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Abstract: The minimum vertex cover problem (MVCP) is a well-known
combinatorial optimization problem of graph theory. The MVCP is an NP
(nondeterministic polynomial) complete problem and it has an exponential
growing complexity with respect to the size of a graph. No algorithm exits
till date that can exactly solve the problem in a deterministic polynomial
time scale. However, several algorithms are proposed that solve the problem
approximately in a short polynomial time scale. Such algorithms are useful
for large size graphs, for which exact solution of MVCP is impossible with
current computational resources. The MVCP has a wide range of applications
in the fields like bioinformatics, biochemistry, circuit design, electrical engi-
neering, data aggregation, networking, internet traffic monitoring, pattern
recognition, marketing and franchising etc. This work aims to solve the MVCP
approximately by a novel graph decomposition approach. The decomposition
of the graph yields a subgraph that contains edges shared by triangular edge
structures. A subgraph is covered to yield a subgraph that forms one or more
Hamiltonian cycles or paths. In order to reduce complexity of the algorithm
a new strategy is also proposed. The reduction strategy can be used for
any algorithm solving MVCP. Based on the graph decomposition and the
reduction strategy, two algorithms are formulated to approximately solve the
MVCP. These algorithms are tested using well known standard benchmark
graphs. The key feature of the results is a good approximate error ratio and
improvement in optimum vertex cover values for few graphs.

Keywords: Combinatorial optimization; graph theory; minimum vertex cover
problem; maximum independent set; maximum degree greedy approach;
approximation algorithms; benchmark instances

1 Introduction

The Minimum Vertex Cover Problem (MVCP) is a subset of NP complete problems. Solution
of NP class of problems is one of the seven outstanding millennium problems stated by the Clay
Mathematics institute. The solution of these problems can be verified in polynomial time scale, but time
complexity for solving these problems grow exponentially with size of the problems [1]. The MVCP
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involves finding a set U such that U ⊂ V . Here the set U has the smallest possible cardinality in a
graph G = G (V , E) such that V is a set of vertices and E is a set of edges of the graph. For the set
U to be a cover of graph, every edge of the graph is connected to at least one element of U . The set
U is called a minimum vertex cover of G [2]. The problem has an exponentially growing complexity
since the number of combinations which are required to be verified grows as nv! where nv represents the
number of vertices in the graph. Due to exponential growth in complexity of the problem, it is almost
impossible to exactly solve the problem in a realistic time scale. Therefore, solving these problems via
Brute force method i.e., checking all the possible combinations is not feasible. However, one may opt
for an approximate solution of these problems in a reasonably quick time.

The MVCP has a wide range of applications; for example, cyber security, setting up or dismantling
of a network, circuit design, biochemistry, bioinformatics, electrical engineering, data aggregation,
immunization strategies in network, network security, internet traffic monitoring, wireless network
design, network source location problem, marketing and franchising, pattern recognition and cellular
phone networking [3–9].

Due to its wide range of applications, the MVCP has received special attention in the scientific
community. Several approximate algorithms for solving the problem have been proposed, e.g., the
depth first search algorithm, the maximum degree greedy algorithm, the edge weighting algorithm, the
deterministic distributed algorithm, the genetic algorithm, the edge deletion algorithm, the support
ratio algorithm, the list left algorithm, the list right algorithm and iterated local search algorithm
etc [10]. Since all these algorithms provide approximate results with certain accuracy, there is a
certain space to improve accuracy and to reduce complexity by introducing faster and more accurate
algorithms. The scientific community around the globe has proposed approximate solutions of the
problem with polynomial complexity. Some of the efforts by scientific community are described in
following paragraph.

Jiaki Gu et al. proposed an algorithm that uses a general three stage strategy to solve the minimum
vertex cover problem. Their method includes graph reduction, finding minimum vertex cover of
bipartite graph components and finally finding the vertex cover of actual graph [11]. Changsheng
Quan and coworkers proposed an edge waiting algorithm to solve MVCP. They claim that their
algorithm has a fast-searching performance for solving large-scale real-world problem [12]. Shaowei
Cai et al. in their work proposed a heuristic algorithm that make use of a preprocessing algorithm,
construction algorithms and search algorithms to solve the MVCP. They claim that their algorithm is
fast and accurate as compared to other existing heuristic algorithms [13]. Chuan Luo et al. proposed
an algorithm that uses a highly parametric framework and incorporates many effective local search
techniques to solve the MVCP. According to their claim their algorithm performs better for medium
size graph and is competitive for large sized graphs [14].

