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Abstract: Diabetes is increasing commonly in people’s daily life and represents
an extraordinary threat to human well-being. Machine Learning (ML) in
the healthcare industry has recently made headlines. Several ML models are
developed around different datasets for diabetic prediction. It is essential
for ML models to predict diabetes accurately. Highly informative features of
the dataset are vital to determine the capability factors of the model in the
prediction of diabetes. Feature engineering (FE) is the way of taking forward
in yielding highly informative features. Pima Indian Diabetes Dataset (PIDD)
is used in this work, and the impact of informative features in ML models is
experimented with and analyzed for the prediction of diabetes. Missing values
(MV) and the effect of the imputation process in the data distribution of
each feature are analyzed. Permutation importance and partial dependence
are carried out extensively and the results revealed that Glucose (GLUC),
Body Mass Index (BMI), and Insulin (INS) are highly informative features.
Derived features are obtained for BMI and INS to add more information
with its raw form. The ensemble classifier with an ensemble of AdaBoost
(AB) and XGBoost (XB) is considered for the impact analysis of the proposed
FE approach. The ensemble model performs well for the inclusion of derived
features provided the high Diagnostics Odds Ratio (DOR) of 117.694. This
shows a high margin of 8.2% when compared with the ensemble model with
no derived features (DOR = 96.306) included in the experiment. The inclusion
of derived features with the FE approach of the current state-of-the-art made
the ensemble model performs well with Sensitivity (0.793), Specificity (0.945),
DOR (79.517), and False Omission Rate (0.090) which further improves the
state-of-the-art results.
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1 Introduction

A person who lives longer with undiagnosed diabetes leads to damage of nerves, kidneys, blood
vessels, eyes, and heart [1]. Therefore, It is essential for living well with diabetes is early detection
which is the key to managing diabetes potentially and early preventing or delaying the serious health
complications that can decrease quality of life. It is highlighted by researchers that data of the
healthcare sector is growing faster than the data in financial services, manufacturing, and media
industries. A compound annual growth rate (CAGR) of 36% will be experienced through 2025 is
reported in [2].

Increased amounts of healthcare data and the availability of historical healthcare data naturally
ease the process of early detection of diseases with the help of ML techniques. Numerous data sources
are available for diabetes-related data. Government healthcare organizations of several countries made
the diabetes-related data available for open access. In addition to that, UCI ML repository [3], Kaggle
[4], Data world [5], Amazon’s data sets [6], Google’s data sets [7] are the sources where diabetes-
related data are available. Different data sets (historic data) have different attributes (features) which
are recorded manually or by electronic equipment. In recent years, various ML models have been
developed around the available datasets for diabetes prediction. Decision Trees [8] Random Forest
(RF) [9], Logistic Regression (LR) [10], Naive Bayes (NB) [11], Support Vector Machine (SVM) [12],
Artificial Neural Network (ANN) & Deep Learning [13] and AB [14] are few notable models using
various dimensionality reduction and cross-validation techniques were proposed. Authors of [8–14]
used various data sets for preparing and analyzing the performance of ML models. PIDD is a widely
used dataset by several researchers in model developments of early prediction of diabetes. It has 8
features. However, real-time diabetes databases have more features on diabetes. Few notable state-of-
the-art works of FE applied on the diabetes dataset are reviewed in Tab. 1.

Table 1: Review of state-of-the-art frameworks

Ref. No. & Year
of publication

Dataset used FE employed Best Performing
ML Model

Performance
metrics
considered
for analysis

Dealing Missing
Values (DMV)

Outlier Analysis
& Rejection
(OA&R)

Feature
Selection
Method (FSM)

[15] 2021 Sylhet Diabetes
Hospital of
Sylhet,-
Bangladesh

- Interquartile
Range

Wrapper-based APGWO-MLP Accuracy,
Sensitivity,
Precision
and F1 score

[16] 2021 PIDD and
Mendeley Data
for Diabetes

Removed - RF Average
Weighted
Objective
Distance

Precision,
Specificity,
and
Accuracy

[17] 2020 Electronic
health records
(2013 to
2018)-Private
medical
institute

Removed - Chi square test
ANOVA

SVM Accuracy,
Precision,
Sensitivity
and F1 score

(Continued)
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Table 1: Continued
Ref. No. & Year
of publication

Dataset used FE employed Best Performing
ML Model

Performance
metrics
considered
for analysis

Dealing Missing
Values (DMV)

Outlier Analysis
& Rejection
(OA&R)

Feature
Selection
Method (FSM)

[18] 2020 SAHS Arithmetic
Mean

Fractional
derivative,
wavelet
decomposition.
Filter, Wrapper,
and Embedded
method

Polynomial
SVM, Ensemble
Learning

Accuracy,
Sensitivity,
Specificity
and AUC

[19] 2020 PIDD Feature’s Mean Inter Quartile
Range

Correlation Ensembling of
Adaptive and
Gradient
Boosting

Diagnostic
Odds Ratio
(DOR),
Specificity,
False
Omission
Rate (FOR),
Sensitivity
and AUC

