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Abstract: Employing machine learning techniques in predicting the param-
eters of metamaterial antennas has a significant impact on the reduction
of the time needed to design an antenna with optimal parameters using
simulation tools. In this paper, we propose a new approach for predicting
the bandwidth of metamaterial antenna using a novel ensemble model. The
proposed ensemble model is composed of two levels of regression models.
The first level consists of three strong models namely, random forest, support
vector regression, and light gradient boosting machine. Whereas the second
level is based on the ElasticNet regression model, which receives the prediction
results from the models in the first level for refinement and producing the final
optimal result. To achieve the best performance of these regression models, the
advanced squirrel search optimization algorithm (ASSOA) is utilized to search
for the optimal set of hyper-parameters of each model. Experimental results
show that the proposed two-level ensemble model could achieve a robust
prediction of the bandwidth of metamaterial antenna when compared with
the recently published ensemble models based on the same publicly available
benchmark dataset. The findings indicate that the proposed approach results
in root mean square error (RMSE) of (0.013), mean absolute error (MAE) of
(0.004), and mean bias error (MBE) of (0.0017). These results are superior to
the other competing ensemble models and can predict the antenna bandwidth
more accurately.

Keywords: Ensemble model; parameter prediction; metamaterial antenna;
machine learning; model optimization

1 Introduction

As the wireless communication systems get more advanced, the aspirations are growing further,
such as the need for low profile and compact antennas while retaining a high gain and wide frequency
band. From this perspective, and recently, the development of microstrip patch antennas could achieve
some of these requirements; for instance, the current antenna designs are distinguished by their
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compactness, lightweight, and low profile. However, there are several disadvantages in these designs;
such as feed radiation spuriously, low gain, low efficiency, and narrow bandwidth, which attracts
many researchers to employ recent advances in machine learning and artificial intelligence to solve
this dilemma. Several research attempts were recently emerged to cope with these disadvantages, such
as improving antenna bandwidth and efficiency by decreasing the dielectric constant substrate. In
addition, the size and shape of the radiating patch affecting the impedance bandwidth as well as
integrating various types of notches and slots in the same radiating patch could achieve better radiation
and improve antenna performance [1].

The bandwidth of microstrip antennas is highly affected by the size of the antenna proportionally.
Consequently, the stuffed antenna design is limited to the size of the antenna [2]. The main challenge
and most significant research question now are how to retain the performance of the antenna while
reducing its size [3]. Many researchers addressed this challenge by keeping the permittivity of the patch
antenna at a high level while reducing the antenna size through the utilization of dielectric substrate [4].
On the other hand, the change in the shape of the antenna could be applied by raising its bandwidth;
this can be achieved by expanding the length of the patch’s electrical path [5]. In addition, the size of the
antenna can be reduced by adjusting the locations of the notches on the patch emitting the radiation,
along with utilizing the slits and slots of the patch shape [6].

The development of antennas using computational electromagnetics can be complemented using
machine learning techniques to exploit their integral nonlinearities. The main target of the machine
learning field is to extract meaningful information out of the input data, which makes it closely
related to the fields of data science and statistics. The point of strength in machine learning resides
in its ability to build autonomous systems capable of matching and competing for human capacities,
thanks to its data-driven approaches. However, we can benefit from the strength of machine learning
in case of the availability of a vast amount of data that are used in building the models necessary to
perform its task. The lack of a standard dataset containing antenna design parameters for different
antenna structures forms a major challenge facing machine learning engineers in building parameters
optimization models. One solution is to use simulation software to replicate the required antenna on
a wide range of values of the antenna design parameters [7].

The design of electromagnetic devices, such as microstrip antennas, has two main challenges.
Firstly, the analysis of the multi-physics of these devices, which represents a significant demand by
many applications, usually depends on finite element analysis (FEA) that requires huge computational
resources and takes a long time to get the optimal design. Secondly, in the case of using machine
learning to accomplish the task of predicting the design parameters of these devices, careful machine
learning models are necessary to be built to achieve better performance. On the other hand, the nature
of the models representing electromagnetic devices is highly nonlinear. For this reason, and due to
the lack of a linear relationship between the outputs and the corresponding inputs, non-parametric
machine learning models could be more accurate in predicting the design parameters than semi-
parametric and parametric models [&].

