDD_CNN as disease classifier

Class Precision  Recall F1-Score Sensitivity  Specificity
BB 1.00 0.99 0.99 0.99 0.99
BL 0.99 1.00 1.00 1.00 0.99
BS 0.99 1.00 1.00 1.00 0.99
FS 0.85 0.85 0.85 0.84 0.99
HP 0.89 0.80 0.84 0.80 0.99
NB 0.97 0.93 0.95 0.92 0.99
SB 0.94 0.97 0.95 0.96 0.99
TG 0.99 1.00 0.99 1.00 0.99
Sensitivity
1.2
1
0.8
0.6
0.4
02 M Sensitivity
0-

Figure 7: Sensitivity analysis of RDD_CNN
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Table 5: Overall RDD_CNN performance analysis

Model Precision Recall F1-Score Accuracy

RDD_CNN 0.98 0.98 0.98 0.9847

Disease class prediction

The Proposed RDD_CNN model is saved as the best model since it has shown the outstanding
performance. Further, this saved model is used as a rice disease classifier when the user inputs images of
infected rice plants captured over the field. Sample images from the test dataset are fed as input one at
a time to this model. The predict_disease procedure is implemented which in turn uses predict_classes
function of keras API for predicting the class label of given leaf image instance. Fig. 9 shows the
predicted class as Brown spot for the input sample image.

predicted class: BrownSpot

INCH/
%0 ! \ b ‘_ﬂ N “'-.ﬂ._.;j
. ’

.|
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" 4

7

0 S0 W0 150 200 X0

Figure 9: Class prediction of sample leaf image

6 Comparative Analysis

The performance evaluation of proposed RDD_CNN is performed by comparing with some of
the top contemporary CNN models for the sake of reference only. Since the contemporary solutions
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varied with different factors such as capturing environment conditions, region of cultivation and
certain specific diseases considered. Tab. 6 includes RDD_CNN with other models, disease classes
detected and accuracy corresponding to each model. It is observed that proposed RDD_CNN has
outperformed among other top models while detecting a greater number of harmful diseases with an
improved test accuracy of 98.47%. The proposed RDD_CNN is compared with DenseNet pre-trained
on ImageNet and Inception module (DENS-INCEP) [35] in terms of sensitivity and specificity that is
expressed in Tab. 7, it reveals that our proposed model performs better even with other performance
metrics. Moreover, our model is being trained to achieve the best performance by continuous fine
tuning it over multiple versions for the rice leaf disease dataset.

Table 6: Comparison of RDD_CNN with other contemporary CNN models in terms of test
accuracy %

Model Diseases detected Test accuracy %
SVM + HOG model with polynomial as BB, BS, LS (leaf smut). 94.6%
kernel [27]
ResNet50 + SVM model [21] BB, BL, BS, TG 98.38%
Decision Tree algorithm (J48) [26] BB, BS, LS. 97.91%
JAYA ALGORITHM (DNN_JOA) [25] BB, BL, BS, SR (sheath rot), 97%

HY (healthy).
Transfer learning CNN model [22] BL, BS, BB. 92.46%
VGGNet + Inception model [36] (SK) Stack burn, LS, Leaf 92.00%

scald (LC), White tip (WT),
Bacterial leaf streak (BLS)

Proposed RDD_CNN Model BB, BL, BS, TG, NB, SB, HP, 98.47%
FS.

Table 7: Comparison of RDD_CNN with DENS-INCEP [35] in terms of sensitivity and specificity

Class Sensitivity Specificity

DENS-INCE [35] RDD_CNN DENS-INCEP [35] RDD_CNN
BB 0.93 0.99 1.00 0.99
BL 0.88 1.00 0.99 0.99
BS 0.93 1.00 0.90 0.99
FS 0.91 0.84 0.98 0.99
Average 0.91 0.95 0.96 0.99

6.1 Infection Intensity Estimation (IIE) Module

The proposed disease classifier for critical disease analysis is not sufficient for young farmers to
come up with a clear picture of crop infection severity. Thus, the proposed RDD System provides
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another module called Infection Intensity Estimation (IIE), which deals with estimation of infection
intensity for the inputted disease annotated leaf image. IIE module has four important steps in it
as depicted in Fig. 2. The first step includes extraction of leaf area from the entire leaf image by
suppressing its background area using image masking technique. The disease related color indicators
are taken into consideration while estimating infected area. Next, the extent covering these color
indicators is estimated by applying specially designed image filters. And then overall infected area is
calculated. The last step deals with identification of disease stage based on previous two steps results
producing a comprehensive diagnosis report. It estimates the infection intensity in terms of extent of
infection and stage of infection. Predicted stage falls into one of the 2 important classes: initial stage
and final stage. This module is especially designed for BS leaf disease as it can spread starting from
the leaf to all the remaining parts of the plant, also from one plant to another causing a severe damage
to the rice crop leaving farmer in a helpless situation. This module can be extended for other harmful
diseases in the similar way.