[20] 2019 PIDD NB - - RF Accuracy,
Precision,
Sensitivity,
F1-score,
and AUC

[21] 2018 PIDD k-Nearest
Neighbor

- Boruta Wrapper k-Nearest
Neighbor

Sensitivity,
F1 score, and
AUC

[22] 2018 PIDD Median Median RF RF Negative
Predictive
Value,
Sensitivity,
Accuracy,
Specificity,
Positive
Predictive
Value, and
AUC

[23] 2017 PIDD Median - - Gaussian Positive
Predictive
Value,
Accuracy
Sensitivity,
Negative
Predictive
Value and
Specificity

(Continued)
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Table 1: Continued
Ref. No. & Year
of publication

Dataset used FE employed Best Performing
ML Model

Performance
metrics
considered
for analysis

Dealing Missing
Values (DMV)

Outlier Analysis
& Rejection
(OA&R)

Feature
Selection
Method (FSM)

[24] 2016 PIDD Biostat
Diabetes
Dataset

k-Nearest
Neighbor

Standard
Deviation

F-Score Hierarchical
multi-level
classifiers
bagging with
multi-objective
optimized
voting (HM-
BagMoov)

Accuracy,
Sensitivity,
Specificity,
and F1 Score

From Tab. 1, it is clear that FE techniques take a seat between data and ML models and it is
given more importance in refining the performance of ML models in the detection of diabetes. Several
researchers thrived to advance the performance of the ML models with different combinations of
techniques of FE. From the listed state-of-the-art frameworks listed in Tab. 1, it is clear that the
taxonomy of FE includes dealing with MV, pervading domain knowledge, introducing/removing
dummy attributes, dealing with categorical attributes, creating interactive and new attributes from
the existing raw attributes, and removal of unused/unwanted attributes. State-of-the-art results,
particularly demonstrated [15] that an ensemble of ML models with suitable FE techniques are having
the ability to outperform the standalone ML models. Different performance metrics are used to assess
the ML models and also the entire framework (ML pipeline) for the accurate detection of diabetes.
The most widely used metrics are accuracy, F1 score, precision, sensitivity (or recall), False Positive
Rate (FPR), specificity, ROC-AUC, and True Positive Rate (TPR). In addition to these parameters,
FOR and DOR is pivotal metric needed to be used to evaluate the classifier in disease diagnosis-related
problems. However, only a few parameters are used to evaluate the models’ performance in any of the
tabulated (Tab. 1) state-of-the-art frameworks.

From the above discussion, it is clear that though several state-of-the-art frameworks were
available on the detection of diabetes at the primary stage, improvements are still required in terms
of performance to bring the robustness of the ML models. A novel FE framework with an ensemble
model is proposed in this work, to push on the models’ performance in diabetes diagnosis. The novelty
and the contributions of this proposed framework are as follows.

• Imputation of MV is carried out based on mean or median or regression to preserve the
Gaussian distribution of individual features. This process of imputation varies with the features
and its impact on the performance measures of the ML model are analyzed.

• Permutation importance and partial dependence are used to calculate the relative importance
scores that are independent of the models. Experiments were carried out extensively to identify
the highly informative features. The highly informative features are examined with DT and RF
models to analyze its dominance on the outcome of the model.

• Experiments are conducted on ensemble classifiers (AB and XB) with and without derived
features (in addition to existing features of PIDD). Results are compared with the existing state-
of-the-art works.
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The organization of this paper is that the detailed study of the dataset, proposed framework,
analysis of the impact of the imputation of MV, and dealing of outliers are discussed in Section 2.1.
The impact analysis of derived features, permutation importance, and partial dependence analysis is
discussed in Section 2.2. The details of the experimental results obtained to analyze the performance of
the different ML classifiers and the comparative study of the proposed framework with state-of-the-art
frameworks are discussed in Section 3 followed by the conclusion & future work in Section 4.

2 Methodology
2.1 Dataset, Imputation of MV and Dealing Outliers

The central data repositories of the National Institute of Diabetes and Digestive and Kidney
Diseases (NIDDK) [25] enable the researchers to carry out several studies to test many new hypotheses
with the available data collection. PIDD is originally derived from the central data repository of
NIDDK. After applying several constraints on the database of people living near Phoenix, Arizona of
the Pima Indian population, PIDD is curated to have females of 21 years old at least, from Pima Indian
heritage. Healthcare variables namely Pregnancy, GLUC, Skin Thickness, Blood Pressure (BP), INS,
BMI, and Diabetes Pedigree function (DPF) are present in the dataset. In addition to the healthcare
variables, there is a class variable (outcome) describing whether the patient tested for diabetes is
positive or negative based on the World Health Organization (WHO) criteria. The range of values
of class variables with the description of the variables of PIDD is given in Tab. 2. 768 instances were
considered in the PIDD. The data set contains 34.9% (i.e., 268-number of diabetic patients) instances of
diabetic people’s data and 65.1% (i.e., 500-number of non-diabetic patients) instances of non-diabetic
(healthy) people’s data.