Machine learning becomes a prevalent approach in optimizing the design parameters of microstrip
antennas. Optimization of I-shape antenna is presented by authors in [9] to enhance its fractional
bandwidth. Moreover, authors in [10,11] presented the application of neural networks to get the
optimal values of a microstrip antenna by learning the network weights using Grey Wolf Optimizer
along with the Sine Cosine Algorithm. These research efforts emphasize the effectiveness of machine
learning in predicting the optimal values of antenna design parameters and thus reducing the time
needed to accomplish this task using the traditional simulation tools. However, more research effort
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is still needed to build robust machine learning models for predicting the parameters of various types
of antennas, such as metamaterial antennas.

Based on the parameterization method, there are three categories of machine learning models
namely, parametric, non-parametric, and semi-parametric models [12]. In parametric models, the
training data are represented by a model consisting of a set of parameters of fixed size independent of
the size of the training set. Whereas in the non-parametric model, there is no strong assumption about
the mapping function used to make the best fit to the training set. On the other hand, semi-parametric
models have both features of parametric and non-parametric models. Examples of the parametric
models include the response surface model (RSM), artificial neural network (ANN), radial basis
function model (RBF), deep learning (DL), Catboost, and ElasticNet. Examples of non-parametric
models are random forest (RF), extreme learning machines (ELM), support vector machines (SVM),
decision trees (DT), and k-nearest neighbors (KNN). However, semi-parametric models include the
Kriging regression model. From the deep learning perspective, many types of models emerged recently
for regression and classification, such as convolutional neural networks (CNN), recurrent neural
network (RNN), and generative adversarial networks (GAN). The recent machine learning research
milestones achieved in the literature for optimizing the design parameters of electromagnetic devices
are presented in Tab. 1.

Table 1: A literature review of machine learning models used in antenna parameters optimization

Approach Optimization method Application
KNN [13] Differential evolution algorithm Permanent magnet
synchronous linear motors
ELM [14] Grey wolf optimization Permanent magnet
algorithm synchronous linear motors
RF[15] Random forest algorithms Induction machine
SVM [16,17] Multi-objective optimization Permanent magnet
synchronous motor
SVR [18,19] Torque prediction Switched reluctance motor

RNN, CNN [20]

CNN, RNN[21,22

CNN [23]

ANN, SVM, DNN [24-27]
ANN [28]

CNN [29-31]

CNN [32]

R-DNN [33]

Flux-linkage prediction and
efficiency map
Temperature Estimation

Magnetic field estimation
Multi-objective optimization
Structure optimization

Multi-objective optimization,

genetic algorithm

Binary particle swarm
optimization algorithm
Cuckoo search algorithm

Interior permanent magnet
motors

Permanent magnet
synchronous motor
Permanent magnet motor
Microstrip antennas
High-frequency
transformer

Interior permanent magnet
motors

Synchronous reluctance
motor

Double secondary linear
motor

(Continued)
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Table 1: Continued

Approach Optimization method Application

MLP [34] Hybrid metaheuristic algorithm Permanent magnet
synchronous motor

MLP + SVM [35] Dynamic group-based Metamaterial Antenna

cooperative optimizer

In addition, the combination of two or more machine learning models in a single unified
architecture can be used to exploit the advantages of both and meanwhile overcome the disadvantage
of using only a single model [35]. The combination of machine learning models can be in the form of
ensemble models. The simplest form of ensemble model is to use multiple machine learning models
then take the average of their outputs to produce the result. However, the performance of this type of
ensemble model can be undesired because the averaging of the models’ output deals with them equally;
which is not accurate as the different models have various performances. On the other hand, another
form of ensemble model is to use a separate weight for each model to give high priority to the strong
models while other models are assigned low priority weights. However, the process of giving weights to
the ensemble models depends mainly on the training data, and in some cases, strong models can result
in poor results if the training data is not sufficient and thus we cannot utilize these strong models
properly. A third approach in constructing ensemble models is to build the ensemble model in the
form of multi-levels of regression models. This approach avoids the disadvantages of the previously
mentioned types of ensemble models as it builds machine learning models at each level in the ensemble
without relying on averaging or weight calculations.

The remainder of this paper is organized as follows. In Section 2, the proposed ensemble model
used in predicting the bandwidth of metamaterial antenna is presented and discussed. A set of
experiments was conducted to verify the robustness of the proposed approach and compared it with
other recent approaches. These experiments are evaluated, presented, and discussed in Section 3.
Finally, the conclusions come in Section 4.