Jinkun Chen and coworkers proposed an approximate algorithm based on rough sets. They use
a Boolean function with conjunction and disjunction logics [15]. Cai. S et al. in their work use an
edge weighting local search technique for finding an approximate MVC [16]. Khan, I and coworkers
proposed an algorithm that works by removal of nodes to find a maximum independent set yielding
an approximate MVC [17]. Arstrand, M et al. formulated a deterministic distributed algorithm to
solve the MVCP. The authors solved the problem for two approximate solutions of the MVC during
(� + 1)

2 synchronous communication rounds where � represents an upper bound of maximum
degree [18]. Bar-Yehuda et al. used Dijkstra algorithm in their work in order to solve the problem
[19]. Genetic algorithm has been used for the solution of the problem by Bhasin et al. Their algorithm
demonstrated advantage of handling graphs when compared to the reported literature algorithms. The
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authors mentioned that the algorithm is unable to tackle some problems due to which they proposed
the usage of Diploid Genetic Algorithms as an extension [20]. Support Ratio Algorithm (SRA) used
a heuristic approach to solve the MVCP in which Balaji and coworkers used an adjacency binary
matrix to represent a graph. The complexity of the algorithm has been O

(
nen2

v

)
, where ne is number

of edges and nv is the number of vertices. The authors claim that the support ratio algorithm has
been found better for large scale problems compared to the reported algorithms [21]. Kettani and
co-workers introduced a novel heuristic algorithm to find MVC. The author suggested to use their
algorithm for other graph optimization problems including maximum clique problem [22]. Xu and
Kumar proposed a solver for the minimum weighted vertex cover problem (MWVC). Their algorithm
reformulated a series of SAT (satisfiability) instances using a primal-dual approximation algorithm as
a starting point [23]. Ruizhi Li, and coworkers proposed a local search algorithm with tabu strategy
and perturbation mechanism for generalized vertex cover problem [24]. For hypergraphs and bounded
degree graphs Halperin and co-workers proposed an algorithm to find minimum vertex. They used
semi-definite programing and introduced a new rounding technique for this purpose [25]. Cai, S. et al.
have reported an algorithm based on local search (NuMVC) that has been found efficient in finding
MVC. They introduced two new processes that involve a two-way exchange and an edge weighting
mechanism [26].

The literature survey indicates variety of results as far as complexity and accuracy of algorithms
are concerned. Onak and Rubinfeld developed a randomized algorithm for maintaining an approxi-
mate maximum cardinality matching with a time complexity of O(log2nv) [27].

In particular, the present work is more suitable for two dimensional graphs with triangular grid
structures. The two-dimensional triangular grid graphs are very common in telecommunications, in
molecular biology, in configurational statistics of polymers and in various other fields [28–30]. We
are proposing here a new way to find edges shared by such triangular grid structures and use these
subgraphs to simplify the MVC for such graphs.

2 Definitions

A graph can be represented as a matrix Me (Edge Matrix or Adjacency Matrix) such that;

Me = [
eij

]
, where eij =

{
1 if (i, j) ∈ E
0 if (i, j) /∈ E

Here i and j are numbered vertices such that i, j ∈ V .

The set N (k) is the set of neighbors of the kth vertex in the graph. The set of edges connected by
the kth vertex is represented by kth row or kth column of the edge matrix. The removal of the kth row and
kth column from the edge matrix Me is equivalent to the removal of the kth vertex and all of its incident
edges from the graph.

From here onward let HO denote a Hamiltonian cycle with odd number of edges (subgraphs of
the form triangles, pentagons and heptagons etc.), HT denote a Hamiltonian cycle with three edges
(triangles only), a common or shared edge here is defined as an edge that is shared by more than one
Hamiltonian cycles of the form HO. A Hamiltonian cycle with three edges i.e., HT can be represented
as eijejkeki = 1, where i, j and k are the three vertices of that Hamiltonian cycle. Similarly, for any odd
number of vertices i, j, k, l . . . z one can represent the Hamiltonian cycle HO as eijejkekl . . . ezi = 1.

Any vertex w ∈ Vc is said to be covered, Vc denotes here the vertex cover of a graph. A\B implies
all those elements of a set A which are not elements of set B and a shared vertex is defined here as a
vertex that has a degree greater than two.
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3 Proposed Work

A graph can be divided into a number of subgraphs such that;

G (V , E) =
⋃r

i=1
Gi (Vi, Ei) (1)

One may construct these subgraphs Gi’s such that Ei ∩ Ej = ∅, that is these subgraphs do not
share any edge. Yet, there are two possibilities, Vi ∩ Vj = ∅ or Vi ∩ Vj �= ∅ for i, j ∈ {1, 2, 3, . . . , r}.
If Vi ∩ Vj = ∅, (i, j = 1, 2, 3, . . . , r), C = ⋃r

i = 1 Ci is minimum vertex cover of G, where Ci is the
minimum vertex cover of Gi. But if Vi ∩ Vj �= ∅, a union of the intersections of each such pair
will yield a set of vertices that may not be covered by individual subgraphs. In that case C does not
represents the minimum vertex cover of the graph G. However, the union does not necessarily require
to be union of intersection of all the pairs, rather union of intersection of fewer pairs may yield an
optimum solution. Let us denote the optimum union set as U . Covering all vertices of U and removing
from the graph G will leave Ui ∩ Gj = ∅, i.e., all these subgraphs become disjoint and vertex cover
becomes C = U

⋃r

i=1 Ci. Let U ⊆ V be a set with a minimum cardinality among the other sets,
exclusion of which assures Gi ∩ Gj = ∅ (where subgraphs Gi and Gj become either isolated paths or
Hamiltonian cycles). However, to conveniently decompose a graph into a number of subgraphs and
to find the set U is difficult.

