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Abstract: In communication channel estimation, the Least Square (LS)
technique has long been a widely accepted and commonly used principle.
This is because the simple calculation method is compared with other channel
estimation methods. The Minimum Mean Squares Error (MMSE), which
is developed later, is devised as the next step because the goal is to reduce
the error rate in the communication system from the conventional LS tech-
nique which still has a higher error rate. These channel estimations are very
important to modern communication systems, especially massive MIMO.
Evaluating the massive MIMO channel is one of the most researched and
debated topics today. This is essential in technology to overcome traditional
performance barriers. The better the channel estimation, the more accurate
it is. This paper investigated machine learning (ML) for channel estimation.
ML channel estimations based on the Extreme Learning Machine (ELMx)
group are also implemented. These estimations, known as the ELMx group,
include Regularized Extreme Learning Machine (RELM) and Outlier Robust
Extreme Learning Machine (ORELM). Then, it was compared with LS and
MMSE. The simulation results reveal that the ELMx group outperforms LS
and MMSE in channel capacity and bit error rate. Additionally, this paper
has proven complexity for verified computational times. The RELM method
is less time consuming and has low complexity which is suitable for future use
in large MIMO systems.
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1 Introduction

At present, wireless communication systems are constantly evolving and become one of the most
important aspects of life in the field such as medicine, transportation, economy, and society [1,2].
Lots of people are more accessible. Nowadays the generation 5 (5G) has been achieved by providers,
for service and support the use of many people [3]. We think about it in terms of massive MIMO
systems with a lot of receiving and sending antennas. Massive MIMO has the advantage of being
able to send extraordinarily rapid data. Spatial Diversity is the separation of the reception antennas
to improve the radio signal’s reliability. Spatial multiplexing, on the other hand, permits numerous
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distinct data streams to be sent between the transmitter and the receiver. This significantly boosts
throughput or capacity. It also enables numerous network users to be served by a single transmitter,
thus the name MU-MIMO. Beamforming uses advanced antenna technology to focus a wireless signal
in a specific direction researched to increase network speed and capacity rather than transmitting to a
large area. Channel estimation can also be utilized as an improvement approach for massive MIMO.
The frequently used channel estimation techniques, such as LS and MMSE channel estimation, are
both fundamental techniques. The LS and MMSE, on the other hand, have low precision. Because it
does not use a noise technique, LS channel estimation has a low computing complexity. The MMSE, on
the other hand, includes noise in its calculations [4]. In communication scenarios, large-scale MIMO
systems are a multitude of modeled case studies for optimization. Hybrid large-scale MIMO is an
interesting scenario for many researchers [5,6]. However, we chose a large MIMO based system to
generate simulation results to process machine learning datasets. In recent years, deep learning has
made great progress in the field of big data feature learning. By integrating low-level input for big
data with significant diversity and veracity, deep learning models can extract high-level features and
build hierarchical representations more effectively. Deep learning for channel estimation has been
used to solve nonlinear mapping and nonconvex problems [7,8]. Deep learning also has a high rate of
convergence and good regression accuracy. The authors proposed deep learning for super-resolution
channel estimation and DOA estimation based on massive MIMO systems in their research paper [9].
Moreover, Channel State Information Prediction for 5G Wireless Communications: A Deep Learning
Approach is one to optimize in 5G typically and the result show interesting [10]. Although the deep
learning technique performs better, it requires more network training time and is more difficult to
calculate channel estimation. With the advancement of big data, optimization algorithm and increased
computing resources in promoting enhanced ELM, it is now state-of-the-art (SOA) in areas including
brain EEG classification [11]. As a result, we propose ELMx, which combines three machine learning
algorithms for channel estimation such as ELM, RELM, and ORELM. The hidden layer bias and
input weight are generated at random from distributions [12–14]. The ELMx can learn at a faster
rate and perform well in regression. It is used to optimize the number of hidden neuron nodes during
the training phase. The signal received is used as input. In terms of Mean Square Error (MSE), Bit
Error Rate (BER), Channel Capacity, Outage Probability, Computational Time, and Computational
Complexity, the simulation results show that channel estimation performs better. The results indicated
that the proposed learning framework was comparable to SOA with less training time. which is
important for continuous communication in data transmission.

