
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2022.026557

Article

Two-Stage High-Efficiency Encryption Key Update Scheme for LoRaWAN
Based IoT Environment

Kun-Lin Tsai1,2,*, Li-Woei Chen3, Fang-Yie Leu4,5 and Chuan-Tian Wu1

1Department of Electrical Engineering, Tunghai University, Taichung, 407, Taiwan
2Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan

3Department of Computer and Information Sciences, Chinese Military Academy, Kaohsiung, 830, Taiwan
4Department of Computer Science, Tunghai University, Taichung, 407, Taiwan

5Emergency Response Management Center, Industry-Academia Collaboration and University Extension Division,
Ming-Chuan University, Taipei, 111, Taiwan

*Corresponding Author: Kun-Lin Tsai. Email: kltsai@thu.edu.tw
Received: 30 December 2021; Accepted: 02 March 2022

Abstract: Secure data communication is an essential requirement for an
Internet of Things (IoT) system. Especially in Industrial Internet of Things
(IIoT) and Internet of Medical Things (IoMT) systems, when important data
are hacked, it may induce property loss or life hazard. Even though many IoT-
related communication protocols are equipped with secure policies, they still
have some security weaknesses in their IoT systems. LoRaWAN is one of the
low power wide-area network protocols, and it adopts Advanced Encryption
Standard (AES) to provide message integrity and confidentiality. However,
LoRaWAN’s encryption key update scheme can be further improved. In
this paper, a Two-stage High-efficiency LoRaWAN encryption key Update
Scheme (THUS for short) is proposed to update LoRaWAN’s root keys and
session keys in a secure and efficient way. The THUS consists of two stages, i.e.,
the Root Key Update (RKU) stage and the Session Key Update (SKU) stage,
and with different update frequencies, the RKU and SKU provide higher
security level than the normal LoRaWAN specification does. A modified AES
encryption/decryption process is also utilized in the THUS for enhancing the
security of the THUS. The security analyses demonstrate that the THUS not
only protects important parameter during key update stages, but also satisfies
confidentiality, integrity, and mutual authentication. Moreover, The THUS
can further resist replay and eavesdropping attacks.

Keywords: Key update; AES; LoRaWAN; IoT security; high efficiency

1 Introduction

Due to the rapid developments of Internet of Things (IoT), Artificial Intelligence (AI), and
communication technologies, in recent years, IoT applications have been built for different fields.
For example, an IoT system can be used in industry and medical treatment, and forms the so-called

http://dx.doi.org/10.32604/cmc.2022.026557
mailto:kltsai@thu.edu.tw

548 CMC, 2022, vol.73, no.1

Industrial Internet of Things (IIoT) [1] and Internet of Medical Things (IoMT) [2] systems. For human
daily lives, a smart home system [3] and a smart city [4] can also be created by combining IoT and
AI technologies. In an IoT system, massive sensors are linked to network via wired and wireless
connections, and then sensed data are delivered to control center, so that the corresponding operations
can be performed.

In order to provide mass, wide-range and low-power connections, the concept of Low Power Wide
Area Network (LPWAN) communication structure is established. In the past decade, many LPWAN
communication systems have been proposed, e.g., Narrow Band IoT (NB-IoT) [5], Long Range Wide-
Area Network (LoRaWAN) [6], Sigfox [7], DASH7 [8], etc. Due to business and research reason,
many NB-IoT and LoRaWAN related studies have been proposed. To allow mass IoT devices to
communicate with each other, NB-IoT utilizes licensed telecommunication bands, while LoRaWAN
uses unlicensed band. Generally, both NB-IoT and LoRaWAN have the features of wide-area and
low-energy communication. Moreover, LoRaWAN is an evolving protocol and can be used for many
modern IoT environments.

The IoT security is as important as general computer and network security since its applications
relate to businesses, industries, cities, and even human healthcare [9,10]. Providing information
confidentiality, data integrity, and device availability becomes an essential requirement for LPWAN
communication systems. The Advanced Encryption Standard (AES) [11] is adopted by LoRaWAN
to ensure the transmitted data can be safely delivered from sender to receiver. Besides, two types of
session keys are utilized in AES data encryption and decryption processes between end-devices and
servers [12].

Even though LoRaWAN uses AES to protect the security of transmitted data, it still exists some
security problems that need to be solved [13–15]. For example, LoRaWAN’s root keys are kept in
join-server and end-devices, but lack their own update mechanisms. Once the root keys are stolen,
LoRaWAN’s security might be crashed. Besides, the session keys are updated through the end-device
re-join process which may also lead to device management and data consistency problems.

In order to deal with the key management and update problem, in this study, a Two-stage High-
efficiency LoRaWAN key Update Scheme (THUS for short) is proposed to update LoRaWAN’s root
keys and session keys in a secure and efficient way. The THUS utilizes modified AES process and
system time stamp to achieve the goal of mutual authentication, confidentiality and message integrity
during its update procedure. Besides, the security analysis also shows that the THUS has the ability
to resist replay and eavesdropping attacks. In the THUS, the root key and session key can be renewed
without changing the device information recorded in join-server, network-server, and application-
server. Besides, with different key update frequencies, the THUS provides higher security level than the
conventional LoRaWAN specification does. The main contributions of this paper are listed below.

(i) The proposed THUS improves LoRaWAN key management by updating both root keys and
session keys.

(ii) The modified AES algorithm is utilized in the THUS so that the security of key update
procedure can be enhanced and the processing performance can also be improved.