Table 2: PIDD features and its values

S. No. Feature/Attribute Description Value
range

MV

1 Pregnancies Number of times a person got pregnant
(PREG)

[0 to 17] -

2 GLUC Concentration level of plasma GLUC in
an oral GLUC concentration test

[0 to199] 0.65%

3 BP Diastolic BP value (mm Hg) [0 to122] 4.56%
4 Skin thickness The thickness of triceps fold (mm) [0 to 99] 29.56%
5 INS Measurement of 2 h serum INS (μ U/ml) [0–846] 48.75%
6 BMI BMI is calculated as Weight in kg/[Height

in cm]2

[0–67] 1.43%

7 Pedi DPF [0 to 2.45] -
8 Age Individual person’s age [21–81] -
9 Class/Outcome The person tested with positive or negative

for diabetes according to WHO criteria
[0–
negative
1−positive]

-

The proposed FE pipeline is summarized and illustrated in Fig. 1.
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Figure 1: Proposed FE pipeline

Tab. 2 illustrates the percentage of MV for all features in the dataset. INS and skin thickness
features are having the highest percentage (48.75% and 29.56% respectively) of MV. MV for each
feature required to be dealt with different strategies as it has its impact on the outcome (healthy or
diabetic). Treatment and Diagnosis for the patient are truly carried out based on the data. Missing
data may end up drawing an inaccurate inference about the data and it may affect the process of
the curative and findings that the patient should get [26]. In general, the minimum value for most
predictors is zero, and it doesn’t make any sense in the healthcare domain. Therefore, zero is also
considered as an indicator of absent values. In this FE pipeline, MV (zeros) are considered as Not a
Number (NaN) for further processing of data. To address this problem of MV imputation, several
techniques have been impelled in statistics and ML. Literature [27–30] discloses that the nature of
variables, number of variables, and number of cases in the problem domain result in the effectiveness
of the proposed methods and thus there is no straightforward strategy that guarantees one method
over the others. Therefore, it is essential to have statistical insight into features before performing the
imputation process.

From Tab. 3 minimum and maximum parameters indicate the low and high values in the data set
of the corresponding medical predictor features respectively. The range is the measure of dispersion,
which gives the difference between the maximum and minimum value of the variable. Further, Median
Q1, Q3, and IQR (Q3–Q1) values of each feature are providing meaningful insights into data. Box
plot represents the statistical values (Maximum, Minimum, First Quartile, Median (Second Quartile),
and Third Quartile values) of each feature. Fig. 2 shows the box plot representation for each of the
features available in the PID. For each feature, the name of the feature is mentioned in the x-axis and
its statistical five summary values on the y-axis. Fig. 2, highlights the outliers (exists in skin thickness,
BP, and BMI) existing in each feature to be dealt with using feature engineering. Based on IQR the
identified outliers are removed. This process yields 636 instances of the dataset (132 instances are
removed from 768 instances).

Table 3: Descriptive statistics of features in PIDD

Statistical
parameters

PREG GLUC BP Skin thickness INS BMI Pedi Age

Minimum 0 0 0 0 0 0 0.078 21
5-th percentile 0 79 38.7 0 0 21.8 0.14035 21
Q1 (25 Percentile) 1 99 62 0 0 27.3 0.24375 24

(Continued)
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Table 3: Continued
Statistical
parameters

PREG GLUC BP Skin thickness INS BMI Pedi Age

Median 3 117 72 23 30.5 32 0.3725 29
Q3 (75 Percentile) 6 140.25 80 32 127.25 36.6 0.62625 41
95-th percentile 10 181 90 44 293 44.395 1.13285 58
Maximum 17 199 122 99 846 67.1 2.42 81
Range 17 199 122 99 846 67.1 2.342 60
Interquartile
range (IQR)
Q3–Q1

5 41.25 18 32 127.25 9.3 0.3825 17

Figure 2: Outlier analysis of PIDD features

In general, when outliers are present in the features, imputation of missing value is carried out with
the median value of the respective feature. Therefore, Skin thickness, BP, and BMI are imputed with the
respective features’ median value and other features (GLUC and INS) are imputed with mean values.
This imputation technique works better when the data size is small. However, for the larger dataset,
imputing MV with central tendencies like mean, the median will add variance and bias in the dataset.
This leads to overfitting or underfitting during the training phase of the ML model. In this scenario,
the ML model itself is used here to impute the MV. The features of PIDD with MV are considered as
target variables and the other features with no MV are considered as predictor variables. The choice
of ML model for predicting the MV is decided based on the relationship exhibited between features.

