
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.027147

Article

Resource Scheduling Strategy for Performance Optimization Based on
Heterogeneous CPU-GPU Platform

Juan Fang1,*, Kuan Zhou1, Mengyuan Zhang1 and Wei Xiang2,3

1Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China
2La Trobe University, Melbourne, VIC, 3086, Australia
3James Cook University, Cains, QLD, 4878, Australia

*Corresponding Author: Juan Fang. Email: fangjuan@bjut.edu.cn
Received: 11 January 2022; Accepted: 14 April 2022

Abstract: In recent years, with the development of processor architecture, het-
erogeneous processors including Center processing unit (CPU) and Graphics
processing unit (GPU) have become the mainstream. However, due to the
differences of heterogeneous core, the heterogeneous system is now facing
many problems that need to be solved. In order to solve these problems,
this paper try to focus on the utilization and efficiency of heterogeneous
core and design some reasonable resource scheduling strategies. To improve
the performance of the system, this paper proposes a combination strategy
for a single task and a multi-task scheduling strategy for multiple tasks.
The combination strategy consists of two sub-strategies, the first strategy
improves the execution efficiency of tasks on the GPU by changing the
thread organization structure. The second focuses on the working state of
the efficient core and develops more reasonable workload balancing schemes
to improve resource utilization of heterogeneous systems. The multi-task
scheduling strategy obtains the execution efficiency of heterogeneous cores
and global task information through the processing of task samples. Based on
this information, an improved ant colony algorithm is used to quickly obtain
a reasonable task allocation scheme, which fully utilizes the characteristics
of heterogeneous cores. The experimental results show that the combination
strategy reduces task execution time by 29.13% on average. In the case of pro-
cessing multiple tasks, the multi-task scheduling strategy reduces the execution
time by up to 23.38% based on the combined strategy. Both strategies can
make better use of the resources of heterogeneous systems and significantly
reduce the execution time of tasks on heterogeneous systems.

Keywords: Heterogeneous computing; CPU-GPU; Performance; Workload
balance

http://dx.doi.org/10.32604/cmc.2022.027147
mailto:fangjuan@bjut.edu.cn

1622 CMC, 2022, vol.73, no.1

1 Introduction

Nowadays, as GPUs show more and more powerful performance in terms of massively par-
allel computing [1], heterogeneous CPU-GPU architecture has become the current mainstream
architecture. However, this structure also faces many challenges [2]. For example, the difference in
heterogeneous cores leads to a decrease in resource utilization, which makes the system performance
less than expected. Therefore, improving resource utilization in heterogeneous systems is an important
research objective in the field of heterogeneous computing [3]. In order to improve the resource
utilization and performance of heterogeneous systems, many researchers have found ways to improve
the performance by improving a specific application implementation in a specific heterogeneous
system. Wozniak et al. [4] tested the execution time of three different implementations of specific
applications Hash Join, which proves the superiority of the CPU-GPU heterogeneous architecture.
The idea of classification of GPU application based on the kernel structure proposed by Shen et al.
[5] is worthy of reference. However, it is only effective for applications with a simple kernel structure.
Rizvi et al. [6] have improved the implementation of deep neural convolution network applications
and achieved remarkable optimization results. Although these schemes can significantly shorten the
execution time, they are applied only to specific applications in specific environments.

At present, Mittal et al. [7] summarized studies on heterogeneous computing. They classify
workload balancing strategies into static and dynamic. Next, the paper will discuss the related research
of these two kinds of strategies. The static strategy needs to estimate the execution time of the
application. Jung et al. [8] proposed a scheme combining static prediction and dynamic inference.
The prediction accuracy is affected by the size of tasks, and it is difficult to achieve high prediction
accuracy. Alavani et al. [9] proposed a GPU Compute Unified Device Architecture(CUDA) kernel
execution time prediction method based on the code analysis. But the predicted result still has more
than 20% error compared to the actual running result. Alsubaihi et al. [10] proposed a multi-objective
optimization scheme for energy consumption and execution time. When the peak values of power and
core temperature are limited, they quantify the benefits of energy consumption and execution time
and obtain the comprehensive optimal execution scheme by making full use of the particle swarm
optimization algorithm. However, this scheme increases additional overhead, and the optimization
effect will be greatly reduced for small applications with short execution times. Li et al. [11] proposed
an improved heterogeneous earliest finish time (HEFT) algorithm to improve the utilization of system
resources. These tasks are too abstract to take advantage of the specific core characteristics About
dynamic workload balancing strategies, Vu et al. [12] found that when workload distribution is applied
to irregular applications, the amount of computation cannot be accurately predicted. Belviranli et
al. [13] found that processing larger data blocks each time can improve the utilization of GPU,
but the workload between CPU and GPU may become unbalanced. Therefore, they have made a
comprehensive selection between GPU efficiency and resource utilization and achieved good results.
This paper also focuses on the impact of input data attributes on efficiency, but the block size they
mentioned refers to the data size, while the block size mentioned in this article affects the data structure.
Navarro et al. [14] proposed a scheme that can adapt to most applications, but the search phase for
irregular applications may last until the end. This method will degrade performance in individual
special applications. Lin et al. [15] proposed a feedback-based workload distribution and frequency
adjustment strategy. This strategy does not focus on how to reduce the execution time of the application
on a specific core.