(iii) During the key update procedure, the proposed THUS provides the features of mutual authen-
tication, confidentiality and message integrity and has the ability to resist eavesdropping attack
and replay attack.

The remaining part of this paper is organized as follows. LoRaWAN security policy and some IoT-
related studies are introduced in Section 2. Then, Section 3 presents the detailed process of the THUS,

CMC, 2022, vol.73, no.1 549

including the Root Key Update (RKU) stage and Session Key Update (SKU) stage. The security
analyses and discussion are presented in Section 4. Section 5 addresses the THUS performance. Section
6 concludes this study and points out our future study.

2 Preliminary
2.1 LoRaWAN Security

Since LoRaWAN is one of the communication protocols designed for IoT applications, it provides
many attractive features including low power and long-distance communication. The security policy of
LoRaWAN [16,17] is established under the requirements of data confidentiality, mutual authentication
between devices and servers, message integrity. Accordingly, AES cryptographic algorithm and
two operation modes, i.e., Counter Mode (CTR) and Cipher-based Message Authentication Code
(CMAC), are adopted in the LoRaWAN data transmission. The CTR is used for data encryption
and decryption, while the CMAC is utilized to guarantee the message integrity. Besides, LoRaWAN
uses two types of session keys to protect data security, one for end-devices and application-servers,
namely application session key (AppSKey), and another for end-devices and network-servers, namely
network session key (NwkSKey for R1.0, and FNwkSIntKey, SNwkSIntKey, NwKSEncKey for R1.1.
To simplify, in this study, the NwkSKey is used to represent all network session keys). As shown in
Fig. 1, when an end-device new joins to an IoT system, a globally unique identifier DevEUI and two
unique root keys, including AppKey and NwkKey, are registered in join-server. And then, the join
process between end-device and join-server generates two types of session keys by using DevEUI,
AppKey and NwkKey. Following that, the NwkSKey and AppSKey are delivered to network-server
and application-server, respectively.

root keys

root keys

Network-Server Application-Server

Join-Server

End-Device

NwkSKey

AppSKey

NwkSKey

AppSKey

NwkSKey

AppSKey

FNwkSIntKey
NwkSIntKey

NwKSEncKey

Figure 1: LoRaWAN uses two root keys to generate session keys

2.2 Related Studies

Since IoT security is an important topic for constructing an IoT system, many related studies
[18–21] have been proposed in the past years. According to the announced LoRaWAN 1.0 protocol,
Naoui et al. [18] pointed out two important parameters might be attacked. The first parameter is a
16-bit counter, DevNonce, which is used to record the join times of an end-device. Since the DevNonce
is transmitted with unencrypted format, the replay attack might be launched by some attacker. The

550 CMC, 2022, vol.73, no.1

second parameter is AppNonce which is utilized for mutual authentication between application-server
and end-device. An attacker may forge the join acceptance message sent by network server, retransmit
the same message to the end-device, and then pretend to be a legitimate application-server. In [18],
Naoui et al. utilized an independent computer to be the trusted third party and created a timeline for
every message so that the session keys can be delivered to network-server and application-server in a
secure way.

Eldefrawy et al. [19] checked the security policies of different LoRaWAN protocols. Similarly, they
also claimed that the transmitted data will be disclosed when the parameter AppNonce in LoRaWAN
v1.0 is known by attackers. However, LoRaWAN v1.1 utilized join-server to generate and dispatch
session keys, hence enhanced the security level. Even though LoRaWAN improves its security in v1.1,
many researchers still think the root key management is a drawback of LoRaWAN’s security policy.

Chen et al. [20] proposed a comprehensive LoRaWAN key management scheme, which addressed
key updating, key generation, key backup, and key backward compatibility. The centralized key
management server designed in [20] was a trusted agent dealing with the whole lifecycle of the
key management, i.e., key generation/derivation, updating, backup/recovery, and key revocation.
Compared with other previous studies, they provided a good and secure solution for LoRaWAN
key management. However, involving an extra server may also lead to other security problems.
Xing et al. [21] used elliptic curve cryptography for root key update scheme. Both end-devices and
server adopted the hierarchical deterministic wallet to manage the key pair, and the key agreement
between the end-devices and the server was realized by the elliptic curve Diffie-Hellman key exchange
algorithm. They also used bi-directional Hash algorithm during communication. Although their
method indeed enhanced the security of LoRaWAN key management, the complex elliptic curve
cryptography algorithm consumed much power during key update procedure.

Dönmez et al. [22] utilized a master device to store the original root keys of end-devices so as
to enhance the LoRaWAN’s security. The connections between master device and end-devices are
physical links, as a result, the master device can be considered as an extension part of end-devices.
Moreover, the master device can also be utilized to charge the batteries of end-devices. However, when
master device was hacked, it may result in serious problem of whole IoT system.

Because original root keys are stored in end-devices, and in LoRaWAN standard, only session
key can be update by using rejoin process; however, the root keys cannot be update. In [23], Han and
Wang created a root key update method by using key derivation function to solve the key management
problem. Their experiment showed that the key generation process can generate new root keys with
very high degree of randomness.

3 Two-Stage LoRaWAN Key Update Scheme

As abovementioned, LoRaWAN’s protocols [16,17] do not take root key management into
account. Once the root keys are attacked and stolen, it can easily induce security problems. In this
section, as shown in Fig. 2, a two-stage LoRaWAN key update scheme is proposed. The first one
is root key update (RKU) stage, and the second one is session key update (SKU) stage. In Section
3.1, the modified AES is introduced so as to enhance the security level and reduce the computational
complexity at the same time. Then, the detailed steps of RKU stage and SKU stage are described in
Sections 3.2 and 3.3, respectively. The notations used in the RKU and SKU stage are illustrated and
defined in Tab. 1.