A solution for graph decomposition is proposed that is based on Lemma and Theorem proved
below.

Lemma: An edge that has both of its vertices covered must belong to a Hamiltonian cycle or a
path with odd number of edges.

Proof: A graph can be decomposed into a number of subgraphs that may be a Hamiltonian cycle
or a path with odd or even number of edges. For even number of edges a Hamiltonian cycle or path
does not require both vertices of any edge to be covered. For a Hamiltonian cycle with odd number
of sides only one of the edges must have both vertices covered. For paths with odd number of sides
both vertices of one of those edge may or may not require to be covered. Hence, if both vertices of an
edge are covered that edge may either be an edge of a Hamiltonian cycle or a path with odd number
of edges.

Theorem: The exact minimum vertex cover of a graph G can be found by constructing a subgraph
from edges (x, y) ∈ HO and finding minimum vertex cover of the subgraph, where x, y, (x, y) ∈ G

Proof: For a given set of vertex cover there may exist at most two types of edges depending on the
vertices being covered i.e., an edge with both of its vertices covered and an edge with a single vertex
covered. The edge with both vertices covered essentially belongs to a subgraph of the form of a path
or a Hamiltonian cycle with odd number of edges as proved in the Lemma. In case of two different set
of vertex covers i.e., an optimum vertex cover and an approximate one, there can be at most five cases,
which are listed below;

Case 1: An edge (x1, y1) covered by both vertices x1and y1 in the set of optimum vertex cover and
covered by a single vertex (either x1or y1) in approximate set of vertex cover.

Case 2: An edge (x2, y2) covered by a single vertex (either x2 or y2) in the optimum set and covered
by both vertices (x2 and y2) in the approximate set.

Case 3: An edge (x3, y3) covered by both vertices x3 and y3 in both sets.

Case 4: An edge (x4, y4) covered by a single but different vertex in both sets.

Case 5: An edge (x5, y5) covered by a single and same vertex in both sets.
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For both of the sets the number of cases like case 3, 4 and 5 are the same i.e., such cases do not
cause any difference on the cardinality of both sets. In cases 1, 2 and 3 at least one of the sets have its
edges covered by both vertices. Since case 3 is the same for both the sets, the only two cases that can
cause difference on the cardinality of both sets are case 1 and 2. For the approximate set the number
of cases like case 2 is greater than or equal to the number of cases like case 1. This leads to the fact
that a large number of cases like case 2 can increase cardinality of an approximate set compared to the
optimal set. All edges that belong to subgraphs that are either paths or Hamiltonian cycles with odd
number of edges are candidates of having both vertices in the vertex cover. By simply separating all
such edges the optimization problem simplifies.

This leads to a conclusion that minimum vertex cover optimization depends only on optimization
of subgraphs formed by Hamiltonian cycles or paths with odd number of sides.

Based on the Theorem a new approach is proposed to find u ∈ U , approximately, and Ci

exactly, and hence an approximate minimum vertex cover of the form C = U
⋃r

i=1 Ci. In principle,
any subgraph of the form HO must have both vertices of one of its edges in the vertex cover. This
work is based on finding edges that satisfies eij ∈ HT . Removal of these edges from the graph
assures Ei ∩ Ej = ∅ which is followed by removal of common or shared vertices to result in disjoint
graphs satisfying Gi ∩ Gj = ∅.

Our aim here is to find edges, which are common in more than one triangular Hamiltonian cycle.
We refer such edges as shared edges. To find such shared edges in a large graph we are proposing a
new approach. The new approach is based on decomposition of a graph G (V , E) into two subgraphs
GU and GS in such a way that an edge eij ∈ GS satisfies eij ∈ HO for at least two subgraphs of the form
HO (referred here as shared edges) in G, whereas all edges other than shared edges forms GU . A greedy
approach can then be used for selecting a vertex from GS. The selected vertex is then covered. After
covering such vertices some of the edges ( emn) may no longer satisfy the condition emn ∈ HO and hence
are moved from GS to GU , the removal of vertices from of GS will eventually result in GS = ∅. At this
stage the uncovered graph GU will contain shared vertices, isolated polygons and/or isolated paths. This
subgraph can further be divided into two subgraphs GI and GSV , where GSV consists of all the shared
vertices and their adjacent edges, and GI consists of one or more than one isolated Hamiltonian cycles
or paths. Both the subgraphs GSV and GI are covered using maximum degree greedy approach. The
greedy approach exactly covers the subgraph GI This work is limited to find subgraph of the form
of HT . i.e., the set of all shared edges of all triangles in a graph. This can be done by finding common
neighbors of all edges of the graph. For vertices i and k that form edge eik, the common neighbors can
simply be found by an intersection of a subgraph N (i) with subgraph N (k). The set N (i) ∩ N (k),
is found by carrying out AND operation of ith row or column with kth row or column of the edge
matrix Me. One can write; N (i) ∩ N (k) = eij ∧ ejk, where j = 1, 2, 3, . . . , nv and nv is the total
number of vertices in the graph. The intersection yields the common neighbors of ith and kth vertices.
One can evaluate square of the edge matrix as;