The following relationship evinces among the features of PIDD from Fig. 3,

• GLUC manifests a positive weak linear association with all other features. This indicates an
increase in the GLUC level of patients will lead to an increase of all other features’ value.
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• BP manifests a positive weak linear association with all other features. This indicates an increase
in the BP level of patients will lead to an increase of all other features’ value.

• Skin thickness manifests a positive weak linear association with all other features except Age.
Skin thickness with Age manifests a weak negative correlation. This indicates that an increase
in skin thickness leads to an increase of all other features value and a decrease in Age.

• INS manifests a positive weak linear association with all other features except Age. INS with
Age manifests a weak negative correlation. This indicates that an increase in INS leads to an
increase of all other features value and a decrease in Age.

• BMI and DPF also manifest a positive weak linear association with all other features.

Figure 3: Correlation (relation) exist among the features

From the above discussion, it is evident that all features (except Age) exhibit linear relation with
other features in the dataset. This gives an intuition to use multi-variable linear regression to impute
the MV. In PIDD, GLUC, INS, BP, skin thickness, and BMI are the features having MV. Using a
regression model, to impute a feature using other features (having MV) is not possible. Therefore,
all the features having MV are imputed with random values (by ignoring all other features) then the
regression model is applied for imputation iteratively. This procedure is repeated for all the features
having MV by considering the imputed feature as a predictor to evaluate the other features. Initially,
the random values are imputed (without considering other features) which will not help to improve the
ML model performance in the training phase. To overcome this, instead of imputing random values
initially, Gaussian noise (with mean = 0) is added. This imputes negative values and zeros due to the
nature of data distribution. In PIDD, features like GLUC and INS having negative values would be
meaningless. For such values alone, random imputation is performed. Though this process reduces
the spread of data distribution, it is essential to impute meaningful values in real-time for the features
like INS and GLUC.
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Fig. 4 shows the data distribution (before and after imputation with different mean, median,
and regression) of PIDD features. Features with MV (INS, GLUC, skin thickness, BP, and BMI)
are imputed with their respective mean/median and random regression values to demonstrate the
impact of imputation to explore whether the features exhibit Gaussian distribution. Median value
imputation is only to be considered for the features having outliers. It is observed from Fig. 4 (ref col
2 and 3) the variance of feature reduces after imputing median values of respective features. Imputed
median values are mere estimates and it does not indicate any relation with any other features of the
dataset. Further, from Fig. 4, it is clear that INS, GLUC, and skin thickness features are not yielding
Gaussian distribution for the features after median imputation. So the regression imputation method
is considered for INS, GLUC, and skin thickness and examined for Gaussian distribution, even though
for INS, Gaussian distribution is not perfectly achieved through Regression Imputation, as the feature
is missing the majority of its data. From the above analysis, it is concluded that BP and BMI are
imputed with median values, INS, GLUC, and skin thickness are imputed with regression values.

Fig. 5 shows the variance measured for PIDD features. From Figs. 4 and 5, it is clear that the
chosen independent features are having a high correlation with dependent features in regression
imputation. Also, this results in considering the linear relationship between the features. This may
not hold in reality. Particularly, the relationship between INS and GLUC is different for healthy and
diabetic patients. Since the relationship between each feature is known from correlation, this problem
is addressed by derived features from one or more available high-quality informative features.

2.2 Impact Analysis of Derived Features

The derived feature is more useful and it can add more information than using the feature in its
raw form. The process of deriving features from the existing features of the dataset is performed to
add important features to the dataset to discover effective information from different perspectives.
Feature importance is the method to understand the relative significance of the features in the model’s
performance. Feature importance [31] is used to examine the change in out-of-sample predictive
accuracy when each one of the features is changed. Feature importance score is obtained using decision
tree (Fig. 6a) and RF (Fig. 6b) models. From Fig. 6, it is clear that the GLUC feature is having high
feature importance scores when compared with the other features of PIDD, the second important
feature is the BMI feature and the third is the INS.

Since the size of the selected important input feature set is small, the partial dependence analysis is
carried out to justify the selected important features’ interaction with the target (outcome). The partial
dependence of the features is the result of the computation of integral of various data. The target at
any point is given in terms of the partial dependence of the features. This shows the effect of features in
prediction. In this work, two non-linear ML models, the DT classifier and RF classifier are considered
for the impact evaluation analysis of selected features. The selected features are GLUC, BMI, and INS.
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Figure 4: Data distribution of PIDD features having MV (before and after imputation using
mean/median and regression techniques)
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Figure 5: Data distribution (before and after imputation) of PIDD features

Figure 6: Feature importance score of PIDD feature used with (a) DT (b) RF

Fig. 7a shows the level of confidence of the decision tree classifier in predicting diabetes. It is
observed that increasing the level of GLUC substantially increases the chances of having Diabetes but
GLUC levels beyond 160 appear to have little impact on predictions. From Fig. 7b, it is evident that
when the BMI value is between 28 and 42 it has a very little impact on predictions. But when BMI value
is beyond 42, it substantially increases the chance of diabetes. From Fig. 7c, it is evident that the INS
less than 140 on average indicates no diabetes, and its value after 200 has no impact on predictions.