However, the effect of these solutions will be affected by the change of the heterogeneous system
environment. The research about task scheduling in heterogeneous system pays little attention to
the execution efficiency of specific core, which results in that the processing ability of heterogeneous

CMC, 2022, vol.73, no.1 1623

core is not fully developed [16]. Therefore, to improve the performance of CPU-GPU heterogeneous
systems, this paper focuses on the resource utilization of the heterogeneous system and the execution
efficiency of the application in the specific core. According to the different requirements of single task
and multi-task processing scenarios, two resource scheduling strategies are proposed, including single
task combination strategy and multi-task scheduling strategy. On this basis, the improved ant colony
algorithm is used to make full use of the characteristics of heterogeneous cores to quickly obtain a
reasonable task allocation scheme.

2 Basic Method

Heterogeneous systems often encounter situations where a large number of tasks need to be
handled [17]. In this case, in order to minimize the execution time of the entire task group, it is necessary
to make a reasonable resource scheduling plan through global analysis under the basic conditions of
understanding the characteristics of each task in the task group.

The scheduling strategy for a single task is generally based on task data as the operation
granularity, while the scheduling strategy for multiple tasks is generally based on the whole task as
the operation granularity. The operation granularity of strategies for single-task processing scenarios
and multi-task processing scenario is quite different, and the latter is more advantageous when dealing
with multiple tasks. The reason is shown in Fig. 1, in this sample, task A executes more efficiently on
the GPU, Task B executes more efficiently on the CPU. The length of the rectangle represents the
execution time of the task.

Figure 1: Comparison of special situations when different kinds of strategies deal with multiple tasks

When a task group containing task A and task B is executed using three different scenarios, the
total execution time corresponds to the multi-task scheduling strategy, the combination strategy, and
GPU alone, from less to more. The reason why multi-task scheduling strategy is better than GPU
alone is that extra CPU is used to process some data and fully utilize heterogeneous core processing
resources. The reason why multi-task scheduling strategy is better than combination strategy is that
when combination strategy executes task A (B), CPU (GPU) processing efficiency is lower and core
processing capability is not fully utilized. The multi-task scheduling strategy is to place tasks A and B
on the most appropriate efficient cores to execute, without abstracting the heterogeneous cores into a
single processing power, to make full use of the characteristics of the heterogeneous cores.

Although the above illustration is a special case, there are only two preconditions for a multi-task
strategy to be superior to a combination strategy when dealing with multiple tasks. The first is that the
efficiency difference between tasks on the CPU and the GPU cannot be too large. The second is that
when there is a certain difference in execution efficiency, most tasks in a task group cannot be better

1624 CMC, 2022, vol.73, no.1

suited to call one of the specific cores for processing. As long as the task groups satisfying these two
conditions are processed, the scheduling strategy for multiple tasks can achieve better results than the
scheduling strategy for single task. It is necessary to design a multi-task scheduling strategy.

3 Combination Strategy for Single Task
3.1 Workload Balancing Strategy

The innovation of this strategy is to add priority protection measures, this measure can be used to
protect the core which can handle tasks faster, thus improving resource utilization and shortening task
execution time. In fact, this paper designs two kinds of Workload Balancing (WB) strategies that take
advantage of this measure, one is used this measure separately, and another is a combination strategy
used this measure and the Block Size (BS) adjustment strategy mentioned earlier. These two strategies
share some common processes, which will be explained first in this section.

Assume that the execution time of the application sample on the CPU and GPU are Tcpu and
Tgpu, respectively, and the workload distribution ratio between GPU and CPU is R. The protection
measures we propose in this paper is as follows: When the CPU execution time of the sample is far
beyond the GPU, the workload distribution ratio R between the GPU and the CPU is increased so that
the expected execution time of the CPU is slightly smaller than the GPU. When the CPU execution
time is less than the GPU, the workload distribution ratio R between the GPU and the CPU is reduced,
so that the expected execution time of the CPU is slightly larger than the GPU. This ensures that the
utilization of efficient cores is not affected by other cores when dealing with applications that are
suitable for different cores. The adjustment method of the workload distribution ratio is as shown in
Eq. (1):