2 Proposed Methodology

There are two types of ensemble learning namely, bootstrap aggregation and boosting. The first
type, bootstrap, can be used to better understand the variance and bias of the samples in a dataset. For
the algorithms with high variances, such as decision trees, this approach can be useful to reduce the
inherent variance among samples. Moreover, the bagging feature of this approach makes each model
in the ensemble run independently and their outputs are aggregated at the end without a preference
to any model. On the other hand, in boosting ensembles, a group of regression models applying
weighted averages are utilized to strengthen the weak (single) models. In other words, the boosting
approach works with the same context of “teamwork”, where the running of each model determines
what features the next model will focus on to boost the learning of all the models. In this research,
we adopted the boosting approach, where a set of regression models are running independently in the
first level and finally their outputs are aggregated using another regression model in the second level.

The process of the proposed two-level ensemble model is depicted in Fig. 1. In the first level of this
model, there are three types of regression models namely, random forest, support vector regression,
and light gradient boosting machine. To utilize these models optimally, the predictions resulting from
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the three models are fed to the second level, which is based on the ElasticNet model to find out the
optimal value representing the predicted bandwidth of the metamaterial antenna.

Advanced Squirrel Search Optimization Algorithm
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Final prediction
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Figure 1: The proposed optimized two-level ensemble model

2.1 Data Preprocessing

The dataset employed in this research consists of 10 features used to describe the design parameters
of metamaterial antenna; 9 features of them are employed to estimate the optimal antenna’s bandwidth
using the proposed model. The most significant features in this dataset are described in Tab. 2. The
dataset is freely available on Kaggle [36] and is composed of 572 records. Each record consists of the
following information about the metamaterial antenna: the distance between rings, the bandwidth of
the antenna, the width and height of the split ring resonator, the gap between the rings, the width
of the rings, the number of split-ring resonator cells in the array, the distance between the antenna
patch and the array, the gain value, the return loss, and the distance between split-ring resonator cells
in the array. In this research, 10 features are used to train the regression model, and the 10™ feature,
the bandwidth of the metamaterial antenna, can be optimally predicted using the proposed two-level
ensemble model.

Table 2: The dataset parameters of the metamaterial antenna

No. Feature Description

1 Wm Split ring resonator width and height

2 WO0m Rings’ gap

3 Dm Rings ‘distance

4 Tm Rings’ width

5 Xa Distance between array and antenna patch
6 Ya Split-ring resonator cells’ distance

7 Gain Antenna gain

8 VSWR Antenna’s voltage standing wave ratio

(Continued)
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Table 2: Continued

No. Feature Description
9 S11 Return loss
10 Bandwidth Bandwidth of antenna

The graphical analysis of the dataset features is depicted in Fig. 2. In this figure, the distributions
histograms of the feature are presented. In addition, the Pearson coefficient is calculated for each
feature as shown in the figure. The large Pearson coefficient refers to the close correlation between the
feature in the x-axis and the feature on the y-axis. In addition, it can be noted from the figure that the
features namely Ya and Xa are highly correlated with the antenna bandwidth, whereas the features
namely Wm and Tm are slightly correlated with the antenna bandwidth.
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Figure 2: Analysis of the features of the metamaterial antenna dataset

The statistical analysis of the dataset features is presented in Tab. 3. This analysis is measured in
terms of the count of records of the dataset, the mean and standard deviation of each feature, and
the minimum and maximum values. As shown in the table, there are features with very small values
and other features with very large values. Therefore, scaling the values of all features is necessary to
properly balance the effect of each feature on the trained regression model. In addition, the mean of
the features is varying differently, therefore, it is necessary to scale the values of these features. To



CMC, 2022, vol.73, no.1 923

realize this, the min-max scalar is adopted to make the values of all the features reside in the same
range based on the following equation.

K‘ztl - vain

-V 6]
Xnax - Xmin

where X,,, and X, refer to the minimum and maximum of the feature column, and X, is the value
to be scaled. In addition, some values of the features in the dataset are not specified and thus they are
stored as null values. To handle these cases, we replaced the null values with the mean of the values
surrounding them in the same column.

