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Abstract: Much of our daily tasks have been computerized by machines and
sensors communicating with each other in real-time. There is a reasonable risk
that something could go wrong because there are a lot of sensors producing
a lot of data. Combinatorial testing (CT) can be used in this case to reduce
risks and ensure conformance to specifications. Numerous existing meta-
heuristic-based solutions aim to assist the test suite generation for combina-
torial testing, also known as t-way testing (where t indicates the interaction
strength), viewed as an optimization problem. Much previous research, while
helpful, only investigated a small number of interaction strengths up to t = 6.
For lightweight applications, research has demonstrated good fault-finding
ability. However, the number of interaction strengths considered must be
higher in the case of interactions that generate large amounts of data. Due
to resource restrictions and the combinatorial explosion challenge, little work
has been done to produce high-order interaction strength. In this context, the
Whale Optimization Algorithm (WOA) is proposed to generate high-order
interaction strength. To ensure that WOA conquers premature convergence
and avoids local optima for large search spaces (owing to high-order inter-
action), three variants of WOA have been developed, namely Structurally
Modified Whale Optimization Algorithm (SWOA), Tolerance Whale Opti-
mization Algorithm (TWOA), and Tolerance Structurally Modified Whale
Optimization Algorithm (TSWOA). Our experiments show that the third
strategy gives the best performance and is comparable to existing state-of-the-
arts based strategies.

Keywords: Software testing; optimization problem; swarm intelligence
algorithm; combinatorial optimization; IoT

1 Introduction

The Internet of Things (IoT) is a groundbreaking technology that allows users to connect with
things (objects) via the Internet by granting things the ability to feel the environment and communicate
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with other objects and people. IoT has encouraged an ambitious and valuable new generation of
services. Nowadays, cities are becoming smarter by implementing intelligent systems such as traffic
control systems, water management systems, energy management systems, public transportation
systems, to name a few. However, the design of IoT systems, software applications, and services
make testing a tedious process [1]. This is because of its homogeneous and decentralized nature and
tremendous data collection and processing [1].

Combinatorial testing (CT) is used in this scenario to reduce the number of test cases. CT uses a few
numbers of test cases to examine the interactions among the software’s configurations (parameters).
“a flaw is usually caused by interactions among a small number (say t) of parameters,” says the idea [2].
As a result, it’s crucial to look at all possible combinations of each t parameter since software system
errors emerge when two or more system inputs interact [3].

There are two types of t-way testing procedures available: pure computational-based and artificial
intelligence (AI)-based. Jenny [4], Test Configurations (TConfig) [5], Pairwise Independent Combina-
torial Tool (PICT) [6], Generalized in-parameter-order strategy (IPOG) [7], and IPOG for multi-way
testing (IPOG-D) [8] are pure computational-based approaches aiming at constructing a test set from
the start based on the generalization of the Orthogonal Array (OA) to construct the test suite [8]. On
the other hand, AI-based techniques such as Genetic algorithm (GA) [9], Particle Swarm Optimization
algorithm (PSO) [10], and Ant Colony algorithm (ACA) [11] start by generating test cases from a pre-
existing test set (i.e., the interaction elements, also known as the t-tuple table) and continue until the
test suite is built.

AI-based techniques produce superior results by containing a few test cases [12]. On the other
hand, pure computational-based strategies offer a comprehensive list of all conceivable combinations
to be covered. Consequently, the test suite size results may not be optimal [8]. Yet, these methods are
often relatively expeditious at producing test cases [13].

The number of parameters that interact with each other is called interaction strength. Two-
way testing suggests an interaction between two parameters, and three-way testing means interaction
between three parameters, etc. The previous studies have shown that most of the flaws in a standard
software system may be identified by small interaction strengths (i.e., less than or equal to three) [10].
However, with the emergence of IoT technology, little-known work has concentrated on generating
high order interaction strength (i.e., t > 6) due to resource constraints and combinatorial explosion
problems. Additionally, further studies have indicated the need for higher strengths, particularly in
the case of sophisticated software systems and IoT systems [12]. This is due to a massive increase in
the size and configuration of the software systems, which gives rise to a more significant number of
parameters with various interactions. Therefore, the following two criteria are regarded to assess the
strategy: (1) the size of the test suite and (2) the support of higher interaction strength.