R =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tcpu

Tgpu ∗ β
Tgpu ≤ Tcpu

α

Tcpu

Tgpu

Tcpu

α
> Tgpu > α ∗ Tcpu

Tcpu ∗ β

Tgpu

Tgpu ≥ α ∗ Tcpu

(1)

In this equation, α is the efficiency gap threshold, and the execution efficiency gap of the
heterogeneous core exceeds the threshold, which will reduce the workload allocated to the inefficient
core, sacrificing inefficient utilization to ensure that the utilization of the efficient core is maximized.
β is the workload retention factor of the inefficient core, which determines the length of the inefficient
core wait time. If the value is set too large, it may cause a short wait for the efficient core. If the value
is set too small, the utilization of the inefficient core will be too low. The optimal values of these
parameters are not affected by the hardware, but by the application group being processed. Based on
the experience of many tests, the proposed system get a set of available parameter settings, so in the
subsequent experiments, the values of these two parameters were set to 10 and 0.95, respectively.

3.2 BS-WB Combination Strategy

This combination strategy, which takes the block size adjustment strategy as its main body, is
also divided into two phases: the search phase and the stable execution phase. The main changes and
adjustments are in the search phase. During the search phase, the change of block size leads to a
change in the efficiency of the GPU execution, which in turn causes the execution efficiency ratio on
the GPU and CPU to change constantly. This has caused a lot of trouble in maintaining workload

CMC, 2022, vol.73, no.1 1625

balancing among heterogeneous cores. Therefore, each iteration in the search phase requires a retest
of the sample to change the distribution ratio. The distribution ratio R in the stable execution phase
is obtained as shown in Algorithm 1.

Algorithm 1 Obtaining task distribution ratio in BS-WB combination strategy
Input: Task A
Output: Task distribution ratio R
1: Initialization setting blocksize=128, it=0, AOC=amount of computation per iteration
2: While blocksize<1024 and it<number of iterations do
3: AOC ∗0.01 executes on CPU and AOC ∗0.01 executes on GPU
4: Record Tcpu, Tgpu, and use Eq. (1) to calculate task allocation ratio R
5: AOC ∗0.98/(1+R) executes on CPU and AOC ∗0.98∗R/(1+R) executes on GPU
6: Record the blockszie-Tcpu-Tgpu correspondence in the table
7: Blocksize+64, it+1
8: End while
9: Look up the table to get the Tcpu and Tgpu in the iteration rounds with the shortest task

execution time, and use the Eq. (1) to calculate the task distribution ratio R.
10: Return task distribution ratio R

In order to ensure that the workload balancing strategy does not cause performance degradation
due to extreme conditions, protection measures are performed after the sample test, and the distri-
bution ratio is checked and adjusted again to protect the efficient core. In the search phase, the GPU
execution efficiency and workload distribution ratio of each block size is updated before each iteration.
When the search phase is over, there is no need to perform sample testing for the subsequent iteration.
The remaining data is processed by querying the previous records to use the best block size and the
corresponding workload distribution ratio to perform the protection measures until all iterations of
the application are completed.

4 Multi-Task Scheduling Strategy Based on Ant Colony Algorithm
4.1 Implementation of Multi-task Scheduling Strategy

This section focuses on the implementation of the multi-task scheduling strategy proposed in
this paper. Multiple tasks scheduling strategy can be divided into two main steps, the first step is
to obtain information about each task, and the second step is to determine the task allocation scheme
based on the information obtained. Based on this idea, the multi-task scheduling strategy proposed
in this paper is also divided into two components. The first part is a sample test, through which the
expected execution time of tasks in the task group on the current CPU/GPU is understood, so as
to provide the basic material for the global assignment of tasks. The second part takes the expected
execution time as the basis material, and takes execution time as the optimization target, obtains the
task allocation scheme quickly through the ant colony algorithm, and completes the execution on the
most appropriate core according to the scheme. Next, the implementation steps of these two parts and
their design principles are explained in detail.

Nowadays, as the number of cores in heterogeneous systems continues to increase, it becomes more
difficult to determine the matching relationship between tasks and cores. In this case, it is not persistent
to pursue the optimal task allocation scheme [18]. It has been proved that ant colony algorithm can
quickly get task processing scheme suitable for heterogeneous multi-core environments. In addition, in
order to further reduce the pressure on task allocation caused by the number of heterogeneous cores,

1626 CMC, 2022, vol.73, no.1

the proposed paper divide all the cores of CPU/GPU heterogeneous system into CPU group and GPU
group. Task allocation schemes are formulated in the group instead of individual cores.

The algorithm is divided into two main phases: the initialization phase and the iteration phase.
The improvement is in the iteration phase. The initialization phase of the algorithm is explained first.