Se = M2
e =

[
n∑

j=1

eijejk

]
nv×nv ,

An element of matrix Se, i.e., sik =
n∑

j=1

eijejk has the bounds 0 ≤ sik ≤ nv −2, where i �= k. In matrix

Se the diagonal elements sjj (j = 1, 2, 3, . . . , nv) represent the degree of vertex j, whereas off diagonal
elements sik are the number of common neighbors of the vertices i and k, or the number of triangles
sharing the edge eik if the edge exits. In other words, each term in a given element sik corresponds to a
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Hamiltonian cycle HT i.e., eijejkeki = 1. One can also sort Hamiltonian cycles HO with odd number of
edges greater than HT by using eijejkekl . . . ezi = 1 condition, where {i, j, k, l . . . z} is a set of odd number
of vertices. However, the current work is limited to find all Hamiltonian cycles of the form HT .There
are nv (nv − 1) off-diagonal elements of Se. Since Se is symmetric i.e., sik = ski, only nv (nv − 1) /2
elements of Se are calculated. A maximum of nv (nv − 1) /2 subgraphs can be constructed for each
possible pair of vertices i and k. Each of these subgraphs consists of set of vertices {i, k, N (i) ∩ N (k)}
and contains 2 sik + eik number of edges. However, construction of such subgraphs is beyond the scope
of this work, therefore we restrict ourselves to the evaluation of weighted matrix Se only. The subgraphs
are completely covered by the vertices i and k. However, depending on the value of sikthe vertices i
and k may or may not be the minimum vertex cover of that subgraph. The matrix Se does not contain
any information about common neighbors other than the total number of common neighbors two
vertices can have.

An element-by-element multiplication (just corresponding element multiplication of two matrices)
of matrix Se with that of the matrix Me results in a matrix Te such that each element tik = eiksik of Te

represents number of tringles that share the edge eik. The elements of matrix Te are classified as;

tik =
⎧⎨
⎩

0 N (i)∩ N (k) = ∅
1 | N (i)∩ N (k)| = 1
≥ 2 |N (i) ∩ N (k)| ≥ 2

For example, tik ≥ 2 corresponds to a subgraph which forms two or more than two triangles with
a shared edge eik. For all the cases with tik ≥ 2, the vertices i and k are the minimum vertex cover of
the subgraph. For tik = 0, implies either the edge is not shared or eik /∈ G. For tik = 1, the subgraph
forms a single triangle. The value tik = 0, implies that eik /∈ HT , but eik ∈ HO may still be possible. A
subgraph GS of all edges satisfying eik ∈ HT can be generated using the weight matrix Te for tik ≥ 2.
However, if all the edges of a graph are shared edges, the condition tik ≥ 2 will produce a graph of
shared edges same as the original graph i.e., GS = G. For such graphs one can modify the condition
as tik ≥ tmin + n, where tmin is minimum number of triangles sharing a single edge in that graph and n is
a small number. This modification will generate a reduced graph of shared edges. A vertex cover of the
reduced subgraph GS removes all shared edges of the form eik ∈ HT from G. However, the condition

eik ∈ HO may still not be satisfied.

Removal of any subset of vertices from a graph requires removal of the corresponding row or
column from the edge matrix Me. This leads to calculation of new square matrix Se. However, instead
of calculating Se from scratch, a low-cost solution is proposed here to reduce the simulation time.

Proposition: S∗
e being the square of matrix M∗

e can be calculated from Se, where M∗
e is the reduced

graph after removal of lth row and lth column from Me.

Proof: Since

Se =
[

n∑
j=1

eijejk

]
nv×nv

(1)

Se can be decomposed as

Se =
[

l−1∑
λ=1

eiλeλk

]
nv×nv

+ [eilelk]n×n +
[

n∑
μ=l+1

eiμeμk

]
nv×nv

where λ = 1, 2, 3, . . . , l − 1 and μ = l + 1, l + 2, . . . , nv
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Let F = [eilelk]n×n is an nv × nv matrix that can be obtained by multiplying lth column and lth row of
the edge matrix Me. One can write;

Se =
[

l−1∑
λ=1

eiλeλk

]
nv×nv

+
[

n∑
μ=l+1

eiμeμk

]
nv×nv

+ F (2)

Let

Śe =
[∑

j

eijejk

]
nv×nv

(3)

where j = 1, 2, 3, . . . , l − 1, l + 1, . . . , nv

Eqs. (2) and (3) yields;

Se = Śe +F (4)

All elements in lth row and lth column from Śe are zeros, therefore, removing lth row and lth column
from Śe yields S∗

e , which is the required matrix of order (nv − 1) × (nv − 1).

S∗
e =

[∑
j

eijejk

]
(nv−1)×(nv−1)

(5)

Reduced matrix S∗
e is multiplied element by element with M∗

e to evaluate T ∗
e . As previously

discussed, the square matrix elements sik is the number of common neighbors of the vertices i and k,
the value sik can be used as a weight to select vertices to be covered.