‘Xsra/ed =

Table 3: Values of the metamaterial antenna dataset statistics

Statistics Wm WOm Dm Tm Xa
Count 572.00 572.00 572.00 572.00 572.00
Mean 2244 400.6 275.4 224.4 4063.3
STD 691.6 184.9 150.9 69.2 3287.9
Min 2142.9 162.9 77.1 214.3 0.0
25% 2142.9 162.9 77.1 214.3 1132.8
50% 2142.9 325.7 214.3 214.3 3543.5
75% 2142.9 488.6 3514 214.3 5954.3
max 6964.3 651.4 488.6 696.4 10776
Statistics Ya Gain VSWR S11 Bandwidth
Count 572.00 572.00 572.00 572.00 572.00
Mean 6947.5 2.7 2.1 —-16.1 117.8
STD 5136.2 0.7 1.9 7.9 10.9
Min 2142.9 -5.7 1.0 -33.9 32.8
25% 2142.9 2.8 1.2 -21.3 115.7
50% 6964.3 2.9 1.4 -14.9 122.0
75% 11786 2.9 1.7 -11.5 122.9
Max 16607 3.2 8.4 2.1 124.7

2.2 Random Forest

Random forest (RF) is a machine learning algorithm based on ensemble learning and can be
used for regression and classification tasks. It belongs to the class of supervised machine learning
algorithms. The underlying method used in random forests is the bagging technique in which a set of
trees is constructed in parallel to form the random forest architecture. While building the trees of the
random forest, no interaction is performed between these trees. At the training stage of this approach,
a multitude of decision trees is constructed to be used in either classification or regression. In the
case of regression tasks, the output of random forest is the mean prediction of the individual trees.
Therefore, the prediction using random forest is considered a combination of the multiple predictions
achieved by the constructed decision trees [37].
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2.3 Support Vector Regression

Support vector regression (SVR) is one of the applications of support vector machines (SVM),
which is firstly introduced in 1954. Structural minimization and statistical learning theory are the
basic principles of SVM. The SVR model is used to predict values in a dataset based on the following
equation.

!
S @) =2 (o —o) K (v,x) +b @)
i=1
where K (x;, x) is the kernel function and «; and «” are Lagrange multipliers. The main purpose of the
kernel function is to transform the data from low to high dimensional space, which results in converting
data from nonlinear to linear feature space. The common kernel functions that can be used in SVR
are linear, polynomial, and radial basis functions [38].

2.4 Light Gradient Boosting Machine

Light gradient boosting machine (LightGBM) is a regression model based on reducing the
dimension of the data for adaptation and increasing the speed of the regression process. In addition,
this model is optimized using the direct support for categorical features, acceleration of histogram
difference, a leaf-wise leaf growth strategy with depth limitation, and a decision tree algorithm based
on a histogram. Moreover, this model is distinguished by the rapid processing of massive datasets,
distributed support and good accuracy, low memory consumption, fast training speed, and supporting
parallel training with high efficiency [39].

2.5 ElasticNet

ElasticNet regression model is one of the modern machine learning models that target finding
the best coefficients that minimize the sum of error squares. It is based on applying a penalty to these
coefficients until finding the best values. The critique on the well-known Lasso regression model was
the main inspiration for the emergence of this approach. In the Lasso model, the variable selection is
unstable as it depends mainly on the dataset. Therefore, the ElasticNet model presents a novel solution
by combining the penalties of Lasso and Ridge models to utilize the advantages of both. This results
in an efficient smoothing of the prediction curve. In addition, in the ElasticNet approach, the number
of variables, for high dimensional data, is included in the training procedure. In the case of variables in
highly correlated groups, ElasticNet takes a sufficient number of variables to cover these groups [40].

2.6 Advanced Squirrel Search Optimization Algorithm

To get the best performance of the employed regression models, a search space is constructed based
on the potential values of the hyper-parameters of each regression model. The hyper-parameters of
this search space are presented in Tab. 4. The constructed search space is searched using the advanced
squirrel search optimization algorithm (ASSOA) that is recently emerged in the literature [41]. The
basic idea of this algorithm is based on the flying squirrel’s search process. The algorithm employs
three kinds of trees that are used by squirrels in moving between them. The trees representing the
optimal solution are referred to as hickory trees. The trees representing the near-optimal solution are
referred to as oak trees. The trees representing the non-optimal solution are referred to as normal
trees. The advantage of ASSOA over the traditional squirrel search optimized algorithm is that it adds
additional movements among the trees to reach the best solution more efficiently. These movements
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include exponential, diagonal, horizontal, and vertical movements as shown in Fig. 3. In addition, the
velocities and locations of these movements are represented by the following equations.
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Figure 3: The movements of flying squirrels in the advanced squirrel search optimization algorithm [41]
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where V;; and F;; denote the velocity and location of the i squirrel in the j" dimension, for i value
ranges from 1 to n and j value ranges from 1 to d. The initial locations of the squirrels are set to random
values from a uniform distribution. The fitness function is then calculated for each flying squirrel to
search for the optimal solutions in the search space. For more details about the employed ASSOA
algorithm, please refer to [41].