The following is an overview of the paper’s structure. Section 2 describes the content and approach
in-depth, including massive MIMO systems, fundamental channel estimate techniques, and offers
machine learning for channel estimation, as well as the features of ELMx. The results are then
discussed in Section 3. Finally, in Section 4, the paper’s conclusion is presented.

2 Material and Method

As a system model, we built a general communication system focused on massive MIMO to bring
the resulting system to compute various results.

2.1 Massive MIMO Systems

First, as illustrated in Fig. 1, we investigate a typical massive MIMO systems. A block diagram
is assumed for delivering data from the X (vector of transmitted signals) to the Y (vector of received
signals) with MT transmitting antennas and MR receiving antennas.
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Figure 1: A block diagram of Massive MIMO Systems

The relation between transmitted and received signal is given by

Y = HX + n (1)

where H is a channel response matrix (MR ×MT) and n is an additive white complex Gaussian noise
vector (MR × 1) is fundamental noise models used in data theory to mimic the effects of many random
processes occurring in nature. The relationship between the transmitted and received signals can be
represented by the matrix⎡
⎢⎢⎣

Y1

Y2

...
YMR

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h11 h12 · · · h1,MT

h12 h22 · · · h2,MT
...

...
. . .

...
hMR ,1 hMR ,2 · · · hMR ,MT

⎤
⎥⎥⎦

⎡
⎢⎢⎣

X1

X2

...
XMT

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

n1

n2

...
nMR

⎤
⎥⎥⎦ (2)

The channel estimation of massive MIMO systems is discussed in this part because it is important
to communicate multiple sets of data using multiple transmitting antennas that deliver data in a matrix
format, including interference signals. QPSK is ideal for simulating introductory and unnecessary
complexity in massive MIMO systems. The modulation method is considered by the constellation
mapping phase. Modulation takes binary bits as input, turns them to a complex value, and uses them
as a symbol. With MT transmitting and MR receiving antennas, we investigate a flat fading MIMO
wireless system. XN (p) represents the symbol for transmission by antenna MT at time instant p. The
transmitted symbols are grouped in an MT length vector, which can be represented as

XN (p) = [
X1 (p) , . . . , XMT (p)

]T
(3)

where (∗)
T is the transpose operation of the matrix.

2.2 Channel Estimation

Channel estimation is one of the measures of the performance of today’s wireless communication
systems. It plays an important role in a MIMO system. It is used for increasing the capacity by
improving the system performance in terms of bit error rate. In this paper, we assume the most
techniques in channel estimation such as LS and MMSE for comparing performance with ELM,
RELM and ORELM based on ELMx algorithm.
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2.2.1 LS Channel Estimation

For pilot-based channel estimation, least squares (LS) estimation is a popular method since it
provides good performance with a low level of complexity. The goal of LS channel estimation [15,16]
is to reduce the square error distance between the received and estimated signals as much as possible.
As a result, it may find ĤLS channel estimation by

ĤLS = argĤLS
min

∥∥∥Y − H̃LS

∥∥∥2

(4)

The channel estimates of impulse responses between all transmitting antennas and receiving
antennas are given by

Ĥ
N LS = YX H

(
XX H

)−1
(5)

where (∗)
H is transpose conjugate reserved for the matrix and (∗)

−1 is invert matrix

2.2.2 MMSE Channel Estimation

The MMSE channel estimation [15–17] is the second comparator we employ to estimate the
channel because it is the most frequently used and sophisticated way of calculation. As a result, it
is more precise than LS channel estimation, given by

ĤMMSE = argĤMMSE
min

∥∥∥Y − ĤMMSEX
∥∥∥2

(6)

For the estimation approach, we consider noise at the computing time spent, which is provided by

Ĥ
(N)

MMSE = YX H

(
XX H + σn

2

σh
2
I
)−1

(7)

where I is the size identity matrix (MT × MR), σn
2 is variance noise inversely proportional to the SNR,

and all channel response energies are normalized, such as

E
{∣∣hMR ,MT

∣∣2
}

= σh
2 (8)

2.2.3 Machine Learning for Channel Estimation (ELMx)

Now, we present a lightning-fast learning approach for single hidden layer feedforward networks
(SLFNs) with Ñ hidden neuron nodes and Ñ<N the number of training samples.