Step 1: The first step in the initialization phase is to process the initialization of related parameters,
such as the number of tasks in the task group and the estimated execution time of each task.

Step 2: The second step in the initialization phase is to initialize the ant colony algorithm-related
parameters, which are set as shown in Tab. 1.

Table 1: Initial value of parameters in the ant colony algorithm

Symbol of Parameter Description of Parameter Value

N Number of iterations 100
n Number of ants 50
g Pheromone influencing factor 5

Local decay factor 0.1
Global decay factor 0.2

m Pheromones left by ants 0.2
H Initial pheromone 10

After the initialization phase, the iteration phase of the algorithm begins. In order to adapt to the
current environment and meet the needs of getting stable task allocation schemes, this paper makes two
key improvements in this phase. The iteration phase of the improved ant colony algorithm is described
in detail below.

Step 3: The next task is taken from the task group, recorded as task i, and the probability of being
selected for each type of core of the task is calculated. The probability of executing task i on core x,pix
is affected by execution time and pheromones. The influence of execution time on selection Ppix is
calculated in the Eq. (2).

Ppix = ρix∑|T |
y=1 ρiy

(2)

In which |T| is the collection of currently optional cores, and ρ is the number of pheromones left
over by the corresponding path. The influence of pheromones on the selection process Ptix is shown
in the Eq. (3).

Ptix = tix∑|T |
y=1 tiy

(3)

In which tix is the estimated execution time of task i on core x. In order to reduce the
computational complexity and shorten the execution time of the algorithm, the calculation method of
this step has been modified. The probability of choosing to place task i on core x, pix can be calculated
by the following Eq. (4)

pix = Ptix + g ∗ Ppix
1 + g

(4)

CMC, 2022, vol.73, no.1 1627

In which g is pheromone influence factor. Pptx is the pheromone influence calculated by formula
(2).

Step 4: Arrange the cells according to the probability of each option, and make a random selection
by generating random numbers. Increase the task counter once, and then decide if the task counter
reaches the maximum number of tasks. If not, return to step 3. Otherwise, zero the task counter and
restart the task acquisition in step c) from the beginning, and proceed to step 5.

Step 5: Update the local pheromone. Assume that the pheromone is ρix. After the ants pass the
current cycle, update the pheromone of the corresponding path with the Eq. (5).

ρix = ρix ∗ (1 − Pl) + m (5)

Then increase the ant counter once. If the ant counter is 1, the current set of routes selected by
the ant and its estimated execution time is directly recorded as the local optimal solution. Otherwise,
compared with the local optimal solution currently obtained in the record, the solution with less
execution time is considered as the new local optimal solution. Next, it is further determined that
if the ant counter is equal to the number of ants set in Tab. 1, the ant counter is cleared and goes to
step 6, otherwise, return to step 3 and continue the iteration process.

Step 6: Updates global pheromone with the Eq. (6). Add iteration counter once. If the iteration
counter is 1, the scheme obtained in this cycle is recorded as the global optimal solution, and then
return to step 3, otherwise go to step 7.

ρix = ρix ∗ (
1 − Pg

)
(6)

Step 7: Recalculate the execution time difference between the new solution and the old solution,
update the pheromone of the path corresponding to the optimal solution using Eq. (7) as follow, and
take the solution with less execution time as the new global optimal solution.

ρix = ρix ∗
(

2Told − Tnew

Told

)k

(7)

Step 8: Determines whether the iteration counter has reached the set number of iterations N, and
returns step c) if it has not, otherwise the solution in the current record is the final result. This improved
ant colony algorithm is shown in Algorithm 2.

Algorithm 2 Improved ant colony algorithm
Input: Task group to be processed
Output: Task allocation scheme
1: Complete the initialization of ant colony algorithm-related parameters according to Tab. 1

(including task information such as the Number of tasks in the task group)
2: For iterationcounter = 0 to Number of iterations do
3: For antcounter = 0 to Number of ants do
4: For taskcounter = 0 to Number of tasks do
5: Get the task and complete the calculation of the selection probability based on Eqs. (2)–(4)
6: Generate random number to complete route selection
7: End for
8: Updating local pheromones using Eq. (5)
9: Updating Local Optimal Solutions

(Continued)

1628 CMC, 2022, vol.73, no.1

Algorithm 2 Continued
10: End for
11: Updating global pheromones using Eq. (6)
12: Adjust the pheromone of the corresponding path according to the Eq. (7)
13: Update global optimal solution
14: End for
15: Return global optimal solution as task allocation scheme

At the end of the above steps, the strategy obtains the required task allocation scheme through
the improved ant colony algorithm. The execution process can be completed by assigning tasks to
the corresponding core according to the obtained scheme, so as to optimize the execution time and
improve the performance of heterogeneous systems.