In Fig. 8, the predicted outcome of the model is given against the feature and the shaded area
indicates the level of confidence of the RF classifier in predicting diabetes. From Fig. 8a, it is observed
that the increase in GLUC level substantially increases the chances of having diabetes, also it is
observed that the GLUC level > 160 appears to have less impact on the RF classifier model predictions.
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Figure 7: Partial dependence of GLUC, BMI, and INS in DT classifier’s outcome (healthy/diabetic)

It is evident from Fig. 8b that for BMI values between 28 and 42, very little impact in improving the
confidence level of predictions of the RF classifier predictions. However, for BMI > 42, it substantially
increases the confidence level of prediction of diabetes. From Fig. 8c, it is evident that the INS less than
140 on average indicates no diabetes, and its value after 200 has no impact on predictions.

Figure 8: (Continued)
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Figure 8: Partial dependence of GLUC, BMI, and INS in RF classifier’s outcome (healthy/diabetic)

From both Figs. 7 and 8, it is clear that the selected features (GLUC, BMI, and INS) show a
dominant impact in the prediction of healthy/diabetic irrespective of the choice of ML model. GLUC
feature is categorized as a high-quality informative feature and therefore, BMI and INS are considered
for deriving the features to add more information.

2.2.1 Case 1: Derived Feature 1-BMI

The healthy range for BMI [32] is between 18.5 and 24.9. BMI value under 18.5 is considered
underweight and possibly malnourished; 25.0 to 29.9 are considered as overweight and over 30 are
considered as obese. By keeping the WHO’s guideline, the BMI feature in PIDD is analyzed and the
following are observed in the PIDD and shown in Tab. 4.

Table 4: BMI feature analysis

Category BMI range Number of persons (number of
instances in the dataset)

Derived feature

Underweight < 18.5 4 BM_Desc_under
Healthy 18.5 to 25.0 89 BM_Desc_healthy
Overweight 25.1 to 29.9 155 BM_Desc_over
Obese > 30 388 BM_Desc_obese

The BMI feature is synthesized into 4 categories namely underweight, healthy, overweight, and
obese, and the number of patients falling under each category is shown in Tab. 4. A new set of
derived features are formed based on the synthesized 4 categories and named BM_Desc_under,
BM_Desc_healthy, BM_Desc_over, and BM_Desc_obese. BM_Desc_under has only 4 instances.
Therefore, it is not considered for further analysis. In [32], the authors reported the causal result of a
rise in the BMI on the likelihood of being diabetic and also described the relation between BMI and
diabetes.
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2.2.2 Case 2: Derived Feature 2-INS

Generally, the INS level is assessed after fastening for a considerable duration. INS feature in
PIDD is the measurement taken against 2-h serum INS (mU/ml). INS value between 16 and 166 is
considered as normal INS level for 2-h after GLUC. Based on this value, INS features are analyzed
and the following are observed in the dataset. The INS feature is synthesized into 2 categories namely
normal and abnormal. The number of patients falling under each category is shown in Tab. 5. A
new feature is formed based on these 2 categories and named Insulin _Desc_normal and Insulin
_Desc_abnormal. The level of INS in the bloodstream will vary following the level of GLUC.

Table 5: INS feature analysis

Category INS (2-h serum INS (mU/ml) Number of persons (number
of instances in the dataset)

Derived Features

Normal > 16 and < 166 394 Insulin _Desc_normal
Abnormal all other values 242 Insulin _Desc_abnormal

Figure 9: (a) & (b) Effect of derived features of INS (in relation with other features) on the outcome
(healthy = 0/diabetic = 1)

The derived features, Insulin _Desc_normal and Insulin _Desc_abnormal are directly related to
outcome (target). Since INS is highly rated in feature importance, the relationship of the derived
features with other features (BP and GLUC, BP and DPF) concerning outcome is analyzed. Figs. 9a
& 9b clearly depicts this scenario. From Fig. 9a, for the BP (value between 70 and 120), It is seen
that the Insulin _Desc_normal (values between 50 and 170) and GLUC level (between 100 and
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190) results in the outcome of 0 (healthy). Similarly Insulin_Desc_abnormal (values between 100
and 180) and GLUC level (between 100 and 190) results in the outcome of 1 (diabetic). Fig. 9b
depicts the derived features. Insulin_Desc_normal and Insulin_Desc_abnormal impact in the outcome
for the other features BP and DPF. For the BP (value between 70 and 120), it is seen that the
Insulin_Desc_normal (values between 50 and 170) and DPF (< 1) results in the outcome of 0
(healthy). Similarly, Insulin_Desc_abnormal (values between 100 and 180) and DPF (>0.5) results
in an outcome of 1 (diabetic). This clearly shows the direct impact of Insulin_Desc_normal and
Insulin_Desc_abnormal on the outcome. From the above discussion, it is evident that the derived
features are not only providing insights into the respective features but also have a direct relationship
with the outcome. However, irrespective of feature or derived feature, it is vital to evaluate the features
for their impact on the ML model in the early prediction of diabetes