Algorithms

The decomposition of a graph G into GU and GS (The subgraph containing all shared edges
of triangular structures) is accomplished by transforming the matrix Te → We such that [We]ij =
min

(
1, [Te]ij

)
and tik ≥ 2. The algorithm is divided into three stages. In first stage a vertex with highest

degree in the subgraph GS is found and covered. The first stage is terminated when GS = ∅. The
subgraph GU does not contain any shared edge that belongs to triangular structures but it may still
have edges shared by subgraphs of the form HO. In second stage, the vertex with highest degree is
found from GU and covered. After covering all the shared vertices of the graph, the graph is left with
isolated paths or polygons. In third stage, a vertex with degree 2 is found and covered. The removal of
a vertex from G in all three stages may lead to leaves in the residual graph. Therefore, these leaves are
removed by covering their adjacent vertex.

The proposed algorithms are described in the following section. Algorithm 1 and Algorithm 2 are
abbreviated as ASE and ASER such that ‘A’ stands for Algorithm, ‘SE’ stands for ‘Shared Edges’ and
‘R’ stands for ‘Reduction Strategy’.

Algorithm 1: (ASE)
· Input: Graph G (V , E).
· Output: Minimum Vertex Cover of graph G (V , E).
1: Read data and construct edge matrix Me and We

2: while size (Me) > 1
(Continued)
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Algorithm 1: Continued
3: while (size (We) > 1)

4: Perform operation (A0), (A1), (A2), (A3) and (A4)
5: end
6: while (deg (v ∈ V) ≥ 2)

7: Perform operation (A5), (A6), (A3) and (A4)
8: end
9: end

(A0) Evaluate We using matrices Me, Se and Te for tik ≥ 2 or tik ≥ tmin + 3

(A1) Find a vertex with highest degree from We and cover the vertex

(A2) Evaluate matrix F for the vertex found in step A1. Using Eq. (4) evaluate reduced matrix Se

using matrix F and the matrices Me and Se from step A1. Reduce matrix Me.

(A3) Remove all leaves from the graph

(A4) Remove all isolated vertices from the graph

(A5) Find deg (u ∈ U), i.e., degree of vertex u in present set of vertices U

(A6) Find the vertex u that has the maximum degree in present graph, cover the selected vertex u
and remove from the graph.

Complexity

Total complexity of the algorithm is
(
34nv

3 − 99nv
2 + 170nv − 120

)
/24 ∼= 1.42nv

3.

To reduce complexity of ASE a reduction strategy is proposed. The reduction strategy consists of
splitting graph into two subgraphs and finding independent set of 1st subgraph and taking union of that
independent set with 2nd subgraph and finding independent set of the union set. However, this graph
splitting is not random. For splitting one can list the set of edges E = {(λ, μ) : μ ∈ N (λ) , ∀λ, μ ∈ E}.
Construct two sets of vertices L = {λ : ∀ (λ, μ) ∈ E} and R = {μ : ∀ (λ, μ) ∈ E}. Find L ∩ R. One can
see that the set, IL = L\L ∩ R is an independent set, because there are no two vertices in IL, that are
neighbors of each other. Similarly, IR = R\L ∩ R is also an independent set.

Under normal circumstances the list of edges E may not provide reasonably large IL and IR,
therefore, one may need to prepare the list the edges E so that IL and IR are sufficiently large. One may
opt for an alternative strategy to find sufficiently large IL, IR and a small Vres = L ∩ R by using a low-
cost algorithm that can find an approximate minimum vertex cover. The low-cost algorithm outputs
an independent set and residual set of vertices. Therefore, one can use the low-cost algorithm twice to
find IL and (V\IL) and again to find IR and (V\IL) \IR and remaining set of vertices Vres = L ∩ R.
Now one can construct a subgraph from Vres, that is Gres = Gres (Vres, Eres). An independent set Ires can
be found using Algorithm 1 (ASE). A second subgraph can be constructed from Is = IL ∪ IR ∪ Ires,
that is GS = GS (IS, ES). Using Algorithm ASE again one can construct the final independent set.
Complexity of this algorithm depends on the cardinality nL of IL and nR of IR. The cardinality of set
of vertices of the 1st subgraph is n1 = nv − nL − nR and cardinality of set of vertices of 2nd subgraph
is n2 = nres + nL + nR, where nres is the cardinality of the set Ires. The complexity of algorithm ASER
is [34

(
n3

1 + n3
2

) − 76
(
n2

1 + n2
2

) + 170 (n1 + n2) − 240]/24.
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Algorithm 2: (ASER)
· Input: Graph G (V , E).
· Output: Minimum Vertex Cover of graph G (V , E).
1: Perform operation (B0) to find Is1 and perform operation (B1) to find residual graph GR0,
2: Perform operation (B0) using GR0 as input to find Is2 and perform operation (B1) to find residual
graph GR

3: Perform operation (B3) and find an independent set Is3 using GR as input
4: Perform operation (B2) to find Is using Is1, Is2 and Is3 and construct subgraph Gs from Is

5: Using Gs as input perform step (B3) and find the independent set Iind and vertex cover Vc

6: Using Iind and Vc perform operation (B4) and find the final maximum independent set Imax

7: end

(B0) Find an independent set Is of a graph using a low-cost algorithm

(B1) Construct residual subgraph GR (VR, ER) from VR = V − Is.