4.2 Differences between Multi-task Scheduling Strategy and BS-WB Combination Strategy

In terms of optimization objectives, the same point of the two strategies is to reduce the
execution time of tasks and improve system performance. The difference is that the design of BS-
WB combination strategy focuses on a single task, and the ultimate goal is to complete the task in the
shortest time. The multi-task scheduling strategy is designed to deal with the task group composed of
multiple tasks. It pays attention to the overall resource management, making up for the shortcomings
of the former, which pays too much attention to the characteristics of individual tasks. The design goal
is to deal with large-scale tasks in the shortest time.

The core idea of BS-WB combination strategy is to give priority to workload balancing, try to
ensure that CPU and GPU are in a working state in the whole process of heterogeneous processing
tasks, and ensure resource utilization. The main idea of the multi-task scheduling strategy is to give
priority to the work efficiency of the core, and then consider the problem of workload balance after
ensuring the maximum execution efficiency of heterogeneous cores.

Finally, the scope of application of both strategies is discussed. Although the combination strategy
does work as expected for a small number of tasks, factors such as the proportion of serial code,
the difference in task execution efficiency on heterogeneous cores will affect the effectiveness of the
strategy. The multi-task scheduling strategy proposed by us can play a significant role in multi-task
scenarios as expected. The problem with this strategy is that the sample test incurs additional overhead,
which results in the optimization of the strategy being severely affected by the additional execution
overhead. In summary, although tasks with large differences in CPU/GPU execution efficiency are
still not applicable, flexible use of these two strategies can effectively reduce the execution time for any
number of tasks, thereby improving system performance.

5 Experimental Results
5.1 Experiment about Workload Balancing Strategy

For the workload balancing strategy as previously proposed, the experiment first runs eight
different applications directly on the GPU and records the execution time, then gradually increases
the number of CPU cores enabled in the experiment. As the number of CPU cores participating in
task processing increases, the overall efficiency of GPU and CPU changes gradually. For the five
experiments, the number of CPU cores enabled was set to 2, 4, 8, 16, and 32, respectively.

CMC, 2022, vol.73, no.1 1629

The effect of this strategy that the proposed system get from the experiment is shown in Fig. 2
below. Since Nbody, Barnes-Hut, lud, lavaMD, and leukocyte are much more efficient on GPU than
on CPU, the effect of keep workload balancing is not obvious, with a reduction of only 0.41%, 5.74%,
3.14%, 0.84%, and 5.46%, respectively. Since the difference in execution efficiency between GPU and
CPU is less than an order of magnitude, this strategy works well on Hotspot, resulting in a 14.83%
reduction in total execution time. In addition, since the execution time of applications Kmeans and
myocyte on the CPU is not significantly different from that on the GPU, this strategy works best
in Kmeans and myocyte instances. The execution time of GPU is reduced by 58.01% and 79.12%,
respectively, compared with the default GPU method.

Figure 2: Effect of workload balancing strategy for different CPU configurations and different
instances

Through these experiments, it could be found that the effect of workload balancing strategy is
always positive no matter what task the system faces due to the protection measures. Overall, the use
of this strategy resulted in an average 20.94% reduction in execution time. Looking at the execution
time reduction for each instance, it can be found that this strategy can produce a better effect for the
task with a few efficiency differences between CPU and GPU.

5.2 Experiment About BS-WB Combination Strategy

Four implementation strategies used in this experiment are as follows: the original GPU imple-
mentation (Original), the GPU implementation of the block size adjustment strategy (Block size
adjustment), the CPU-GPU heterogeneous implementation of the workload balance strategy that
prioritizes the protection of efficient cores (Workload balance) and the BS-WB combination strategy
(Combination strategy).

The experiment result is shown in Fig. 3 below. For Nbody and lavaMD, the effect of BS-WB
combination strategy is not obvious. The workload balancing strategy is not applicable due to the
difference in execution efficiency between CPU and GPU. Since the default block size still applies to the
current GPU environment, the block size adjustment strategy is not applicable either. The result is that
the execution time is reduced by only 1.01% and 3.18%, respectively, compared with the original GPU
method. For Barnes-Hut, Kmeans, lud and myocyte, the combination strategy produced significant
optimization results, reducing execution time by 29.38%, 58.50%, 47.25% and 78.82%, respectively.

1630 CMC, 2022, vol.73, no.1

But most of these benefits come from one of these branch strategies. It does not reflect the superiority
of the combination strategy over the sub-strategies. In fact, these experiments on two applications,
Hotspot and leukocyte, best reflect the advantages of the combination strategy when compared with
its branch strategies. Not only can both branch strategies achieve good results when used separately,
but the final execution time is reduced by 19.98% and 14.97% when using the BS-WB combination
strategy, which is significantly better than the results of using one of the branch strategies alone.