CMC, 2022, vol.73, no.1 551

root keys

root keys

Network-Server Applicatio- Server

Join-Server

End-Device

NwkSKey

AppSKey

NwkSKey

AppSKey

RKU Stage

NwkSKey

AppSKey

SKU Stage

Figure 2: Root keys are updated in RKU stage and session keys are updated in SKU stage

Table 1: Notations used in RKU stage and SKU stage

Notations Descriptions

α, β, γ , ε 128-bit random numbers
tRKU

nonce,ns, tRKU
nonce,js, tRKU

nonce,ed System time of network-server, join-server, and end-device in RKU
procedure, respectively.

DevNonce A 16-bit counter used to calculate the end-device’s join time
R−Box A randomly generated box used to calculate dynamic box D-box
NwkSKey The network session key which is generated by the root key and is used to

encrypt data delivered between end-device and network-server
DevEUI A global end-device ID in IEEE EUI64 address space that uniquely

identifies an end-device
kns−js symmetric data encryption key for network-server and join-server
kns

ct , Sjs
ct Time keys of network-server and join-server

En−Ded , En−Djs Encrypted data for end-device and join-server
D−Boxnew New substitution box for AES SubBytes step
�t1, �t2, �t3, �t4, �t5,
�t6, �t7, �t8

Predefined delay time

AppSKey The application session key which is generated by the root key and is used
to encrypt data transmitted between end-device and application-server

En−Pred , En−Prjs Encrypted data generated by end-device and join-server
AppKey, NwkKey LoRaWAN root keys
JoinEUI A global application ID in IEEE EUI64 address space that uniquely

identifies the join-server

(Continued)

552 CMC, 2022, vol.73, no.1

Table 1: Continued
Notations Descriptions

tSKU
nonce,js, tSKU

nonce,ed , tSKU
nonce,js System time of join-server, end-device, and join-server in SKU procedure,

respectively.
Pad16 Appended zero to make the length of transmitted message as a multiple

of 16
En−Kjs2ed , En−Kjs2as,
En−Kjs2ns

Encrypted data sent by join-server to end-device, application-server, and
network-server, respectively.

En−Kas2ed , En−Kns2ed Encrypted data sent by application-server and network-server to
end-device

Acked2js Acknowledge message

3.1 Modified AES

In order to improve AES’s security strength and operating speed, a dynamic-box (D-Box) is
designed to replace the original substitution-box (S-Box). The enhanced dynamic accumulated shifting
substitution (EDASS) algorithm proposed in [24] and used in [25] is a randomized function which can
be used to generate irreversible text. The EDASS based D-Box Generation (DBG) process uses three
inner keys and three insertion arrays to generate a D-Box. During the RKU and SKU stage, the inputs
of modified AES are plaintext and a D-Box, and the corresponding output is a ciphertext. Besides,
a flag array is also utilized to prevent duplicate elements appear in the D-Box. For security reason,
the D-Box is required irregular renewal. In this study, the D-Box of modified AES has 256 elements,

which means that a total number of 256! (=
256∏

i=1

i) possible combinations of a D-Box. When an attacker

captures some encrypted messages and would like to decrypt them, he needs 128-bit session key and
the D-Box, indicating that the combination is up to 2128 × 256!. Since EDASS algorithm and DBG
process are input-sensitivity and randomness, decrypting the encrypting messages in a short period of
time without correct session key and D-Box are very difficult. Besides, as shown in [25], by replacing
S-Box with the D-Box, the encryption cycles of the conventional 128-bit AES can be simplified to 5
rounds. As a result, the modified AES with D-Box has high efficiency than the conventional AES does.

3.2 Stage 1: Root Key Update Procedure

In the RKU stage, there are three important parameters, i.e., α, β, and γ , which are generated
by network-server, end-device, and join-server, respectively. Firstly, network-server delivers α to join-
server and end-device so as to state up the RKU procedure. Then, the end-device sends β to join-server
by integrating α into the encrypted message so that the feature of message integrity can be achieved.
At the same time, the join-server also transmits γ to end-device. Once when end-device and join-server
have β and γ in hand, they utilize these two parameters to generate two new root keys. As shown in
Fig. 3, in the RKU stage, there are 8 steps, which are described as follows.

CMC, 2022, vol.73, no.1 553

End-Device
Join-Server

Network-Server

(1)

(2a) (2b)

(3) (4)
(5)

(6)
(7) (8)

(1) Generate D-Box and parameter �
(2a) Deliver D-Box and � to end-device
(2b) Deliver D-Box and � to join-server
(3) Generate random number �
(4) Generate random number �
(5) Deliver � to join-server
(6) Deliver � to end-device
(7) Generate new root keys
(8) Generate new root keys

RKU Stage

Figure 3: There are 8 steps in the RKU stage

Step (1): The network-server performs the following sub-steps.