(B2) Construct a single set using three sets as; Is = Is1 ∪ Is2 ∪ Is3

(B3) Find maximum independent set of given subgraphs using algorithm 1

(B4) Find a subset Ic of the vertex cover Vc, such that Ic contains vertices that individually can
go to independent set Iind. Find independent set of Ic using Algorithm1. Move all vertices of that
independent set to Iind to construct the final independent set.

The low-cost algorithm simply selects and adds a vertex to an independent set followed by
searching vertices that can be moved to the independent set. This algorithm has a complexity of nv

2/2.
However, one is free to choose the low-cost algorithm in accordance with the suitability.

4 Results and Discussion

In this section both the algorithms are tested and analyzed for their accuracy and complexity for
benchmark graphs taken from [31,32] and [33]. The simulations are performed on a computer with
1.61 GHz processor and 8.00 GB RAM using sequential programming.

The results from the 72 benchmark graphs referred above are organized in the form of three tables.
Tabs. 1 and 2 contain optimum vertex cover and accuracy in the form of error ratios for the algorithms
of respective graphs. Tab. 3 contains a comparison of results of the algorithm ASE with three well
know algorithms. The error ratio is defined here as the value of minimum vertex cover for a given
graph obtained from each algorithm divided by the optimum vertex cover (nO) of that graph. The
condition tik ≥ 2 has been used to generate shared edges graph (GS) for 64 benchmark graphs. For
some of the benchmark graph all the edges are shared edges, therefore, the condition tik ≥ 2 will
yield GS = G. For such graphs the condition is modified to tik ≥ tmin + 3, where tmin is minimum
number of triangles sharing a single edge in that graph. This modification results in reduced shared
edges graph. The condition tik ≥ tmin + 3 is used to generate GS for eight such graphs and their error
ratios are given in Tab. 2.
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Table 1: The calculated MVC and error ratio for the proposed algorithms for tik ≥ 2 (c stands for clq
and cc for clq_compliment)

Sr. # Benchmark
Graph

nv nO ASE
(εr)

ASER
(εr)

Sr.# Benchmark
graph

nv nO ASE
(εr)

ASER
(εr)

1 graph50_01 50 30 1 1 33 p_hat700_2 700 656 0.995 0.998
2 graph50_02 50 30 1 1 34 Jhonson8–

2–4c
28 24 1 1

3 graph50_03 50 30 1 1 35 Jhonson8–
4–4c

70 56 1 1

4 graph50_05 50 27 1 1 36 Jhonson16–
2–4c

120 112 1 1

5 graph50_06 50 38 1 1 37 Jhonson32–
2–4c

496 480 1 1

6 graph50_07 50 35 1 1 38 sanr200_0_7 200 182 1.005 1.016
7 graph50_08 50 29 1 1 39 sanr200_0_9 200 158 1.025 1.038
8 graph50_09 50 40 1 1 40 sanr400_0_5 400 387 1.005 1.01
9 graph50_10 50 35 1 1 41 sanr400–

0.7c
400 379 1.013 1.013

10 graph100_01 100 60 1 1 42 frb35_17_2 595 560 1.016 1.02
11 graph100_02 100 65 1 1 43 c125 125 91 1.011 1.022
12 graph100_03 100 75 1 1 44 c250 250 206 1.024 1.019
13 graph100_04 100 60 1 1 45 c500 500 443 1.02 1.025
14 graph100_05 100 60 1 1 46 brock200_2 200 188 1.011 1.016
15 graph100_06 100 80 1 1 47 hamming6–

2_cc
64 32 1 1

16 graph100_07 100 65 1 1 48 hamming6–
4_cc

64 60 1 1

17 graph100_08 100 75 1 1 49 hamming8–
2_cc

256 128 1 1

18 graph100_09 100 85 1 1 50 hamming8–
4_cc

256 240 1 1

19 graph100_10 100 70 1 1 51 hamming10–
2_cc

1024 512 1 1

20 graph200_01 200 150 1 1 52 c_fat200_1 200 188 1 1
21 graph200_02 200 125 1 1 53 c_fat200_2 200 176 1 1
22 graph200_03 200 175 1 1 54 c_fat200_5 200 142 1 1
23 graph200_04 200 140 1 1 55 c_fat500_1 500 486 1 1
24 graph200_05 200 150 1 1 56 c_fat500_2 500 474 1 1
25 graph500_01 500 350 1 1 57 c_fat500_5 500 436 1 1
26 graph500_02 500 400 1 1 58 MANN_a27 378 252 1.003 1.003

(Continued)
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Table 1: Continued
Sr. # Benchmark

Graph
nv nO ASE

(εr)

ASER
(εr)

Sr.# Benchmark
graph

nv nO ASE
(εr)

ASER
(εr)

27 graph500_03 500 375 1 1 59 MANN_a45 1035 1032 1 1
28 graph500_04 500 300 1 1 60 C2000_9 2000 1920 1.013 1.012
29 graph500_05 500 290 1 1 61 C4000_5 4000 3982 1.001 1.001
30 p_hat300_1 300 292 0.997 1.007 62 MAAN-

a81
3321 2221 1.002 1.002

31 p_hat300_2 300 275 0.996 1.004 63 Ca_GrQc 4158 2208 1 1.005
32 p_hat300_3 300 264 0.992 1.004 64 Bio-dmela-

mtx
7393 2630 1.000 1.009

Table 2: The calculated MVC and error ratio for the proposed algorithms for tik ≥ tmin + 3