Figure 3: Effect comparison of different strategies in different applications

It could be found that the combination strategy proposed in this paper reduces the execution time
of these applications by 29.13% on average compared with the default GPU method, and significantly
improves the performance of heterogeneous systems.

5.3 Experiment About Multi-task Scheduling Strategy

To test the effectiveness of the multi-task scheduling strategy proposed in this paper in responding
to different scenarios, this paper construct four task groups that have different numbers of tasks
and the data size of the tasks varies. The proposed system use these task groups to experiment
with this strategy. BS-WB combination strategy was used to process the same work to observe the
differences in the scope and effectiveness of these strategies. In addition, the figure corresponding
to the experiment contains the following items: Task execution time on CPU when using multi-task
scheduling strategy (recorded as MTS-CPU), task execution time on GPU when using multi-task
scheduling strategy (recorded as MTS-GPU), show whether the workload distribution is reasonable
by comparing MTS-CPU with MTS-GPU; Total time spent using multi-task scheduling strategy
(recorded as MTS), by comparing MTS with MTS-CPU&MTS-GPU, the proposed system can get
the additional overhead incurred by the process of getting a task processing scheme; Total time spent
using the combination strategy (recorded as BW-WB), by comparing BW-WB with MTS, the proposed
system can get the difference in the effectiveness of the two strategies when dealing with the same task.
Next, the composition of each task group and its reasons are presented, followed by data and diagrams
illustrating the actual effect.

For the first experiment, task group A is designed to test the effectiveness of the multi-task
scheduling strategy when dealing with scenarios outside its scope of application. This task group is
suitable for GPU to handle, which results in the multi-task scheduling strategy that cannot guarantee

CMC, 2022, vol.73, no.1 1631

the workload balance. Task group B is to tests the impact of task group configuration on the
optimization effect when workload balance can be ensured. The composition of task group A is shown
in Tab. 2, and the composition of task group B is shown in Tab. 3.

Table 2: Configuration of task group A

Composition of Task Group (Task Name-Task Size)

Nbody-131072∗200 lud-8000∗8
Barnes-Hut-131072∗200 lavaMD-60
Kmeans-494020∗10 leukocyte-100
Hotspot-1024∗200 myocyte-1000∗320

Table 3: Configuration of task group b

Composition of Task Group (Task Name-Task Size)

Nbody-131072∗200 lud-80000∗8
Barnes-Hut-131072∗200 lavaMD-60∗10
Kmeans-494020∗10 leukocyte-100∗10
Hotspot-1024∗200 myocyte-1000∗320

The specific experiment result is shown in Fig. 4 below. For task group A, the tasks spent 17 s
to execute on the CPU, but 77.87 s on the GPU, which results in a serious waste of resources. The
execution time of using the multi-task scheduling strategy is 4.46% longer than the BS-WB combined
strategy. Taking the cost of the sample test into account, the total time spent is 41.3% longer than
the BS-WB combination strategy. It is proved that not all multitasking scenarios are more suitable for
multi-task strategy, so the scope of application of the strategy needs to be considered.

For task group B, multi-task scheduling strategy forms a stable workload balance when dealing
with this task group. In this case, the task execution time of using the multi-task scheduling strategy
is 11.12% less than that of the combined strategy. However, due to the additional overhead caused by
sample testing, the total time consumption of the multi-task scheduling strategy is still 7.3% more than
that of the combined strategy. The main reason is that half of the CPU’s working time is to executing
tasks suitable for GPU. It can be seen that for a multi-task scheduling strategy, it is more important
for each core to spend most of its time executing tasks suitable for itself than to pursue load balancing
unilaterally.

For the other two task groups, task Group C is designed to observe the effect of multi-task schedul-
ing strategy versus BS-WB combination strategy when tasks can be executed on the most appropriate
core. Task Group D is the best-case design based on the results of two previous experiments. The task
group has a balanced proportion of CPU/GPU tasks, with 32 tasks. This task group is used to test
the optimal performance of multi-task scheduling strategies relative to BS-WB combination strategies
under optimal conditions. The composition of task group C is shown in Tab. 4, while that of task group
D is shown in Tab. 5.