(1.1) generates a random box R−Box and a 128-bit random parameter α;
(1.2) fetches the system time tRKU

nonce,ns;
(1.3) calculates the time key kns

ct = SHA
(
tRKU

nonce,ns ⊕ α ⊕ DevNonce
)
, where SHA stands for secure hash

algorithm, and DevNonce is a 16-bit counter;
(1.4) calculates new AES substitution box D−Boxnew = BDG

(
kns

ct , R−Box
)
;

(1.5) calculates En−Ded = EDASS
(
NwkSKeyold, D−Boxold, kns

ct |D−Boxnew| tRKU
nonce,ns |α| DevEUI

)
,

where NwkSKeyold is currently used network session key and DevEUI represents the global
end-device ID in IEEE EUI64 address space that uniquely identifies the end-device;

(1.6) calculates En−Djs = EDASS
(
kns−js, D−Boxold, kns

ct |D−Boxnew| tRKU
nonce,ns |α| DevEUI

)
, where kns−js

indicates the symmetric data encryption key of network-server and join-server.

Step (2a): The network-server delivers En−Ded to end-device.

Step (2b): The network-server delivers En−Djs to join-server.

Step (3): When receiving En−Ded , the end-device performs the following sub-steps.

(3.1) calculates kns
ct |D−Boxnew| tRKU

nonce,ns |α| DevEUI = EDASS (NwkSKeyold, D−Boxold, En−Ded);
(3.2) takes the system time tRKU

nonce,ed, and verifies the condition tRKU
nonce,ed − tRKU

nonce,ns ≤ �t1, where �t1 is
a predefined time difference including maximal transmission latency and the computational
time of steps (1.3) to (1.6). If the verification failed, the end-device submits warning messages
to network-server and join-server, and then stops the RKU stage; otherwise, it

(3.3) according to DevEUI , retrieves the corresponding DevNonce, calculates ked
ct = SHA(tRKU

nonce,ns ⊕ α

⊕DevNonce), and checks to see whether ked
ct = kns

ct or not. If not, the end-device submits warning
messages to network-server and join-server, and then stops the RKU stage; otherwise, it

(3.4) generates a random number β;
(3.5) calculates En−Pred = EDASS

(
AppSKeyold, D−Boxnew, β |α ⊕ DevNonce| tRKU

nonce,ed

)
;

554 CMC, 2022, vol.73, no.1

Step (4): When receiving En−Djs from network-server, join-server performs the following sub-steps.

(4.1) calculates kns
ct |D−Boxnew| tRKU

nonce,ns|α = EDASS
(
kns−js, D−Boxold, En−Ded

)
;

(4.2) takes the system time tRKU
nonce,js, and verifies the condition tRKU

nonce,js − tRKU
nonce,ns ≤ �t2, where �t2 is a

predefined time difference including maximal transmission latency and the computational time
of steps (1.3) to (1.6). If the verification failed, the join-server submits warning messages to
network-server and end-device, and then stops the RKU stage; otherwise, it

(4.3) according to DevEUI , retrieves the corresponding DevNonce, calculates kjs
ct = SHA(tRKU

nonce,ns ⊕ α

⊕DevNonce), and checks to see whether kjs
ct = kns

ct or not. If not, the join-server submits warning
messages to network-server and end-device, and then stops the RKU stage; otherwise, it

(4.4) generates a random number γ ;
(4.5) calculates En−Prjs = EDASS

(
AppSKeyold, D−Boxnew, γ |α ⊕ DevNonce| tRKU

nonce,js

)
;

Step (5): The end-device sends En−Pred to join-server.

Step (6): The join-server sends En−Prjs to end-device.

Step (7): When receiving En−Prjs from join-server, the end-device performs the following sub-steps.

(7.1) calculates γ |α ⊕ DevNonce| tRKU
nonce,js = EDASS

(
AppSKeyold, D−Boxnew, En−Prjs

)
;

(7.2) takes the system time t′RKU
nonce,ed, and verifies the condition t′RKU

nonce,ed − tRKU
nonce,js ≤ �t3, where �t3 is

a predefined time difference including maximal transmission latency and the computational
time of steps (4.3) to (4.5). If the verification failed, the end-device submits warning messages
to network-server and join-server, and then stops the RKU stage; otherwise, it

(7.3) verifies α ⊕ DevNonce is correct or not. If the value is not correct, the end-device submits
warning messages to network-server and join-server, and then stops the RKU stage; or else, it

(7.4) computes new root keys AppKeynew = (AppKeyold ⊕ β) + (AppKeyold ⊕ γ) and NwkKeynew =
(NwkKeyold ⊕ β) + (NwkKeyold ⊕ γ).

Step (8): When receiving En−Pred from end-device, the join-server performs the following sub-steps.

(8.1) calculates β |α| tRKU
nonce,ed = EDASS (AppSKeyold, D−Boxnew, En−Pred);

(8.2) takes the system time t′RKU
nonce,js, and verifies the condition t′RKU

nonce,js − tRKU
nonce,ed ≤ �t4, where �t4 is

a predefined time difference including maximal transmission latency and the computational
time of steps (3.3) to (3.5). If the verification failed, the join-server submits warning messages
to network-server and end-device, and then stops the RKU stage; otherwise, it

(8.3) verifies α ⊕ DevNonce is correct or not. If the value is not correct, the join-server submits
warning messages to network-server and end-device, and stops the RKU stage; or else, it

(8.4) computes new root keys which are the same with those equations in Step (7.4).

3.3 Stage 2: Session Key Update Procedure

In the SKU stage, once the join-server receives the session key update request sent by network-
server, it generates an important parameter ε, and utilizes ε and new root keys generated in RKU
stage to calculate new session keys, i.e., AppSKey and NwkSKey. Then the parameter ε is delivered to
the end-device so that the end-device can generate the same session keys. Next, the end-device sends
a new-session-key encrypted acknowledgement message to join-server, and the join-server confirms
the acknowledgement message to ensure that the session keys generated by the end-device are the
correct. After that, the join-server delivers network session key and application session key to network-
server and application-server, respectively. Finally, both application-server and network-server send

CMC, 2022, vol.73, no.1 555

encrypted messages to the end-device to guarantee new session keys’ function. As shown in Fig. 4, in
the SKU stage, there are 13 steps, which are described as follows.