Sr. # Benchmark
Graph

nv nO ASE
(εr)

ASER
(εr)

Sr.# Benchmark
Graph

nv nO ASE
(εr)

ASER
(εr)

1 graph50_04 50 40 1 1 5 DSJC500_5 500 487 1.004 1.004
2 p_hat700_1 700 689 1.004 1.003 6 DSJC1000_5 1000 986 1.002 1.002
3 p_hat700_3 700 638 1 1 7 keller4 171 160 0.981 0.981
4 frb30_15_5 450 420 1.012 1.014 8 keller5 776 749 0.995 0.995

Table 3: Comparison of ASE with MDG, MVSA and MtM

Sr. # Benchmark
Graph

nv nO ASE (εr) MDG (εr) MVSA (εr) MtM (εr)

1 p_hat300_1 300 292 0.997 1.003 1.006 1.005
2 p_hat300_2 300 275 0.996 1.010 1.014 1
3 p_hat300_3 300 264 0.992 1.01 1.03 1.008
4 p_hat700_2 700 656 0.995 1.003 1.006 1.003
5 sanr200_0_7 200 182 1.005 1.005 1.021 1.005
6 sanr200_0_9 200 158 1.025 1.005 1.031 1.058
7 sanr400_0_5 400 387 1.005 1.003 1.005 1.003
8 sanr400–

0.7c
400 379 1.013 1.007 1.005 1.008

9 frb35_17_2 595 560 1.016 1.014 1.008 1.009
10 c125 125 91 1.011 1.022 1.043 1.033
11 c250 250 206 1.024 1.0145 1.0145 1.0242
12 c500 500 443 1.02 1.07 1.042 1.011
13 brock200_2 200 188 1.011 1.0213 ——– ——–
14 C2000_9 2000 1996 0.999 ——– ——– ——–

(Continued)
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Table 3: Continued
Sr. # Benchmark

Graph
nv nO ASE (εr) MDG (εr) MVSA (εr) MtM (εr)

15 p_hat700_1 700 689 1.004 1.004 1.004 1.004
16 frb30_15_5 450 420 1.012 1.009 1.009 1.014
17 DSJC500_5 500 487 1.004 1.008 1.004 1.004
18 DSJC1000_5 1000 986 1.002 ——– ——– ——–
19 keller4 171 160 0.981 1.025 1 1
20 keller5 776 749 0.995 1.02 1.007 1.007

Average (εr) 1.005 1.014 1.015 1.012

Fig. 1 shows the error ratio (εr) obtained from both the algorithms plotted against the number
of vertices for 67 benchmark graphs (excluding the graph with number of vertices greater than 2000
for better visibility of the figure). The solid line in Fig. 1 corresponds to the error ratio for optimum
vertex cover. It can be seen that the error ratio for graphs with fewer number of vertices is less accurate
compared with that of the higher number of vertices. This suggests that the algorithms get better and
better with increased number of vertices. It can also be noted that the worst-case error ratio (εr) for
algorithms ASE and ASER are 1.025 and 1.038 respectively. An interesting finding of this study is the
reported optimum error ratio for few benchmark graphs in literature is found slightly less accurate
compared to the value calculated in this work. This can be seen in Fig. 1 as ASE and ASER lies below
the optimum error ratio line on six and three occasions, respectively.

Figure 1: Accuracy of the suggested algorithms, solid line represents reported optimum values

As can be seen from the Tabs. 1 and 2 that out of 72 instances ASE and ASER both give an error
ratio (εr = 1) or better on 55 and 50 instances, respectively. The average error ratios (εr) for ASE and
ASER are 1.0017 and 1.0030 respectively.

In ASE, since only edges emn ∈ HT are covered, all edges satisfying emn ∈ HO are not covered with
certainty. This may lead to erroneous results. After covering all edges from subgraphs of the form HT ,
shared vertices are selected with the priority of highest degree of the residual graph, and the vertices are
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moved to vertex cover one by one. The selection may not be accurate since it uses the greedy approach.
However, the approach will produce exact minimum vertex cover for the residual graph that is left with
isolated Hamiltonian cycles or paths.

Supplementary data describes the complexity of the proposed algorithms and contains two
parametric numbers or reduction parameters p1 and p2. Supplementary data also contains time taken
by each of the algorithm to find the minimum vertex cover. The reduction parameter is the ratio of
approximate complexity of the form

(∼= 1.41n3
1,2

)
of an algorithm with that of

(∼= 1.41n3
v

)
, and can be

is calculated as p1,2 = n3
1,2/n3

v, where n1 and n2 are defined in the previous section. These reduction
parameters represent a time reduction of an algorithm with reduction strategy (ASER) to the same
without reduction strategy (ASE).