6.1.1 Brown Spot (BS) Characteristics

Cochliobolus miyabeanus (or BS) is a most harmful and common fungi rice disease which has an
ability to attack various parts of rice plants at any stage of its growth. Once infected, it can transmit
through air and continue to remain for a few years. Hence rapid detection of BS and early treatment
of diseased crops is compulsory for healthy and quality yield. BS disease symptoms first appear on
leaves of rice plant and then to spread to its panicles and grains. Fungi attack influences photosynthesis
and hence decreases nutrition absorption capability [37]. This disease reaches to its peek at tillering
stage, in this stage it can lead to loss in health of the yield. Hence the primary requirement is to isolate
severely affected leaves from leaves that are at initial disease stages. In this module, BS disease intensity
stage and infection extent are estimated considering its effect on leaves. Initially symptoms on leaves
appear as dark shaded brown tiny circular lesions. As infection progresses, the lesions become larger
and observed in either circle or oval shapes having a reddish-brown boundary. Due to toxin developed
by the fungus, the centre of lesions is found in light shades of brown and grey [32].

6.1.2 Implementation of BS Filters for IIE

Initially, leaf region is extracted from the image by suppressing the background. The infection
intensity estimation process involves computing the extent of disease pixels related to each stage
separately, total infected area and stage of the diseased leaf. Appropriate filters are designed related
to these four steps. We have considered BS diseased leaf images from our prepared dataset and from
dataset [38] and implemented this module for multiple leaf images. The IIE process more elaborately
starting from filter designing for background removal to generation of detailed diagnosis report related
to both the cases i.e., BS initial and final disease stages is explained below. The sample leaf image taken
related to first case i.e., initial stage of BS disease is image21 and related to second case i.e., final stage
is imagel23 as depicted in Figs. 10a and 10i. In the first step for image21, image filters to extract
the leaf from varied colored backgrounds are designed and applied as shown from Figs. 10a to 10c.
Here background color is turned to black rather than white irrespective of the colors of input leaf
images taken because we have observed error in calculation when converted to white background as it
is slightly overlapping with ash-colored lesions of diseased leaf. Leaf area is computed by subtracting
pixels of black background from whole image as expressed in Egs. (3).

Leaf_pixels = Total_image_pixels — Background_pixels 3)
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In the second step, the extracted leaf image is again masked for extracting disease’s stage-specific
colored pixels by specifying appropriate shade ranges for the mask. For BS, the primary stage is
identified by brownish shades and the secondary stage by brown and ash shades of the leaf. Hence
brown and ash shaded masks are designed and applied separately to estimate their respective area.
These stage-specific masks are applied to find out the brown shade pixels as shown from Figs. 10d to
10e. Similarly, ash disease pixels as shown in Figs. 10d and 10g. In this step, all the pixels are turned to
black except stage-specific pixels. In the third step, other than disease pixels are counted by applying its
corresponding mask since brown and ash colored pixel shades may span over a wide range and some
disease pixel color shades may be close to the black background color resulting in counting error. Next
the masked image of specified disease color is converted to gray scale as shown from Figs. 10e to 10f
for brown disease pixels; Figs. 10g to 10h for ash disease pixels.

Finally, from masked gray scale image, the number of black pixels (i.e., background pixels + leaf
pixels other than disease) are counted and these are subtracted from the total image area for obtaining
count of brown shaded pixels using Eq. (4) as shown in Fig. 10f and in the same way count of ash
shaded pixels is obtained using Eq. (5) as shown in Fig. 10h. Next the percentages of brown and ash
disease pixels are calculated using Eqs. (6) and (7) respectively. For computing total infected area, all
the disease-specific pixel percentages are summed up as expressed in Eq. (8). Similar process is repeated

for image123 as shown in the Fig. 10 from Figs. 10i to 10n.

Brown_disease_pixels = Total_image_pixels — Black_brown — mask_pixels 4)
Ash_disease_pixels = Total_image_pixels — Black_ash — mask_pixels %)
Brown_disease_pixels % = Brown_disease_pixels/Leaf_pixels (6)
Ash_disease_pixels % = Ash_disease_pixels/Leaf_pixels @)
Total_infected_area % = Brown_disease_pixels% + Ash_disease_pixels % (®)

6.1.3 Calculations and Results Discussion

Initially, the area of whole image (i.c., leaf area and background area) is computed from image
shape in case of image21 it is 278 x 8§98 and in case of image123 it is 897 x 3081. After applying mask
for background elimination, black background pixels are counted in either case, which are subtracted
from whole image to extract leaf area. Calculation steps related to leaf area extraction for image21 and
image123 are expressed below:

Leaf Area Extraction of image21 Leaf Area Extraction of image123

Image shape of image21: (278,898) Image Shape of image123: (897,3081)
Number of Black Background Pixels: 62492 Number of Black Background Pixels: 1520011
Number of Leaf Pixels: 187152 Number of Leaf Pixels: 1243646

Next count and percentage of disease’s stage-specific pixel shades are computed. First, black pixels
are counted after applying the appropriate stage-specific mask. These values are then subtracted from
whole image to obtain disease pixels count. Consequently, its percentage is calculated with respect to
leaf area. Calculations related to Brown and Ash shade pixels of image21 and image123 are expressed
below:
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(a) image21 (original image)

(d) Segmented image in HSV format

(i) image123 (originalimage)

(j) Segmented image in RGB format

(k) Segmented image in HSV format

(1) Separated brown disease pixels

(m) Brown disease pixels in
grayscale

(n) Separated ash diseases pixels in
grayscale (negligible)

Figure 10: Identification of disease pixels

Brown Disease Pixels Analysis of image21
Number of Black Pixels for Brown-Mask: 194805

Number of Brown Pixels: 54839

2755416

Brown Disease Pixels Analysis of image123
Number of Black Pixels for Brown-Mash:

Number of Brown Pixels: 8241
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Percentage of Brown Disease Pixels: 29.30185 Percentage of Brown Disease Pixels: 0.662648
Ash Disease Pixels Analysis of image21 Ash Disease Pixels Analysis of imagel23
Number of Black Pixels for Ash-Mask: 237185 Number of Black Pixels for Ash-Mash: 2763566
Number of Ash Pixels: 12459 Number of Ash Pixels: 91

Percentage of Ash Disease Pixels: 6.6571557 Percentage of Ash Disease Pixels: 0.0073172

Next, percentage of total infected area or extent is calculated by summing up both brown and
ash disease pixel percentage. Finally, the stage of the disease is determined. In initial stage, BS lesions
appears to be tiny brown shaded spots whereas in final stage, lesions are expanded containing grey
spots surrounded by brown lining. Hence the two main factors that decide the stage of the BS disease
are: (1) percentage of the total infection extent and (2) percentage of ash disease pixels. We have taken
threshold values for these 2 parameters as 5 and 1 respectively after thorough examination of various
diseased leaf images related to both the stages of BS disease. In case of image21, it is identified as the
final stage since its percentage of ash disease pixels is greater than 1 and its extent % of total infection
is more than 5. Coming to image123, it is determined as the initial stage because of its low or negligible
% of ash disease pixels and even total infection extent % is less than the threshold value. The diagnosis
report of image21 and imagel23 is detailed in Tab. 8. To evaluate the efficiency of the disease stage
prediction, we have labelled the BS leaf images with one of the two stages based on the characteristics
given in [32] and picked one hundred images randomly to test prediction accuracy. It is found that
designed filters could correctly predict its disease stage for all the considered 100 BS leaves. We have
also analyzed that applying image filters over using any ML/DL technique saves time.

Table 8: Diagnosis report of image21 and imagel23

Diagnosed BS Leaf

Image sample name Image21 Imagel23
% Brown disease pixels 29.3018 0. 6620

% Ash disease pixels 6.6571 0.0073
Total infected extent % 35.9589 0. 6693
Infection stage Final Stage Initial stage

7 Conclusion and Future Work

Rice is being one of the major staple foods across the world, its yield is drastically affected due
to various biotic stresses. To meet the ever-increasing population needs various crop improvement
strategies are in practice but the major challenge is the early and accurate diagnose of the diseases
with less cost and time. We have presented an efficient automated system called RDDS to address
this challenge. The novel RDD_CNN model designed as a part of LDI module has shown a most
promising performance with outstanding test accuracy of 98.47 percent as a disease classifier for the
eight most harmful rice diseases. It has equally outperformed when evaluated using other metrics
such as F1-score, Sensitivity and Specificity. The proposed model also addressed data imbalance issue
using weight balancing method. As a part of the IIE module, various appropriate filters designed have
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resulted in providing a detailed diagnosis report of BS infected leaves. This module provided disease
severity analysis in terms of infection extent and stage of the disease. Disease stage prediction has
exhibited 100% accuracy proving the efficacy of designed filters. Hence this system facilitates farmers
with early, accurate and in-depth analysis of infected disease to take appropriate measures promptly
to protect the crop from severe damage and produce a better yield. As future work, IIE process can be
extended for other seven diseases that adversely affect rice crop yield. Further, this RDD System can
be extended to consider a leaf infected with multiple diseases.
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