3 Results and Discussions

Identifying the quality features and adding more information with the existing features using
derived features are described in the previous section. In this section, to show the importance of the
features including derived features, the permutation importance of features of PIDD is calculated using
an RF classifier. With multiple shuffles, the permutation importance calculation is achieved and the
amount of randomness is measured. The importance of features is listed in Tab. 6 in the order from top
to bottom. The first decimal in each row indicates how much model performance is decreased with a
random shuffling. The number after the ± measures indicates the variation in model performance
in one-reshuffling to the next. In shuffling a respective feature, randomness is involved in exact
performance change. Negative values are occasionally seen for permutation importance where the
predictions on the shuffled feature happened to be more accurate than the real data. The randomness
produced the predictions on the shuffled feature and the feature with importance close to 0 is to be
more perfect.

Table 6: Permutation Importance values of features in PIDD

Weight Feature

0.1344 ± 0.0241 GLUC
0.0271 ± 0.0454 BMI
0.0240 ± 0.0141 INS
0.0229 ± 0.0193 DPF
0.0167 ± 0.0167 BP
0.0115 ± 0.0138 Age
0.0104 ± 0.0174 Pregnancies
0.0073 ± 0.0051 Insulin _Desc_abnormal
0.0042 ± 0.0078 Insulin _Desc_normal
0.0042 ± 0.0121 BM_Desc_healthy
0.0021 ± 0.0083 BM_Desc_over
0.0000 ± 0.0238 BM_Desc_obese
−0.0021 ± 0.0169 SkinThickness
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In Tab. 6, the feature shown in green indicates that it has a positive impact on prediction and
subsequently the change in green color indicates less impact than the dark green marked feature
(GLUC). The feature (BM_DESC_obese) shown in white indicates that it doesn’t have any effect on
our prediction. The permutation feature importance technique is biased for unrealistic instances of
features in the case where features are more correlated with another feature.

The attributes mean/median/regression imputation for missing value imputation, IQR for outlier
rejection, and permutation importance weight for feature selection are considered in the proposed FE.
As a result of the process discussed in the previous sections, there are 7 actual features and 6 derived
features from PIDD are obtained with positive weights of permutation (Tab. 6). Skin Thickness is the
feature having a negative weight of −0.021 ± 0.0169. It is dropped from the dataset as it is not having
much impact on diabetes prediction. The proposed FE is applied on the PIDD and 7 features (except
Skin Thickness) and 5 derived features (except BM_Desc_under) with 636 instances are obtained.
Further, the PIDD is divided into training and testing samples using 5 fold stratified K-fold cross-
validation, where each fold is preserving the percentage of data samples from healthy and diabetic
classes. The authors of [19], conducted experiments on different ensemble models for increasing the
performance of the prediction of diabetes. From the experiments, the authors reported that the AB
and XB model combination provides the supreme prediction of diabetes when compared with the
other state-of-the-art methods. Therefore, the same ensemble model combination (i.e., AB + XB) is
considered with the model regulating parameters as shown in Tab. 7.

Table 7: Tuning parameters of AB and XB models

Tuning parameters Learning objective Gamma Min. child weight Max. depth

XB model Binary: Logistic 0.5, 1, 1.5, 2, 5 1, 5, 10 3, 4, 5
Algorithm Learning rate No. of estimators

AB model SAMME,
SAMME.R [29]

0.1, 0.5, 1.0 10, 50, 100, 200

The diabetes prediction results obtained for the combination of AB and XB are shown in
Figs. 9a and 9b. Sensitivity, Specificity, DOR, FOR, and AUC are considered as key evaluation
metrics for assessing the performance of the classification of ML models. AUC is the metric
that is unbiased to the class distribution. Therefore, AUC is given more importance rather
than accuracy. However, all the other metrics can also be obtained from the confusion matrix
(Fig. 10b). The performance evaluation of the ensemble model is analyzed for 7 features +
1 derived feature (Insulin_Desc_Normal (or) Insulin_Desc_Abnormal), 7 features + 2 derived
features (Insulin_Desc_Normal and Insulin_Desc_Abnormal), and 7 features + 4 derived features
(Insulin_Desc_Normal, Insulin_Desc_Abnormal, BM_Desc_healthy, and BM_Desc_over) and the
respective key performance metrics are obtained and tabulated in Tab. 8.