1632 CMC, 2022, vol.73, no.1

Figure 4: Effect of multi-task scheduling strategy when processing task group A(a), B(b), C(c), D(d)

Table 4: Configuration of task group c

Composition of Task Group (Task Name-Task Size)

Barnes-Hut-131072∗200 leukocyte-100∗100
Kmeans-494020∗10 myocyte-1000∗320
Hotspot-1024∗200 myocyte-2000∗320
lud-80000∗8 myocyte-3000∗320

Table 5: Configuration of task group d

Composition of Task Group (Task Name-Task Size)

Nbody-131072∗100 Hotspot-512∗200 leukocyte-70∗10
Nbody-131072∗200 Hotspot-512∗300 leukocyte-80∗10
Barnes-Hut-131072∗100 Hotspot-1024∗100 leukocyte-90∗10

(Continued)

CMC, 2022, vol.73, no.1 1633

Table 5: Continued
Composition of Task Group (Task Name-Task Size)

Barnes-Hut-131072∗200 Hotspot-1024∗200 leukocyte-100∗10
Barnes-Hut-131072∗300 Hotspot-1024∗300 myocyte-500∗320
Barnes-Hut-131072∗400 lud-20000∗8 myocyte-1000∗320
Kmeans-494020∗5 lud-40000∗8 myocyte-1500∗320
Kmeans-494020∗10 lavaMD-50 myocyte-2000∗320
Kmeans-494020∗15 lavaMD-60 myocyte-2500∗320
Kmeans-494020∗20 leukocyte-50∗10 myocyte-3000∗320
Hotspot-512∗100 leukocyte-60∗10

For task group, C, the execution time of tasks using multi-task scheduling strategy is much lower
than that using combination strategy, with a relative reduction of 23.05%. And even after considering
the sample test time before task allocation, the total time spent using this strategy is still 14.33% less
than that of the combination strategy. It is proved that if the workload balance can be maintained
while the tasks are executed on the appropriate core, the effect of the multi-task scheduling strategy is
much better than that of the combination strategy.

For task group D, the task execution time on the CPU and GPU differs by only about 1%, resulting
in an excellent workload balancing with a 34.86% reduction in task execution time compared to the
BS-WB combination strategy and a relatively short sample testing time, with a 23.38% reduction in
total time spent using the multi-task scheduling strategy compared with the combination strategy. It
proves that the multi-task scheduling strategy has a great advantage over the BS-WB combination
strategy when dealing with task groups in the optimal scope of application.

In summary, when faced with many different types of task groups, the BS-WB combination
strategy and the multi-task scheduling strategy are not only significantly better than those executed
by GPU alone but also have their advantages and scope of application. Flexible use of these two
strategies can ensure stable and efficient handling of multiple types of task groups by CPU/GPU
heterogeneous systems. In particular, when using a multi-task scheduling strategy to handle scenarios
within its scope of application, it can reduce the execution time by up to 23.38% compared with the BS-
WB combination strategy, which demonstrates the impact and necessity of this multi-task scheduling
strategy.

6 Conclusion

This paper proposes several resource scheduling strategies to reduce task execution time based
on CPU-GPU heterogeneous systems. First, a combined strategy is proposed for single-task pro-
cessing, which improves the efficiency of task execution on GPU by adjusting the block size in the
linear exploration process. Then, a multi-task scheduling strategy is proposed for the processing of
multiple tasks. This strategy considers the efficiency of the core as the main consideration, uses
the improved ant colony algorithm to get the task allocation scheme. Finally, the proposed system
selected eight instances to test our resource scheduling strategies in a specific heterogeneous CPU-
GPU environment. The experimental data demonstrate that the scope of application of these strategies
is in line with our expectations and that these strategies can achieve significant optimization results
when dealing with tasks within the scope of application. In the future work, on the one hand, the

1634 CMC, 2022, vol.73, no.1

proposed system refers to the commonly used energy consumption optimization method, considers
the energy consumption, and refers to the relevant research that considers the energy consumption and
execution time together, to further improve the strategy. On the other hand, there is still the possibility
of improving the block size adjustment strategy. The proposed system can solve the processing problem
of irregular applications by improving the dynamic parallel method, or the work can try to further
optimize the block size search process so that it can get the best solution in one iteration. The two
strategies of improving size block strategy and adding energy consumption factor can not only play
a significant performance optimization effect in their application field but also stably improve the
performance of heterogeneous CPU-GPU systems when processing tasks, which is of great research
significance.

Acknowledgement: This work is supported by Beijing Natural Science Foundation (4192007), and
supported by the National Natural Science Foundation of China (61202076), along with other
government sponsors. The authors would like to thank the reviewers for their efforts and for providing
helpful suggestions that have led to several important improvements in our work. We would also like
to thank all teachers and students in our laboratory for helpful discussions.

Funding Statement: This work is supported by Beijing Natural Science Foundation [4192007], the
National Natural Science Foundation of China [61202076], and Beijing University of Technology
Project No. 2021C02.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Khairy, A. G. Wassal and M. Zahran, “A survey of architectural approaches for improving GPGPU

performance, programmability and heterogeneity,” Journal of Parallel & Distributed Computing, vol. 127,
no. 1, pp. 65–88, 2019.