End-Device
Join-Server

Network-Server

(1) (1)

(4) (2)
(3)

(5)(13)

(6)

(1) Send session key update request
(2) Calculate new session keys
(3) Deliver new AppSKey to end-device
(4) Verify and generate new session keys
(5) Acknowledge to join server
(6) Verify acknowledge message
(7) Deliver new AppSKey to application-server
(8) Deliver new NwkSKey to network-server
(9) Update AppSKey and generate verify message
(10) Send verify message to end-device
(11) Update NwkSKey and generate verify message
(12) Send verify message to end-device
(13) Verify messages

SKU Stage

Application-
Server

(7)

(8)

(11)

(9)

(10)

(12)

Figure 4: The SKU stage consists of 13 steps

Step (1): The network-server sends a SKU request and DevEUI to end-device and join-server.

Step (2): When receiving the SKU request, the join-server performs the following sub-steps.

(2.1) according to DevEUI , retrieves DevNonce (a 16-bit counter managed by end-device), JoinEUI
(a global application ID in IEEE EUI64 address space that uniquely identifies the join-server),
AppKey (one of the original root keys), and NwkKey (one of the original root keys) from its
database;

(2.2) generates a 128-bit random number ε;
(2.3) fetches system time tSKU

nonce,js and calculate Sjs
ct = SHA

(
tSKU

nonce,js ⊕ ε
)
, where SHA stands for secure

hash algorithm;
(2.4) calculates new session keys

AppSKeynew = EDASS(AppKeynew, D−Boxnew, 0x02| JoinNonce |JoinEUI | DevNonce |ε | Sjs
ct|Pad16)

NwkSKeynew = EDASS(NwkKeynew, D−Boxnew, 0x01| JoinNonce |JoinEUI | DevNonce |ε | Sjs
ct|Pad16)

where Pad16 is appended zero to make the length of transmitted message satisfying a multiple of 16.

(2.5) calculates En−Kjs2ed = EDASS
(
AppSKeyold, D−Boxnew, AppSKeynew

∣∣tSKU
nonce,js

∣∣ DevEUI
)
;

Step (3): The join-server delivers En−Kjs2ed to end-device.

Step (4): When receiving En−Kjs2ed , the end-device performs the following sub-steps.

(4.1) calculates AppSKeynew

∣∣tSKU
nonce,js

∣∣ DevEUI = EDASS
(
AppSKeyold, D−Boxnew, En−Kjs2ed

)
;

(4.2) obtains JoinNonce | JoinEUI | DevNonce | ε| Sjs
ct by calculating EDASS(AppKeynew,

D − Boxnew, AppSKeynew)

(4.3) fetches system time tSKU
nonce,ed and verifies the condition tSKU

nonce,ed − tSKU
nonce,js ≤ �t5, where �t5 is a

predefined time difference including maximal transmission latency and the computational time

556 CMC, 2022, vol.73, no.1

of steps (2.4) and (2.5). If the verification failed, the end-device submits warning messages to
network-server and join-server, and then stops the SKU stage; otherwise, it

(4.4) calculates Sed
ct = SHA

(
tSKU

nonce,js ⊕ ε
)

and checks to see whether Sed
ct = Sjs

ct or not. If not, the end-
device submits warning messages to network-server and join-server, and then stops the SKU
stage; otherwise, it

(4.5) calculates new session keys with the equations same to those listed Step (2.4);
(4.6) calculates the acknowledgement message

Acked2js = EDASS(AppSKeynew, D−Boxnew, NwkSKeynew|tSKU
nonce,ed).

Step (5): The end-device sends the acknowledge message Acked2js to join-server.

Step (6): Once receiving Acked2js, the join-server performs the following sub-steps.

(6.1) decrypts Acked2js, and retrieves NwkSKeynew and tSKU
nonce,ed;

(6.2) fetches system time t′SKU
nonce,js and verifies the condition t′SKU

nonce,js − tSKU
nonce,ed ≤ �t6, where �t6 is a

predefined time difference including maximal transmission latency and the computational time
of steps (4.4) to (4.6). If the verification failed, the join-server submits warning messages to
network-server and end-device, and then stops the SKU stage; otherwise, it

(6.3) checks to see whether NwkSKeynew obtained from Step (6.1) are the same with Step (2.4) or not.
If not, the join-server submits warning messages to network-server and end-device, and then
stops the SKU stage; otherwise, it

(6.4) calculates S′js
ct = SHA

(
t′SKU

nonce,js ⊕ ε
)

(6.5) calculates En−Kjs2as = EDASS(kjs2ns, D−Boxnew, AppSKeynew|t′SKU
nonce,js |DevEUI| tSKU

nonce,ed |ε| S′js
ct);

(6.6) calculates En−Kjs2ns = EDASS(kjs2ns, D−Boxnew, NwkSKeynew|t′SKU
nonce,js |DevEUI| tSKU

nonce,ed |ε| S′js
ct).

Step (7): Join-server sends En−Kjs2as to application-server.

Step (8): Join-server sends En−Kjs2ns to network-server.

Step (9): Once receiving En−Kjs2as, the application-server performs the following sub-steps.