Extreme Learning Machine (ELM)

ELM is a machine learning algorithm that uses neural networks to learn. It has been theoretically
established and confirmed to have a high regression efficiency and quick learning information. The
structure of ELM is seen in Fig. 2.

where n is the number of input data and m is the number of output data. The analysis is based on the
ELM training process, with N training simples (Xi, ti), where Xi = [Xi1, Xi2, . . . , Xin]

T is the input data
and ti = [ti1, ti2, .., tim]T is the output data. The estimation of SLFNs is based on a mathematical model,
given by

t̂j =
Ñ∑

i=1

βio
(
ci · Xj + Vi

)
, j = 1, 2, . . . , N (9)
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where ci = [ci1, ci2, .., cin]
T is the input weight vector connecting of the i-th hidden and β =

[βi1, βi2, . . . , βim]T is the output weight vector connecting of the i-th hidden neuron nodes, Vi is the
bias of the i-th hidden neuron nodes, and o (∗) is the SLFNs’ activation function. In addition, unlike
other machine learning algorithms, the ELM may create the input weight ci and bias Vi at random.

Figure 2: Structure of extreme learning machine

To increase regression performance, one of ELM’s abilities is to verify zero error, which may
approximate all N simples as

∑N

i=1

∥∥t̂j − tj

∥∥ = 0, i.e. The N equations above can be expressed in a
more compact form as

Hβ = T

where β =
⎡
⎢⎣

β1

...
βÑ

⎤
⎥⎦

T

Ñ×m

and T =
⎡
⎢⎣

T1

...
TN

⎤
⎥⎦

T

N×m

(10)

H (ci, . . . , cÑ, Vi, . . . , VÑ, Xi, . . . , XN)

=
⎡
⎢⎣

o (c1 · X1 + V1) · · · o (cÑ · X1 + VÑ)
... · · · ...
o

(
c1 · X

N
+ V1

) · · · o
(
cÑ · X

N
+ VÑ

)
⎤
⎥⎦

N×Ñ

(11)

where H is the neural network’s hidden layer output matrix and T is the training data target matrix.

β̂ is the smallest norm least-square solution of the linear system provided by in the ELM solution.

β̂ = HPT (12)

where (∗)
P is the Moore-Penrose pseudoinverse of H.
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Regularized Extreme Learning Machine (RELM)

The ELM has performed well in a variety of applications; nonetheless, we believe that the method
of Ñ should be used to avoid overfitting and underfitting. Smaller norm parameters can provide higher
generalization, according to the suggested RELM for SLFNs with sigmoid function detailed in the
study. The equation may be used to many types of activation functions and hidden neuron nodes, such
as kernels, to solve the issue in l2 norm of β.

As a consequence, RELM may be explained as a method by

minimize
(β0,β)∈Ñ×1

C
2

‖Hβ + β0 − t‖2
2 + (1 − α)

2
‖β‖2

2 + α ‖β‖1 , (13)

When just the l2 norm penalty (α = 0) with β0 = 0 is considered, the RELM formula is given
where C and β0 are regularization parameters.

β̂ =
(

HHH + I
C

)−1

HHt (14)

Outlier-Robust Extreme Learning Machine (ORELM)

The ORELM has recently been adjusted to increase performance in the l1 norm of techniques that
create outliers. This may be accomplished using ELM, which is provided by

β̂ = argmin
β

τ ‖Hβ − t‖1 , (15)

The solution to the following optimization is obtained by using the standard l2 norm.

β̂ = argmin
β

τ ‖Hβ − t‖1 + 1
2C

‖β‖2
2 (16)

Fig. 3 in the preparation process, information is essential for this work. This will divide the data
preparation process. Two groups, the first group we call training data, are data preparation in massive
MIMO systems with different values to require the algorithm to calculate and remember the values.