The significant contribution of this study is the introduction of three variants of the Whale
Optimization Algorithm (WOA). The first variant is to modify the structure of WOA and the second
one is to use the acceptance probability of the Exponential Monte-Carlo algorithm (EMC) [14] to
accept the worst solutions. The third variant is the combination of the first and the second variant.

The remainder of the article has been organized as follows: Section 2 illustrates the background
of t-way testing using an example. Section 3 reviews the previous related work. Section 4 discusses the
origin of WOA and its advantages and disadvantages. Section 5 introduces the proposed method,
which involves the three variants of WOA. Section 6 evaluates the three variants, while Section 7
evaluates and compares the best variant among the three with the existing state-of-the-art strategies.
Threats to validity are discussed in Section 8. Finally, Section 9 presents the conclusion.
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2 Combinatorial Testing Background

Often, the testers have to work within a strict schedule. Therefore, the testing techniques must be
considerably effective to attain maximum test coverage and a high fault discovery rate. T-way testing,
also known as combinatorial testing (CT), delivers the afore-stated features [3]. CT is a method for
examining all the possible discrete combinations of the software system parameters [3]. T-way testing
has adopted particular Design of Experiments (DoE) methods, including the Covering Array (CA).

To produce balanced t-tuples, CAs generalize orthogonal arrays (OAs) by requiring that the t-
tuples be covered at least once instead of a specified number of times [15]. Mathematically, a tuple
is a limited and arranged list of items (i.e., the values of the parameter interactions). T-tuples are
a collection of t elements (or arranged lists). CA (N; t, vp) is a combinatorial object with p as the
parameters (i.e., system configurations, input data, or both), N as the number of test cases generated,
v as the parameter values, and t as the interaction strength.

Test suite minimization is the main objective of t-way testing. A test suite is a collection of test cases
meant to examine a software system to demonstrate that the system has a particular set of behaviors.
T-way testing is performed by choosing a system configuration combination, which becomes a test
case. Subsequently, a test suite is created by collecting test cases for the software system.

Consider the example of the washing machine control panel application as shown in Fig. 1. The
washing machine control panel application has four primary configurations/parameters, i.e., cycle
function, temperature, soil, and spin. Let’s say that all the parameters take four values (i.e., Cycle
Function = {heavy duty, normal, fast wash, delicates}, Temperature = {hot, warm, cold, tap cold},
Soil = {heavy, normal, light, extra light}, Spin = {high, medium, low, no spin}).

Figure 1: Washing machine control panel application

The covering array for the washing machine example shown in Fig. 1 above can be represented as
CA (N; 2, 44), assuming the interaction strength is t = 2. The exhaustive test for the washing machine
example required 4 × 4 × 4 × 4 = 256 test cases to cover the configurations. Meanwhile, when a meta-
heuristic approach (e.g., TSWOA) was applied in 2-way testing, just 12 test cases were generated to
cover all of the configurations in the washing machine example.

3 Related Work

T-way testing is classified as a discrete optimization problem because selecting the values in any
particular test case is absolute. Stardom was the first to develop an AI-based strategy [9]. Stardom
used tournament selection to implement GA, which started with a random generation of test cases
that were partitioned and mated. The offspring were then created using the crossover procedure [9].

Shiba et al. built on Stardom’s work to produce GA support 3-way testing and used the Ant Colony
Algorithm (ACA) to construct CA with an interaction strength t = 3 [11]. Genetic Strategy (GS) is
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a version of GA that modifies the crossover and mutation operators to provide uniform and variable
CAs and higher interaction strengths of up to twenty (i.e., t = 20) [13]. Furthermore, GS parameters,
including population size, crossover, and mutation rates, were fine-tuned to enhance efficiency and
performance [13].

PSTG [16] was the first AI-based technique to offer interaction strength i of up to six. Discrete
Particle Swarm Optimization (DPSO) [17] is a PSO version with a schema based on divided search
space and uses a separated particle swarm as its foundation. PSO performs better now that two
additional procedures have been added: (1) particles are reinitialized, and (2) gbest (the best test case
found) is also examined. DPSO additionally includes parameter adjustment instructions. Compared to
traditional PSO and other known evolutionary algorithms, DPSO has produced better outcomes [17].