The comparison between ASE and ASER is given in Fig. 2, which shows that if either p1 → 1
or p2 → 1, a difference between their simulation times approaches to zero. For graphs ham-
ming6_2_clq_compliment, hamming8_2_clq_compliment and hamming10_2_clq_compliment, one
can see that p1 → 1 and p2 → 0, hence no significant time difference is observed. Similarly, for graphs
p_hat700_1, MANN_a27, MANN_a45 and C2000_9 reduction parameters p1 → 0 and p2 → 1,
forcing the time difference to approach to zero. A noticeable difference in simulation time can be
observed for the cases where neither p1 → 1 nor p2 → 1. The reduction parameters p1 and p2 for each
of the benchmark graphs are plotted in Fig. 2.

Figure 2: Reduction parameters p1 and p2 plotted against number of vertices

The simulation time for the proposed algorithms is plotted against the number of vertices in Fig. 3.
A cubic fit function of the form f (nv) = Cn3

v is also plotted to show the complexity trend of both
the algorithms. It can be seen that the algorithms (ASE and ASER) follow the cubic fit trend. Since
computer takes a small amount of preprocessing time before each simulation, one can see that for
low values of nv the simulation time is large compared to f (nv), whereas for large values of nv the
simulation time matches with f (nv). One can also see that simulation time for ASER is occasionally
smaller than f (nv), reflecting a success in reduction strategy.
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Figure 3: Simulation time vs. the number of vertices for the proposed algorithms

In Tabs. 1 and 2 the performance of the algorithm ASE is evaluated using 72 benchmark graphs.
On 48 instances our algorithms yield optimal values. In Tab. 3 we have compared the results for 20
benchmark graphs for which ASE does not yield optimal values with three well known algorithms
MDG (maximum degree greedy) [34], MVSA (modified vertex support algorithm) [35] and MtM
(Min-to-Min) [36]. The average ratio error for these 20 benchmark graphs presented in the Tab. 3
for ASE, MDG, MVSA and MtM are, 1.005, 1.014, 1.015 and 1.012, respectively. This shows that the
algorithm ASE clearly outperforms the three algorithms in comparison.

5 Practical Implementation

For step-by-step analysis of the algorithm a simple real-life example is selected. Crypto or digital
currency market currently has a market capital of billions of US dollars. There are hundreds of crypto
currencies with billions of USD daily volume. Market data analysis of these currencies is becoming
harder and harder with growth in data. However, almost all of these currencies are paired with each
other for trading. Therefore, any market fluctuation is coupled within these crypto currencies. In
principle, one can represent these currencies and their trading pairs in the form of a graph and can
find minimum vertex cover of the graph to select only few currencies for crypto market data analysis.
We have selected ten crypto currencies and their trading pairs in order to simplify the problem. These
crypto currencies and their trading pair are presented in the form of a graph is shown in Fig. 4a.

The graph is decomposed in subgraphs with bold dark lines showing shared edges and dashed
lines as the rest of the graph. The shared edge graph is simply a triangle in this case and each vertex
has a degree 2 in the subgraph. A single vertex (in this case vertex 1) is covered, i.e., Vc = {1} and
we are left with only a single edge (e23) in the subgraph. One vertex (vertex 2) of the remaining edge
(e23) is covered, yielding Vc = {1, 2}. Since there are no more shared edges in the graph, therefore we
are left with the subgraph of the form shown in Fig. 4b. From here on ward the vertices are simply
covered on the basis of their degree. Since the vertex 3 has the highest degree therefore, it is covered,
yielding Vc = {1, 2, 3} and hence the entire graph is covered. A conclusion of this process is that, only
crypto currencies numbered 1, 2 and 3 represent the complete variation of the market for only these
ten crypto currencies. However, in order to completely analyses the entire crypto market a minimum
vertex cover of a graph representing entire market has to be found.
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Figure 4: (a) Crypto currencies and their trading pair (b) Subgraph with no shared edge

6 Summary

The proposed approach simplifies a graph to isolated paths or polygons (Hamiltonian cycles)
by moving shared edges followed by shared vertices to the vertex cover. This process forms three
subgraphs i.e., a subgraph containing shared edges, a subgraph with shared vertices and finally a
simplified subgraph. The final simplified subgraph is either a single Hamilton cycle or path or a
number of isolated Hamiltonian cycles or paths. The vertex cover of the simplified subgraph can be
exactly found in a short time using maximum degree greedy approach. The accuracy of finding the first
two subgraphs depends on the sequence of covering the vertices. The proposed strategies are capable
to search for the sequence of selection of vertices to an approximate extent only. However, using this
approach the problem can be broken successfully into three smaller problems, which are relatively
easy to handle. The worst-case error ratio (εr) for algorithms ASE and ASER are 1.025 and 1.038,
respectively. The average error ratios (εr) for ASE and ASER are 1.0017 and 1.0030 respectively. The
algorithms have a maximum complexity of approximately 1.42nv

3. Both the algorithms (ASE and
ASER) improve optimum error ratio for few graphs compared to the values reported in literature
[17,34–36].

7 Future Work

The proposed approach may work even better if all the edges shared by subgraphs of the form HO

can be found and removed with certainty (i.e., in correct sequence) and if one may find a better strategy
(or sequence) to remove shared vertices other than the greedy approach. A future work is suggested
to find shared edges among all subgraphs of the form HO.
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