Figure 3: Preparation process for ELMx

The second group is called teaching data. In this group we want the algorithm to learn the desired
value as a result. To distinguish the different values, we define it as the channel response of the massive
MIMO communication system. After entering the data preparation process. In the workflow of the
ELMx group’s algorithms, the steps are as follows
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2.3 Mean Square Error

The performance of machine learning algorithms may be examined in a variety of ways. Conse-
quently, we apply MSE in Performance Analysis to show a clear conclusion. This metric is widely used
to evaluate performance and is based on the findings [9,10]. As a result, after computing all channel
estimation algorithms, the error Ĥ is calculated, and the model forecasts the difference from the real H
before finding the mean. We calculate the Gradient of Loss based on the difference and backpropagate
the weight. Then, in the following training phase, we apply the Gradient Descent technique to decrease
losses. The loss function in regression can given by

MSEN =
N∑

i=1

∥∥∥H − Ĥ
∥∥∥2

(17)

2.4 Estimated Channel Capacity

The theory of the data rate that can be accomplished over a certain bandwidth (BW) and at a
specific signal to noise ratio is known as Shannon Capacity of a channel. It decreases the bit error rate
(BER) that cannot be achieved in practice, but as link level design techniques improve, the data rate
of noise channel approaches this theoretical bound [18]. The capacity in bps/Hz is expressed by

C = log2 det
[

IMR
+ Pt

PnMT

HHH

]
(18)

where IMR
is identity matrix (MR × MR), H is channel response of size (MT × MR), (∗)

H is transpose
conjugate, and Pt/Pn is signal noise ratio (SNR).

To estimate the capacity of the channel, we looked at the channel responses obtained using LS,
the popular MMSE method, and the other three based on the machine learning application is ELM,
RELM, and ORELM techniques. The formula of estimated capacity is written by

Ces = log2 det
[

IMR
+ Pt

PnMT

ĤĤH

]
(19)

where Ces is the estimated channel capacity, Ĥ is the estimated channel.

2.5 Outage Probability

The outage probability is another mostly performance index for communication techniques [19],
in fading channel, can determines the probability of channel capacity under a certain rate which
ensures data transmission without loss. The outage probability can be determined as

Pout (Ces < R) (20)

where R is the certain Rate of capacity.

As a result, the transmitter’s best option is to encrypt the data, given that the channel gain is
sufficient to support the target rate R when this occurs, it is possible to achieve reliable communication,
and otherwise an outage occurs. When the fading gain is h, think of the channel as allowing of
information to pass through. As long as the amount of data exceeds the intended rate, reliable
decoding is achievable. The outage probability of the Rayleigh channel given the transmission rate
R is expressed by

Pout (R) = 1 − exp
(−2R − 1

SNR

)
(21)
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where Pout denotes the outage probability of the system that the destination performs detection based
only on the received signals from the relay node.

3 Result and Discussion
3.1 MSE and BER

In this section, we evaluate the mean square error (MSE) and bit error rate (BER), as well as
the LS and MMSE channel estimates, to validate a group of ELMx algorithms. Massive MIMO
systems use 128 transmitting and receiving antennas, each having its own QPSK modulation mapping
and pilot number. Tab. 1 is explained the ELMx channel estimation technique. The result of MSE
performance with all techniques as shown in Fig. 4. The LS technique was less effective than the 4
techniques presented. Since the method of obtaining the result is simple and uncomplicated, there is a
large margin of error. MMSE technique, with the added complexity, makes it better than LS. Hence,
we apply an approach to machine learning, a group we call ELMx, that outperforms LS and MMSE.
This is because the ELMx base uses many datasets for training and testing to find results that are close
to the target data.

Table 1: The ELMx channel estimation algorithm

Input The receive signal vector Y in the scenario simulation of a massive
MIMO systems.

Output ELM-ML, RELM-ML, and ORELM-estimated ML’s channel Ĥ.
1: First, create a simulator for the massive MIMO systems and
incorporate certain noise or distortion into it.
2: Training sequences are created, with receive signal Y clustered
together.
3: Make the number of hidden neurons as large as possible.
4: At random, generate genuine values for input weight and bias ci, Vi.
5: Make use of the hidden layer neuron model (7).
6: Calculate output Ĥ by (13), (15) and (17).

Figure 4: MSE performance in massive MIMO systems
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Fig. 5. shows the BER performance results for all channel estimation. In a massive MIMO-based
communication system, 128 transmitting antennas (MT) and 128 receiving antennas are considered
(MR). The ELMx groups are better than the fundamental approaches of LS and MMSE channel esti-
mation. The result reveal that BER performance of ORELM in ELMx group is the best performance.