Harmony Search Strategy (HSS) is an AI-based strategy implemented to generate a test suite. HSS
added a new test case to the CA (test suite) at each iteration until all t-interactions were covered and
the CA was complete. HSS could support higher interaction strengths of up to fifteen [12]. Another
AI-based technique used to generate CA with a six-interaction strength is Cuckoo Search (CS) [18].
The objective of introducing CS to t-way testing was to reduce the time spent searching for test cases.
PSTG and CS produce similar results, with the latter being fast. Gravitational Search Test Generator
(GSTG) was proposed to support higher interaction strength of up to ten [19]. GSTG is based on
GSA, a population-based metaheuristic algorithm with stochastic search behavior [19].

Adaptive particle swarm optimization (APSO) is a hybridization of the Mamdani-type fuzzy
inference system (FIS) and particle swarm optimization [20]. FIS is used to optimize the parameters
of PSO. For most cases, APSO outperforms DPSO and CS [20]. Zamli et al. proposed FPSO [21],
the same hybridization but with a different technique and functionality. PSO’s global and local search
processes were subjected to fuzzy adaptive selection as part of FPSO’s approach. Both hybridizations
produced CAs with interaction strengths up to four (i.e., t ≤ 4), and FPSO outperformed DPSO in the
average outcome in several situations. Another PSO hybridization is the hybrid artificial bee colony
strategy (HABCSm), which uses PSO to enhance the standard ABC algorithm’s performance [22].
HABCSm is a t-way testing strategy that uses the Hybrid Artificial Bee Colony (HABC) algorithm as
its primary application for producing a final test set and the Hamming distance as the last selection
criterion to aid in discovering new solutions [22].

The Q-learning sine cosine algorithm (QLSCA) combines the sine-cosine algorithm (SCA) and
the Q-learning algorithm [23]. The Q-learning technique replaces the SCA switching probability, which
uses a penalty and reward mechanism to find the optimum procedure during runtime. In most cases,
QLSCA beat many previous techniques by generating the best average performance [23]. The Graph-
Based Greedy Algorithm (GBGA) is a competitive greedy algorithm that constructs CAs using a
graph representation. It can support up to six (i.e., t = 6) interaction strengths [24]. The Artificial Bee
Colony Strategy (ABCVS) is a two-way generation strategy based on the Artificial Bee Colony (ABC)
algorithm for a uniform and variable strength test suite [25]. ABCVS can support higher interaction
strengths up to six (i.e., t = 6) [25]. Several scholars have recommended hybridization to boost strategies
by improving quality, diversifying solutions, and addressing the frequent metaheuristic (AI-based)
limitations. The purpose of hybridization in t-way testing is to reduce the test suite.

Summing up, all the previous works on t-way testing have usefully contributed to improving
the current state-of-the-art on interaction t-way test case generation and potentially broadening its
applications in line with the emergence of the IR4.0 agenda. Nonetheless, The No Free Lunch Theorem
[26] states that no single metaheuristic can outperform others in the context of AI-based approaches
to meta-heuristics, as some algorithms perform better than others on particular types of optimization
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problems. Our research examines how well WOA and its variants perform for general high strength
interaction.

4 Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is a contemporary metaheuristic algorithm inspired
by nature [27]. WOA is a swarm-based method that mimics humpback whale hunting behavior.
Humpback whales are intelligent creatures who have developed an advanced manner of cooperating
with one another. They employ a unique tracking procedure known as bubble-net feeding, as shown
in Fig. 2. This procedure creates peculiar bubbles along a circle or ‘9’-shaped path. The whales hunt
near the surface and catch the victim in a net of bubbles.