(9.1) decrypts En−Kjs2as, and retrieves AppSKeynew|t′SKU
nonce,js |DevEUI| tSKU

nonce,ed |ε| S′js
ct ;

(9.2) fetches system time tSKU
nonce,as and verifies the condition tSKU

nonce,as − t′SKU
nonce,js ≤ �t7, where �t7 is a

predefined time difference including maximal transmission latency and the computational time
of steps (6.3) to (6.6). If the verification failed, the application-server submits warning messages
to network-server, join-server, and end-device, and then stops the SKU stage; otherwise, it If
not, it sends a warning message to network-server, and stops the SKU stage; otherwise, it

(9.3) calculates S′as
ct = SHA

(
t′SKU

nonce,js ⊕ ε
)

and checks to see whether S′as
ct = S′js

ct or not. If not, the
application-server submits warning messages to network-server, join-server, and end-device,
and then stops the RKU stage; otherwise, it

(9.4) updates session key AppSKeynew;
(9.5) calculates En−Kas2ed = EDASS(AppSKeynew, D−Boxnew, DevEUI |tSKU

nonce,ed);

Step (10): Application-server sends En−Kas2ed to end-device.

Step (11): On receiving En−Kjs2ns from join-server, the network-server performs the following sub-
steps.

(11.1) decrypts En−Kjs2ns, and retrieves NwkSKeynew, t′SKU
nonce,js, DevEUI, tSKU

nonce,ed, ε and S′js
ct ;

(11.2) fetches system time tSKU
nonce,ns and verifies the condition tSKU

nonce,ns − t′SKU
nonce,js ≤ �t8, where �t8 is a

predefined time difference including maximal transmission latency and the computational time
of steps (6.3) to (6.6). If the verification failed, the network-server submits warning messages
to join-server, application-server, and end-device, and then stops the SKU stage; otherwise, it

CMC, 2022, vol.73, no.1 557

(11.3) calculates S′ns
ct = SHA

(
t′SKU

nonce,js ⊕ ε
)

and checks to see whether S′ns
ct = S′js

ct or not. If not, the
network-server submits warning messages to other servers and end-device, and then stops the
SKU stage; otherwise, it

(11.4) updates session keys NwkSKeynew

(11.5) calculates En−Kns2ed = EDASS(NwkSKeynew, D−Boxnew, DevEUI|tSKU
nonce,ed);

Step (12): Application-server sends En−Kns2ed to end-device.

Step (13): On receiving En−Kas2ed from application-server, and En−Kns2ed from network-server, the
end-device performs the following sub-steps.

(13.1) decrypts En−Kas2ed, obtains DevEUI and tSKU
nonce,ed, and checks to see whether tSKU

nonce,ed is the same
with that shown in Step (4.3) or not. If not, the end-device submits warning messages to all
servers, and then stops the SKU stage; otherwise, it

(13.2) decrypts En−Kns2ed, obtains DevEUI and tSKU
nonce,ed, and checks to see whether tSKU

nonce,ed is the same
with that listed in Step (4.3) or not. If not, the end-device submits warning messages to all
servers, and then stops the SKU stage; otherwise, the SKU stage finishes.

4 Security Analyses

In this section, we analyze the security of THUS with Scyther tool [26] and discuss the security
features of the THUS. The Scyther tool traces all parameters of the THUS, and checks whether these
parameters are safe during transmission. The analyzed result is shown in Fig. 5, in which the important
parameters are not threatened by attackers.

The other THUS security features are discussed as follows.

• Mutual authentication indicates that the data transmission parties can authenticate with each
other. In the RKU stage of the THUS, both DevEUI and DevNonce are used to guarantee
the authenticities of each communication pair. When an attacker lacks correct DevNonce, the
correct kns

ct and α ⊕ DevNonce cannot be calculated, and fails the checking in Steps (3.3), (4.3),
(7.3), and (8.3). In the SKU stage, the JoinNonce, JoinEUI , and DevNonce are adopted to
verify the identities of join-server, network-server, end-device, and application-server. Once an
attacker is short of correct JoinNonce, JoinEUI , and DevNonce, the accurate AppSKeynew and
NwkSKeynew cannot be calculated, and thus the Steps (4.6), (6.5), and (6.6) of SKU stage will
generate wrong message, so that the checking in Steps (6.3), (9.3), and (11.3) will also be failed.
Thus, the THUS equips mutual authentication feature.

• Confidentiality represents that the THUS has the ability to protect all important parameters.
In the RKU stage and SKU stage of the THUS, all parameters become ciphertext by utilizing
modified AES before transmission. In Steps (2a) and (2b) of RKU stage, the messages D−Boxnew

and α are encrypted by using encryption keys NwkSKeyold and kns−js, respectively. In Steps (5)
and (6) of RKU stage, the messages are both encrypted by using AppSKeyold. In Steps (3) and
(5) of SKU stage, the messages are encrypted by using AppSKeyold and AppSKeynew, respectively.
In Steps (7) and (10) of SKU stage, the messages are encrypted by using AppSKeynew, while in
Steps (8) and (12) of SKU stage, the messages are encrypted by using NwkSKeynew. According
to abovementioned steps, different messages and important parameters can then be protected
by using different encryption keys.

558 CMC, 2022, vol.73, no.1

Figure 5: The analyzed result of the proposed THUS

• Message integrity feature makes sure the transmitted messages not be forged. In the THUS,
eight message integrity patterns, i.e., kns

ct , ked
ct , kjs

ct, Sjs
ct, Sed

ct , S′js
ct , S′as

ct , and S′ns
ct are generated to

guarantee the integrity of transmitted message. When one of these patterns fails, the RKU or
SKU stage is stopped. Consequentially, the THUS equips message integrity feature.