The combination of the ensemble model (AB + XB) with the proposed FE method, particularly
with 4 derived features (ref Tab. 8, row 4) shows the dominance in 3 metrics out of five. The best values
(each metric) are highlighted with an underline. From Fig. 10a, AUC-ROC Curve, It is observed that
the False Positive Rate (FPR) of 0.043 is leading to the possibility of getting True Positive Rate (TPR)
of 0.793 (indicated with a red star in the AUC-ROC curve) in model’s accuracy. Though the AUC
for the combination of 2 derived features (ref Tab. 8, row 3) is equal, the DOR of 117.694 is high by
the margin of 8.2%. DOR is the prevalence measure and it is considered as one of the best metrics



CMC, 2022, vol.73, no.1 2029

in disease diagnosis (diabetes prediction). The inclusion of more highly weighed permutated derived
features leads to an increase in the DOR which demonstrates the impact of derived features in model
performance. Not only the DOR but the specificity and AUC also show good impact (increasing) for
the inclusion of derived features (ref Tab. 8, columns Specificity and AUC).

Figure 10: Performance metrics of ensemble (AB + XB) model with 7 features obtained from the
proposed FE (for Tab. 8, row 4) (a) AUC-ROC (b) Confusion matrix

Table 8: Impact study of derived features in the performance of our proposed FE

Model: Ensembling of AB and XGBoost Proposed FE

No.of features Derived features Sensitivity Specificity FOR DOR AUC

7 - 0.798 ± 0.057 0.950 ± 0.026 0.087 ± 0.020 96.306 ± 38.400 0.944 ± 0.029
7 + 1 Insulin_Desc_Normal (or)

Insulin_Desc_Abnormal
0.782 ± 0.058 0.950 ± 0.027 0.093 ± 0.021 106.003 ± 60.704 0.946 ± 0.029

7 + 2 Insulin_Desc_Normal
Insulin_Desc_Abnormal

0.782 ± 0.058 0.954 ± 0.023 0.093 ± 0.021 109.428 ± 57.232 0.947 ± 0.031

7 + 4 Insulin_Desc_Normal
Insulin_Desc_Abnormal
BM_Desc_healthy
BM_Desc_over

0.792 ± 0.060 0.957 ± 0.022 0.088 ± 0.022 117.694 ± 51.707 0.947 ± 0.028

Further, to demonstrate the impact of derived features in the model’s performance; an experiment
is carried out with the prevailing state-of-the-artwork reported in [19]. In [19], the attribute’s mean for
missing value imputation, IQR for outlier rejection, and correlation for feature reduction are reported
as FE. After this process, the authors arrived with 6 features with 636 instances arriving from PIDD.
The values of the 3 performance metrics (Sensitivity, FOR, and AUC) (out of five metrics) are reported
as better than the other combination of ensemble models. These values are reported in Tab. 9 (row 1).
In this work, the derived features are included and their impact on model performance is analyzed
with the ensembling model (AB + XB) performance for the FE reported in [19].

The performance evaluation of the ensemble model is analyzed for 6 features + 1 derived
feature (Insulin_Desc_Abnormal (or) Insulin_Desc_Normal), 6 features + 2 derived features
(Insulin_Desc_Normal Insulin_Desc_Abnormal) and 6 features + 4 derived features (Insulin_Desc_
Normal Insulin_Desc_Abnormal, BM_Desc_healty, BM_Desc_over, and the respective key perfor-
mance metrics are obtained and reported in Tab. 9.
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Table 9: Impact study of derived features in the performance of the FE technique reported in [19]

Model: Ensembling of AB and XB FE: As proposed in [19]

No. of features Derived features (part of our
proposed pipeline)

Sensitivity Specificity FOR DOR AUC

6 As reported in [19] - 0.789 ± 0.077 0.934 ± 0.012 0.092 ± 0.032 66.234 ± 33.323 0.950 ± 0.021
6 + 1 Insulin_Desc_Abnormal (or)

Insulin_Desc_Normal
0.793 ± 0.045 0.945 ± 0.022 0.090 ± 0.017 79.517 ± 30.672 0.946 ± 0.030

6 + 2 Insulin_Desc_Normal
Insulin_Desc_Abnormal

0.783 ± 0.047 0.941 ± 0.020 0.094 ± 0.018 68.121 ± 29.738 0.943 ± 0.030

6 + 4 Insulin_Desc_Normal
Insulin_Desc_Abnormal
BM_Desc_healthy
BM_Desc_over

0.793 ± 0.045 0.929 ± 0.032 0.091 ± 0.016 64.113 ± 3.127 0.943 ± 0.030

From Fig. 11a, AUC-ROC Curve, It is observed that the FPR of 0.055 is leading to the likelihood
of getting TPR of 0.793 (indicated with a red star in the AUC-ROC curve) in model’s accuracy. The
combination of the ensemble model (AB + XB) with the FE method reported in [19], particularly
the inclusion of 1 derived feature (ref Tab. 9, row 2) shows the dominance in 4 metrics out of five.
Though the AUC is less when compared with the inclusion of no derived features (ref Tab. 9, row 1),
the Sensitivity, Specificity, and DOR are high by the margin of 0.4%, 0.1%, and 13.9% respectively.
The less FOR value (0.090 ± 0.017) (ref Tab. 9, row 2, column FOR) yielded by the high negative
prediction values (predicted healthy), which leads to less Type-2 error in diabetes prediction.