2.7 The Proposed Two-Level Ensemble Model

After optimizing the parameters of each regression model in the proposed ensemble, these
optimized models are integrated into a unified two-level ensemble. The first level in this ensemble
consists of three regression models, namely SVR, RF, and LightGBM models, whereas the second
level consists of the ElasticNet regression model. Algorithm 1 depicts the operation of the proposed
ensemble model. Where L,, ..., Ly, and L denote the 7 models in the first level and the single
model in the second level of the ensemble, respectively. The final output of the ensemble model,
denoted by H(x), is the optimal predicted bandwidth value that best matches the input features of
the metamaterial antenna.
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Algorithm 1: Two-Level Ensemble
Input: Trainning dataset D={(x1,y1),(X2,¥2);--,(Xm,ym)}; First learning algorithm
Ly, L9,...,L7; Second learning algorithm L.

1: fort=1,2,...,7T do

2: hy =£1(D),

3: end for

4: D=0

5. fori=1,2,...,m do

6: fort=1,2,...,T do
T zit = he (%) ;

8: end for

9:  D'=D"U((2i1,22,.--,%T) %)
10: end for

11: b =L (D)

Output: H(z) = k' (hi1(x), he(z),. .., hr(x))

3 Experimental Results

To evaluate the performance of the proposed two-level ensemble model, the ASSOA algorithm
is employed to find the best values of the hyper-parameters for each single regression model in the
two levels of the ensemble. Tab. 4 depicts the search space for each hyper-parameter along with the
best values retrieved, by the ASSOA algorithm, from the search space that achieve the best prediction
results for each regression model separately. On the other hand, a set of evaluation metrics is employed
to measure the regression models’ performance. These metrics are presented in Tab. 5 and include root
mean squared error (RMSE), mean absolute error (MAE), mean bias error (MBE), and R In these
metrics, H,; and H, refer to the predicted and actual values of antenna bandwidth, and »n denotes
the number of samples in the test set. The large value of R? metric refers to better prediction results,
whereas the smaller values of other metrics indicate better performance.

Table 4: Hyper-parameters of the proposed two-level ensemble model and the best parameters
retrieved by the ASSOA algorithm

Level Model Hyper-parameters  Search space Best parameters
Level RF n_estimators {10,100,200,400, 200
1 max_depth 600,800} 20
min_samples_split [1—30] 2
[1—75]
SVR kernel {‘linear’, ‘poly’, ‘rbf’
C ‘rbf’, ‘sigmoid’} 1000
{0.1,1,10,100,1000,
10,000}

(Continued)
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Table 4: Continued

Level Model Hyper-parameters  Search space Best parameters
Light GBM n_estimators {10,100,200,400, 200
max_depth 600,800} 15
learning_rate [1—30] 0.1
{0.1,0.01,0.001,
0.0001}
Level 2 Elastic Net alpha {1.0, 10.0, 100.0} 10.0
11_ratio {0, 0.1, 0.01, 0.001} 0.01

Table 5: Evaluation metrics

Metric Value
Root mean squared error
" (H,,— H,
RMSE = \/ M ®)]
n
Mean absolute error .
_ Zn:l |Hp,i - H1|
MAE = (6)
n
Mean bias error B "
MBE = M (7)
n

RZ

R2:1_ i=

— 7, = (8)
Z?:l ([_[1 - Hi) i=1

" (H—-H) —
> (H ””)H—ZH,-

Fig. 4 depicts the prediction results of the training and testing sets based on the separate
application of the regression models along with the proposed two-level ensemble model. As shown
in the figure, the proposed approach achieves the best value of the R* metric (0.9905) for the testing
set. However, R? values of RF, SVR, and LightGBM are (0.9854), (0.9764), and (0.9768), respectively.
These values show the superiority of the proposed approach in generalizing the prediction of the
antenna bandwidth.