• Resist replay attack means some attacker captures some messages delivered by sender, duplicates
those messages, and then retransmit them to receiver so as to pretend to be the legal sender. In
the THUS, both RKU and SKU stages utilize time parameters (tnonce) to resist replay attack.

CMC, 2022, vol.73, no.1 559

Before data transmission, the time parameter is encrypted and embedded in the transmitted
message. As shown in steps (3.2), (4.2), (7.2), and (8.2) of the RKU and steps (4.3), (6.2),
(9.2), and (11.2) of the SKU, when receiver receives the message, the time parameter is utilized
to guarantee the transmission time shorter than a predefine time limit. Once the actual
transmission time is longer than the predefined time limit, it indicates that the message may
send by illegal part, which means it may suffer replay attack. Accordingly, the THUS has the
ability to prevent the replay attack.

• Resist eavesdropping attack indicates that an attacker captures massive messages and tries to
obtain important information from them. In the THUS, parameters α, β, γ , ε, and D-Box
are the most important parameters. The former three parameters are generated randomly
and the D-Box is also produced by utilizing random box R-Box via DBG algorithm. All of
these parameters and D-Box are encrypted by using EDASS before transmission. Since these
parameters vary in every RKU stage and SKU stage, attackers cannot extract any parameters
from the captured messages.

The comparisons between the proposed THUS and five previous works are listed in Tab. 2. As
shown, the THUS equips not only root key update scheme, but also session key update scheme. By
using modified AES algorithm, the THUS has the ability to provide high level security with efficient
process.

Table 2: The comparisons between the THUS and five previous works

Works Major contributions Session key
update

Root key
update

Security features

[18] Use trusted third party to
deliver session keys.

V X confidentiality, integrity,
authentication

[22] Design a master device to
manage root key.

X V no life time root key,
eavesdropping attack
resistance

[25] Present a low power method
to generate session keys.

V X known-key attack resistance,
replay attack resistance,
eavesdropping attack
resistance

[20] Address key updating, key
generation, key backup, and
key backward compatibility.

V X Known-key attack resistance,
eavesdropping attack
resistance, frequently key
renew policy

[21] Utilize elliptic curve
cryptography to update
LoRaWAN root key.

X V Forward and backward
secrecy, man-in-the-middle
attack resistance, message
integrity and authentication

(Continued)

560 CMC, 2022, vol.73, no.1

Table 2: Continued
Works Major contributions Session key

update
Root key
update

Security features

Proposed
THUS

Use modified AES algorithm
to update both LoRaWAN
root keys and session keys.

V V Mutual authentication,
confidentiality, message
integrity, replay attack
resistance, eavesdropping
attack resistance

5 THUS Performance

Tab. 3 lists the operating time of the THUS, where Tr indicates random number generation time,
TSHA is the secure hash algorithm computational time, TAES stands for AES computational time, TEDASS

represents the EDASS algorithm operation time, and Tb means the binary operation (addition and
subtraction) time. According to the evaluation proposed in [24,25], TEDASS is less than half of TAES, and
Tr and Tb can be ignored when compared with TAES, TEDASS, and TSHA, thus the THUS with modified
AES has the feature of high-efficiency when compared with traditional AES encryption method.

Table 3: The operating time of THUS with traditional AES and modified AES

Equipment THUS with traditional AES THUS with modified AES

Network-server RKU: Tr + TSHA + 2TAES

SKU: TSHA + 2TAES + Tb

RKU: Tr + TSHA + 2TEDASS

SKU: TSHA + 2TEDASS + Tb

End-device RKU: Tr + TSHA + 3TAES + 4Tb

SKU: TSHA + 7TAES + Tb

RKU: Tr + TSHA + 3TEDASS + 4Tb

SKU: TSHA + 7TEDASS + Tb

Join-server RKU: Tr + TSHA + 3TAES + 4Tb

SKU: Tr + TSHA + 6TAES + Tb

RKU: Tr + TSHA + 3TEDASS + 4Tb

SKU: Tr + TSHA + 6TEDASS + Tb

Application-server SKU: TSHA + 2TAES + Tb SKU: TSHA + 2TEDASS + Tb

6 Conclusion and Future Studies

Secure data communication is a basic requirement for every IoT system. Although LoRaWAN
utilizes AES cryptography to achieve the goal of data integrity and confidentiality, the encryption key
management can be further improved. In this paper, the THUS is proposed to update LoRaWAN’s
root keys and session keys so that the LoRaWAN’s security scheme can be enhanced. The modified
AES algorithm with dynamic substitution-box is utilized in both RKU stage and SKU stage. Accord-
ing to the security discussion above, the proposed THUS has the features of mutual authentication,
confidentiality and message integrity, and can resist replay and eavesdropping attacks.

In the future, the formal security verification for the RKU and SKU will be performed. Besides,
the implementation of THUS on a FPAG (Field Programmable Gate Array) system will also be
developed so that the real performance can be evaluated. These constitute our future studies.

Funding Statement: The authors received no specific funding for this study.

CMC, 2022, vol.73, no.1 561

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] H. Boyes, B. Hallaq, J. Cunningham and T. Watson, “The industrial internet of things (IIoT): An analysis

framework,” Computers in Industry, vol. 101, pp. 1–12, 2018.
[2] G. J. Joyia, R. M. Liaqat, A. Farooq and S. Rehman, “Internet of medical things (IoMT): Applications,

benefits and future challenges in healthcare domain,” Journal of Communications, vol. 12, no. 4, pp. 240–
247, 2017.