Figure 11: Performance metrics of ensemble (AB + XB) model with 6 features obtained as reported in
[19] + 1 derived feature (for Tab. 9, row 2) (a) AUC-ROC (b) Confusion matrix

From the above discussions, It is conclusive that the inclusion of high weighted permuted derived
features is making an impact in providing the better performance of the ensembling model (AB + XB)
as the model has the advantage of both sequential boosting (AB) and parallel boosting (XB). From the
above discussion, it is clear that the inclusion of derived features is certainly increasing the performance
of current state-of-the-artwork as well. Further, to validate the projected ML pipeline and classifiers
performance on diabetes prediction are compared with a few other state-of-the-art works.

From Tab. 10, it is observed that all the state-of-the-art frameworks (used PIDD) are not
considered all the 6 metrics (except [19]) though they treated the prediction of heart disease problem
as a binary classification problem. In [23] and [20] the information on outlier analysis/rejection and
FSM are not reported. From Tab. 10, it is clear that all the models’ accuracy looks improved in the
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prediction of diabetes. The FE pipeline proposed with the ensembling model is outperformed other
works with improvement in terms of accuracy or AUC or both. The inclusion of the derived features
in the feature selection stage of the ML pipeline ensures the addition of more information with the
existing features leads to improved accuracy and AUC when compared with other state-of-the-art
works. The high value of DOR shows the discriminative power of the ML model in the prediction of
diabetes. The inclusion of derived features with the existing state-of-the-art FE approach [19] made the
ensemble model performs well with Sensitivity (0.793), Specificity (0.945), DOR (79.517), and FOR
(0.090) which improved the state-of-the-art results.

Table 10: Comparison of the proposed pipeline in terms of the FE and Performance metrics with the
state-of-the-art works

Ref No.& Year FE pipeline Best classifier Performance
metrics

DMV OA&R FSM

[24] 2016 k-Nearest
Neighbor

Standard
Deviation

F-Score HM-BagMoov Accuracy: 0.9307
Sensitivity: 0.8631
Specificity: 0.6519
F1 score: 0.7428
FOR: Not
reported (NR)
DOR: NR
AUC: NR

[23] 2017 Median - - Gaussian process
classification

Accuracy: 0.819
Sensitivity: 0.9179
Specificity: 0.633
F1 score: NR
FOR: NR
DOR: NR
AUC: NR

[21] 2018 k-Nearest
Neighbor

- Boruta Wrapper k-Nearest
Neighbor

Accuracy: NR
Sensitivity: 0.90
Specificity NR
F1 score: 0.88
FOR: NR
DOR: NR
AUC: 0.92

[20] 2019 Naïve Bayes - - RF Accuracy: 0.871
Sensitivity: 0.854
Specificity: NR
FOR: NR
DOR: NR
AUC: 0.928

[19] 2020 Mean Inter Quartile
Range

Correlation Ensembling of
adaptive and
gradient boosting

Accuracy: NR
Sensitivity: 0.789
Specificity: 0.934
FOR: 0.092
DOR: 66.234
AUC: 0.950

(Continued)
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Table 10: Continued
Ref No.& Year FE pipeline Best classifier Performance

metrics

DMV OA&R FSM

Proposed
(Results reported
here is for
inclusion of one
derived feature )

Mean, Median,
Regression

Removal Feature
importance, Partial
dependence,
Derived features

Ensembling of
adaptive and
gradient boosting

Accuracy: 0.898
FOR: 0.09
Sensitivity: 0.793
DOR: 79.51
Specificity: 0.945
AUC: 0.946

4 Conclusion and Future Work

FE has its impact on healthcare domain data particularly in the diagnosis and prognosis of
diseases. The importance of exploratory data analysis in terms of concluding on MV, imputing MV,
the effect of imputation in diabetes prediction are discussed. It is shown that the imputation process is
helping ML models in early prediction by changing the distribution of data. The effect of constructing
new features from the existing features and their importance in the ML model is analyzed. The impact
of GLUC, INS, and BMI features are studied with DT classifier and RF classifier models. Irrespective
of the choice of the ML model, the selected quality features (GLUC, INS, and BMI) showed their
dominant impact on the outcome (diabetes/healthy). The impact analysis of the derived features with
the ensembling model (AB + XB) demonstrates that the inclusion of the derived features outperforms
the model with no inclusion of derived features and also advances the state-of-the-art results. The
proposed method shall be used in other diagnosis problems as well in the healthcare domain.
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