[2] X. R. Zhang, W. F. Zhang, W. Sun, X. M. Sun and S. K. Jha, “A robust 3-D medical watermarking based
on wavelet transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp.
1043–1056, 2022.

[3] H. Zheng and D. Shi, “A multi-agent aystem for environmental monitoring using boolean networks and
reinforcement learning,” Journal of Cyber Security, vol. 2, no. 2, pp. 85–96, 2020.

[4] K. A. Wozniak and E. Schikuta, “Classification framework for the parallel hash join with a performance
analysis on the GPU,” in IEEE Int. Symp. on Parallel and Distributed Processing with Applications,
Guangzhou, China, pp. 675–682, 2017.

[5] J. Shen, A. L. Varbanescu, X. Martorell and H. Sips, “Matchmaking applications and partitioning
atrategies for efficient execution on heterogeneous platforms,” in Int. Conf. on Parallel Processing, Beijing,
China, pp. 560–569, 2015.

[6] S. T. H. Rizvi, G. Cabodi, D. Patti and G. Francini, “GPGPU accelerated deep object classification on a
heterogeneous mobile platform,” Electronics, vol. 5, no. 4, pp. 88, 2016.

[7] S. Mittal and J. S. Vetter, “A survey of CPU-GPU heterogeneous computing techniques,” ACM Computing
Surveys, vol. 47, no. 4, pp. 69, 2015.

[8] N. Jung, H. Baek and J. Lee, “A task parameter inference framework for real-time embedded systems,”
Electronics, vol. 8, no. 2, pp. 116, 2019.

[9] G. Alavani, K. Varma and S. Sarkar, “Predicting execution time of CUDA kernel using static analysis,” in
IEEE Int. Symp. on Parallel and Distributed Processing with Applications, Melbourne, VIC, Australia, pp.
948–955, 2018.

CMC, 2022, vol.73, no.1 1635

[10] S. Alsubaihi and J. L. Gaudiot, “A runtime workload distribution with resource allocation for CPU-GPU
heterogeneous systems,” in IEEE Int. Parallel and Distributed Processing Symposium Workshops, Lake
Buena Vista, FL, USA, pp. 994–1003, 2017.

[11] Y. Z. Li, W. M. Tang and G. X. Liu, “HPEFT for hierarchical heterogeneous multi-DAG in a multigroup
scan UPA system,” Electronics, vol. 8, no. 5, pp. 498, 2019.

[12] T. T. Vu and B. Derbel, “Parallel branch-and-bound in multi-core multi-CPU multi-GPU heterogeneous
environments,” Future Generations Computer Systems, vol. 56, no. 1, pp. 95–109, 2016.

[13] M. E. Belviranli, L. N. Bhuyan and R. Gupta, “A dynamic self-scheduling scheme for heterogeneous
multiprocessor architectures,” ACM Transactions on Architecture and Code Optimization, vol. 9, no. 4, pp.
57, 2013.

[14] A. Vilches, R. Asenjo, A. Navarro, F. Corbera, R. Gran et al., “Adaptive partitioning for irregular
applications on heterogeneous CPU-GPU chips,” Proceeded Computer Science, vol. 51, no. 4, pp. 140–149,
2015.

[15] F. S. Lin, P. T. Liu, M. H. Li and P. A. Hsiung, “Feedback control optimization for performance and energy
efficiency on CPU-GPU heterogeneous systems,” in Int. Conf. on Algorithms and Architectures for Parallel
Processing, Granada, Spain, pp. 388–404, 2016.

[16] X. R. Zhang, X. Sun, X. M. Sun, W. Sun and S. K. Jha, “Robust reversible audio watermarking scheme
for telemedicine and privacy protection,” Computers Materials & Continua, vol. 71, no. 2, pp. 3035–3050,
2022.

[17] A. V. Krishna and A. A. Leema, “Etm-iot: Energy-aware threshold model for heterogeneous communica-
tion in the internet of things,” Computers Materials & Continua, vol. 70, no. 1, pp. 1815–1827, 2022.

[18] S. R. Hassan, I. Ahmad, J. Nebhen, A. U. Rehman, M. Shafiq et al., “Design of latency-aware iot modules
in heterogeneous fog-cloud computing networks,” Computers Materials & Continua, vol. 70, no. 3, pp.
6057–6072, 2022.

	Resource Scheduling Strategy for Performance Optimization Based on Heterogeneous CPU-GPU Platform
	1 Introduction
	2 Basic Method
	3 Combination Strategy for Single Task
	4 Multi-Task Scheduling Strategy Based on Ant Colony Algorithm
	5 Experimental Results
	6 Conclusion