[3] K. L. Tsai, F. Y. Leu and I. You, “Residence energy control system based on wireless smart socket and IoT,”
IEEE Access, vol. 4, pp. 2885–2894, 2016.

[4] A. Kirimtat, O. Krejcar, A. Kertesz and M. F. Tasgetiren, “Future trends and current state of smart city
concepts: A survey,” IEEE Access, vol. 8, pp. 86448–86467, 2020.

[5] D. Flore, 3GPP Standards for the Internet-of-Thigs, GSMA MIoT, 2016.
[6] LoRaWAN, Accessed: Dec. 20, 2021. [Online]. Available: https://www.lora-alliance.org/.
[7] Sigfox, Accessed: Dec. 20, 2021. [Online]. Available: https://www.sigfox.com/.
[8] DASH7, Accessed: Dec. 20, 2021. [Online]. Available: https://dash7-alliance.org/.
[9] M. Alizadeh, K. Andersson and O. Schelén, “A survey of secure internet of things in relation to blockchain,”

Journal of Internet Services and Information Security (JISIS), vol. 10, no. 3, pp. 47–75, 2020.
[10] H. Hui, X. An, H. Wang, W. Ju, H. Yang et al., “Survey on blockchain for internet of things,” Journal of

Internet Services and Information Security (JISIS), vol. 9, no. 2, pp. 1–30, 2019.
[11] National Inst of Standards and Technology Gaithersburg MD, “Announcing the Advanced Encryption

Standard (AES),” Federal Information Processing Standards Publication 197, United States National
Institute of Standards and Technology (NIST), 2001.

[12] K. L. Tsai, F. Y. Leu, L. L. Hung and C. Y. Ko, “Secure session key generation method for LoRaWAN
servers,” IEEE Access, vol. 8, pp. 54631–54640, 2020.

[13] H. Noura, T. Hatoum, O. Salman, J. P. Yaacoub and A. Chehab, “LoRaWAN security survey: Issues,
threats and possible mitigation techniques,” Internet of Things, vol. 12, pp. 100303, 2020.

[14] K. L. Tsai, F. Y. Leu, I. You, S. W. Chang, S. J. Hu et al., “Low-power AES data encryption architecture
for a LoRaWAN,” IEEE Access, vol. 7, pp. 146348–146357, 2019.

[15] I. You, S. Kwon, G. Choudhary, V. Sharma and J. T. Seo, “An enhanced LoRaWAN security protocol for
privacy preservation in IoT with a case study on a smart factory-enabled parking system,” Sensors, vol. 18,
no. 6, pp. 1888, 2018.

[16] LoRa Alliance Technical Committee, LoRaWAN Backend Interfaces 1.0 Specification, LoRa Alliance,
2017.

[17] LoRa Alliance Technical Committee, “LoRaWAN 1.1 specification,” LoRa Alliance, 2017.
[18] S. Naoui, M. E. Elhdhili and L. A. Saidane, “Trusted third party based key management for enhancing

LoRaWAN security,” in Proc. of IEEE/ACS 14th Int. Conf. on Computer Systems and Applications
(AICCSA), Hammamet, Tunisia, pp. 1306–1313, 2017.

[19] M. Eldefrawy, I. Butun, N. Pereira and M. Gidlund, “Formal security analysis of LoRaWAN,” Computer
Networks, vol. 148, pp. 328–339, 2019.

[20] X. Chen, M. Lech and L. Wang, “A complete key management scheme for LoRaWAN v1.1,” Sensors, vol.
21, no. 9, Article: 2962, pp. 1–20, 2021.

[21] J. Xing, L. Hou, K. Zhang and K. Zheng, “An improved secure key management scheme for LoRa system,”
in Proc. of IEEE 19th Int. Conf. on Communication Technology, Xi’an, China, pp. 296–301, 2019.

[22] T. C. M. Dönmez and E. Nigussie, “Key management through delegation for LoRaWAN based healthcare
monitoring systems,” in Proc. of 13th Int. Symp. on Medical Information and Communication Technology
(ISMICT), Oslo, Norway, pp. 1–6, 2019.

https://www.lora-alliance.org/
https://www.sigfox.com/
https://dash7-alliance.org/

562 CMC, 2022, vol.73, no.1

[23] J. Han and J. Wang, “An enhanced key management scheme for LoRaWAN,” Cryptography, vol. 2, no. 4,
article 34, pp. 1–12, 2018.

[24] J. J. Liu, Y. L. Huang, F. Y. Leu, X. Y. Pan and L. R. Chen, “Generating dynamic box by using an input
string,” in Proc. of Int. Symp. on Mobile Internet Security, Jeju Island, Korea, pp. 1–13, 2017.

[25] K. L. Tsai, Y. L. Huang, F. Y. Leu, I. You, Y. L. Huang et al., “AES-128 based secure low power
communication for LoRaWAN IoT environments,” IEEE Access, vol. 6, pp. 45325–45334, 2018.

[26] The Scyther Tool. Accessed: Jan. 25, 2022. [Online]. Available: https://people.cispa.io/cas.cremers/scyther/.

https://people.cispa.io/cas.cremers/scyther/

	Two-Stage High-Efficiency Encryption Key Update Scheme for LoRaWAN Based IoT Environment
	1 Introduction
	2 Preliminary
	3 Two-Stage LoRaWAN Key Update Scheme
	4 Security Analyses
	5 THUS Performance
	6 Conclusion and Future Studies