Figure 5: BER performance in Massive MIMO systems

3.2 Channel Capacity and Outage Probability

In this section, another measure of performance is channel capacity and outage probability in
massive MIMO systems. Then we use Eq. (19) to process and comparing channel capacity, as shown
in Figs. 6 and 7., use Eqs. (20) and (21) to process and finding outage probability.

The test result for channel capacity vs. SNR is shown that the traditional channel estimation LS
and MMSE provides less channel capacity than ELM, RELM, and ORELM techniques. The group
of ELMx is the best of channel capacity

Figure 6: Channel capacity performance in massive MIMO systems
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It is obvious that there is a very high probability that the capacity obtained for the massive
MIMO channel is significantly higher than that obtained for an AWGN channel. The capacitance is
insufficient compared to LS and MMSE, with a probability of 90% there is a capacity of 26 bps/Hz for
LS and a capacity of 28 bps/Hz for MMSE. Therefore, we show the finding of high channel probability
compared to LS and MMSE, with 90% of the probability. It has a capacity of 62 bps/Hz for ELM and
RELM, with a capacity spacing of 34 bps/Hz for MMSE, so a good result and consistent with the
method is ORELM as shown in Fig. 7.

Figure 7: Outage probability performance of LS, MMSE and ELMx

3.3 Computational Complexity

In this section, many ways for defining complexity with the big O notation are covered in this
section [20,21]. In terms of simpler functions, the big O notation indicates a function’s limiting behavior
when its arguments go towards a given value. It’s part of a wider group of notices. The big O notation
considers the largest of parameters, although some parameters cannot be cut off in this paper. Because
the complexity in this work is dependent on a lot of variables, it aims to examine the delicate nature of
the data by using the number of floating-point operations (flops) to substitute big O notations. A flop
is here defined as one addition, subtraction, multiplication, or division of two floating-point numbers.
It can be analyzed and shown in Tabs. 2–6.
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Table 2: The example of flop calculation for the LS technique

LS Flops

Iteration N − 1
X = randi ([01] , (MT)) MT

H = 1√
2
(randn(MTMR) + j ∗ randn(MTMR)) 2MTMR

n = 1√
2
(randn(MR) + j ∗ randn(MR)) 2MR

For loop iteration counting by : SNR N − 1
P = 10−SNR/10 2
Y = HX + √

P ∗ n 3
Ĥ

(N)
LS = YX H

(
XX H

)−1
2

Return loop find channel estimation N − 1

Total 2N2 +2NMTMR +NMT +2NMR +5N −2MTMR −MT −2MR −6

Table 3: The example of flop calculation for the MMSE technique

MMSE Flops

Iteration N − 1
X = randi ([01] , (MT)) MT

H = 1√
2
(randn(MTMR) + j ∗ randn(MTMR)) 2MTMR

n = 1√
2
(randn(MR) + j ∗ randn(MR)) 2MR

For loop iteration counting by : SNR N − 1
P = 10−SNR/10 2
Y = HX + √

P ∗ n 3

Ĥ
(N)

MMSE = YX H
(

XX H + σn2

σh
2 I

)−1

6

Return loop find channel estimation N − 1

Total 2N2 +2NMTMR +NMT +2NMR +8N −2MTMR −MT −2MR −9

Table 4: The example of flop calculation for the ELM technique

ELM Flops

Iteration N − 1
X = randi ([01] , (MT)) MT

H = 1√
2
(randn(MTMR) + j ∗ randn(MTMR)) 2MTMR

(Continued)
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Table 4: Continued
ELM Flops