As the proposed approach is based on fine-tuning the results of the individual regression
models using the second level of regression, the results show the ability of this approach to achieve
generalization better than the separate application of the regression models. To demonstrate this
achievement, Fig. 5 presents the prediction results of the testing sets based on RMSE and R? metrics.
As shown in the figure, the proposed approach could achieve the smallest RMSE value while keeping
the value of R? higher than the other models, which reflects the effectiveness of the proposed approach
in predicting the bandwidth values and generalizing the prediction task.
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Figure 4: The prediction results of the training and testing sets based on the regression models

Fig. 6 shows the mapping between the predictions of the antenna bandwidth along with the

corresponding actual values of the testing set using the proposed two-level ensemble model. It can
be noted from this figure that the prediction results are close to the actual values, which proves the
effectiveness of the proposed approach.

On the other hand, the prediction errors of the antenna bandwidth using SVR, RF, LightGBM,

and the proposed approach are shown in Fig. 7. In this figure, the prediction error using LighGBM is
the highest. However, the proposed approach could achieve the lowest prediction errors. These results
emphasize the superiority of the proposed two-level ensemble model for the task of predicting the
bandwidth of metamaterial antenna.
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To further investigate the effective features contributing to the achieved results, Fig. 8 depicts the
significant features based on the RF and LightGBM regression models. As the best kernel function
adopted to this task is ‘rbf’, finding out the significance of the features is not available. As shown in
this figure, the most significant features are the Gain, Ya, VSWR, S11, Xa, WOm, and Dm. These
features match the previous analysis applied to the features as depicted in the Pearson values of Fig. 2,
where the high correlation between these features and the bandwidth of the metamaterial antenna are
represented by high values of Pearson coefficients.
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Figure 8: Feature importance of the regression models

To emphasize the superiority of the proposed two-level ensemble model, we compared it with other
ensemble models that are recently published in the literature and target the same task of predicting the
bandwidth of metamaterial antenna based on the same dataset. Tab. 6 presents a comparison between
the proposed ensemble model and two other ensemble models. As shown in the table, the measured
values of the evaluation metrics calculated from the achieved results using the proposed approach
outperform those of the other competing approaches. In specific, the achieved RMSE using the
proposed approach is (0.013) which is better than the achieved RMSE by the other approaches (0.097
and 0.089). In addition, the MAE value achieved by the proposed model is (0.004) is better than the
MAE values of the competing approaches (0.031 and 0.023). In addition, the value of MBE achieved by
the proposed approach is (0.0017) which reflects that the mean value of differences between predicted
and true values is smaller than the achieved values by the other approaches (—0.006 and —0.016).
Moreover, the value of R* achieved by the proposed approach (0.09822) is better than the achieved
values by the competing approaches, which emphasized the effectiveness of the proposed approach in
predicting the bandwidth of metamaterial antennas.

Table 6: Comparison between the proposed ensemble model and the other competing ensembles

Ensemble model RMSE MAE MBE R’

Optimized average ensemble [35] 0.097 0.031 —0.006 0.9173
Optimized ensemble using random forest [42] 0.089 0.023 —0.016 0.9214
Proposed optimized two-level ensemble 0.013 0.004 0.0017 0.9822

4 Conclusion

In this research, we addressed the problem of accurately predicting the bandwidth of metamaterial
antenna. The solution presented in this paper is expressed in terms of a novel two-level ensemble model
based on three machine learning regression models in the first level namely, random forest, support
vector regression, and light gradient boosting machine. The integration of these models into a unified
ensemble model is performed in terms of another regression model namely, ElasticNet located in the
second level of the ensemble. The role of the second level is to combine the values of the models in
the first level to train the ElasticNet model. The advanced squirrel search optimization algorithm is
used to find the best hyper-parameters of the four regression models employed in the two levels of the
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proposed ensemble. The proposed ensemble model is evaluated in terms of a freely available benchmark
dataset that contains a set of features describing various designs of metamaterial antennas along with
the corresponding target bandwidth value. Experimental results showed that the proposed optimized
two-level ensemble model outperforms two other ensemble models that are recently published in the
literature that address the same task. The results based on four evaluation criteria emphasized the
superiority of the proposed approach.
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