n = 1√
2
(randn(MR) + j ∗ randn(MR)) 2MR

For loop iteration counting by: SNR N − 1
P = 10−SNR/10 2
Y = HX + √

P ∗ n 3
β̂ = HPT 1
H (ci, . . . , cÑ, Vi, . . . , VÑ, Xi, . . . , XN) MTMR

t̂j = ∑Ñ

i=1 βio
(
ci · Xj + Vi

)
, j = 1, 2, . . . , N (MTMR − 1) + 2

Return loop find channel estimation N − 1

Total 2N2 +4NMTMR +NMT +2NMR +4N −4MTMR −MT −2MR −7

Table 5: The example of flop calculation for the RELM technique

RELM Flops

Iteration N − 1
X = randi ([01] , (MT)) MT

H = 1√
2
(randn(MTMR) + j ∗ randn(MTMR)) 2MTMR

n = 1√
2
(randn(MR) + j ∗ randn(MR)) 2MR

For loop iteration counting by: SNR N − 1
P = 10−SNR/10 2
Y = HX + √

P ∗ n 3
β̂ = (

HHH + I
C

)−1
HHt 5

H (ci, . . . , cÑ, Vi, . . . , VÑ, Xi, . . . , XN) MTMR

t̂j = ∑Ñ

i=1 βio
(
ci · Xj + Vi

)
, j = 1, 2, . . . , N (MTMR − 1) + 2

Return loop find channel estimation N − 1

Total 2N2 +4NMTMR +NMT +2NMR +7N −4MTMR −MT −2MR −9

Table 6: The example of flop calculation for the ORELM technique

ORELM Flops

Iteration N − 1
X = randi ([01] , (MT)) MT

H = 1√
2
(randn(MTMR) + j ∗ randn(MTMR)) 2MTMR

n = 1√
2
(randn(MR) + j ∗ randn(MR)) 2MR

For loop iteration counting by: SNR N − 1

(Continued)
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Table 6: Continued
ORELM Flops

P = 10−SNR/10 2
Y = HX + √

P ∗ n 3
β̂ = (

HHH + 2/CμI
)−1

HH 6
H (ci, . . . , cÑ, Vi, . . . , VÑ, Xi, . . . , XN) MTMR

for loop to calculation iteration ML N − 1
μ = 2N/ ‖y‖ 3
βN+1 = β̂ (y − eN + λN/μ) 4
eN+1 = shrink (y − HβN+1 + λN/μ, 1/μ) 6
λN+1 = λN + μ (y − HβN+1 − eN+1) 5
t̂j = ∑Ñ

i=1 βio
(
ci · Xj + Vi

)
, j = 1, 2, . . . , N (MTMR − 1) + 2

Return loop find channel estimation N − 1

Total 3N2+4NMTMR+NMT +2NMR+24N−4MTMR−MT −2MR−27

We took the total flops of each algorithm to calculate the number of bits of feedback and
determined the number of massive MIMO antennas to determine the difference in flops and adjusted
the number of loops. Another method for evaluating performance is computational time by using time
as a measure of calculating various values to find the appropriateness of choosing to use as a result,
we may be able to deploy and optimize or compare performance with other methods.

Figure 8: Computational time of ELMx
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Fig. 8 shows that computational comparison between ELM and RELM, thus corresponding to
the computational complexity for the number of nodes from 100 to 500 nodes, the computation time
is clearly increased. The result of ORELM reveal that the computational time higher than ELM and
RELM when the number of tests increases. Therefore, it make more clear in Fig. 9, we show the
comparison between ELM and RELM in terms of computational time.

In terms of computational time, considering performance during the ELM and RELM algo-
rithms, the RELM has a lower computational time than the ELM for all number of testing so, RELM
is the best choice for future massive MIMO deployments.

Figure 9: Computational time of ELM and RELM

4 Conclusion

In massive MIMO systems, adding more communication antennas and learning new techniques
or procedures can help to improve the system or solve the problem. However, the problem may not be
solved because there are multiple channels sent from the base station in the communication system.
Therefore, this paper presented channel estimation techniques with machine learning based on massive
MIMO systems. The authors apply various techniques to compare with LS, MMSE and ELMx
groups. Three algorithms as ELM, RELM and ORELM are studied to test the efficiency of channel
estimation. All results in terms of MSE, BER, Capacity, Outage Probability, analysis of computational
time and analysis flop are confirmed that RELM was the best. This is because algorithm ORELM
consumed longer data learning and testing time, while RELM algorithm spent lower data overfitting
time. Therefore, in the future massive MIMO systems with ML, RELM is the best choice for channel
estimation.
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For future work, we plan to use the auxiliary information-aware ELM where phase [22], empirical
mode decomposition [23], peak value of meditation [24], and wavelet transform decomposition [25,26]
may be used as addition information to improve the performance of conventional ELM methods.
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