Figure 2: Bubble-net hunting behavior of humpback whales. Source [28]

The exploitation phase and the exploration phase are the two phases of WOA. The exploitation
phase uses the encircling-a-prey approach and the spiral bubble-net attacking method, while the
exploration phase entails randomly seeking a victim. WOA’s mathematical model can be summarized
as follows:

4.1 Exploitation Phase

The first approach is encircling-a-prey, in which humpback whales identify the victim’s location
and then encircle it. The target victim is assumed to be the current best candidate solution in WOA.
After that, the best search agent is found, and the remaining search agents try to relocate their locations
in its direction. In other words, it updates the whale’s movement (location) around the victim, which
can be described in a mathematical form as follows:

D = CX ∗ − X(t) (1)

X (t + 1) = X ∗ − A.D (2)

where t denotes the current iteration, X ∗ is the best solution found thus far, and X denotes the current
solution. The coefficients A and C are calculated as follows:

A = 2a.r − a (3)

C = 2.r (4)
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where a is linearly decreased from 2 to 0 along the iterations trajectory as displayed in Eq. 5, and r is
a random number between 0 and 1.

a = 2 − t
2

MaxIter
(5)

The second method is the Bubble-net attacking method, which comprises the shrinking encircling
mechanism and the spiral updating position mechanism. The shrinking encircling mechanism is
carried out by lowering a value in Eq. (3). Thus, the new position of a search agent is between
the agent’s actual position and the position of the existing best agent. The spiral updating position
mechanism involves calculating the distance between the current solution (whale) and the best solution
(victim) by applying the spiral Equation as follows:

X (t + 1) = D′.ebl. cos 2π l + x∗(t) (6)

where D′ is the distance between the whale and the victim, b is a constant for defining the shape of the
logarithmic spiral, and l is a random value between −1 and 1.

Humpback whales practice both techniques (encircling-a-prey and spiral-shaped) simultaneously.
A 50% probability is introduced to model this behavior to select one of the techniques to update the
whales’ location during the search. The mathematical model is outlined as follows:

X (t + 1) =
{

Encircling Equation (2) , if p < 0.5
Spiral−shaped path Equation (6) , if p ≥ 0.5

(7)

where p is a random number in [0,1].

4.2 Exploration Phase

WOA considers a global search. The whales search at random based on their proximity to one
another. As a result, rather than relying on the best search agent found thus far, the position of a
search agent is adjusted at random. When A’s random values are higher than one, this strategy drives
the search agent to move away from a reference whale (best solution). As seen in Algorithm 1, this
approach stresses global search and allows the WOA algorithm to explore. The mathematical model
for the exploration phase is as follows:

D = C.Xrand − X (8)

X (t + 1) = Xrand − A.D (9)
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5 Proposed Method

The WOA algorithm and its variations have been extensively utilized to address various problems
in various disciplines. WOA has been improved or modified in some domains to enhance solution
quality and performance and address flaws such as premature convergence [29] and getting stuck in
local optima [28,30].

Therefore, in this study, the following three variants of WOA for t-way test suite generation were
proposed:

5.1 Structurally Modified Whale Optimization Algorithm (SWOA)

As stated earlier and illustrated in Fig. 3, WOA has two phases, exploration and exploitation,
controlled by the controlling parameter A. The exploration phase is the random generation to enforce
the global search. In contrast, the exploitation phase is represented by the shrinking and spiral-shaped
path mechanisms. The randomization is used only in the shrinking mechanism, as visible in Fig. 3. This
implies that WOA encourages greater exploitation, which leads to rapid convergence to a potentially
non-optimal solution (i.e., premature convergence). Hence, SWOA was introduced to overcome the
premature convergence issue by restructuring the WOA so that the decision of exploration and
exploitation is undertaken first and controlled by A. Then, a probability of 50% chance is used to
select one of the mechanisms, as illustrated in Fig. 4 and Algorithm 2.
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Figure 3: The layout structure of WOA

Figure 4: The layout structure of SWOA

5.2 Tolerance Whale Optimization Algorithm (TWOA)

It may be observed from Algorithm 1 that WOA always accepts the better solution [27]. As a
consequence, WOA may get trapped in local optima. The second variant TWOA was used to resolve
this issue, employing acceptance probability to avoid local optima. This acceptance probability was
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exercised in an Exponential Monte-Carlo algorithm (EMC-FC) [31], which allowed the worst solution
to be accepted at a certain degree. The acceptance probability is calculated as follows:

e
−θ
λ (10)

where θ = δ ∗ t, δ is the difference between the current and the best solution, t is the iteration counter
(i.e., the current iteration) and λ is a successive non-improvement counter.

One may note that, as the number of iterations t increments, the probability of choosing a worse
solution reduces. But, if for specific successive iterations, no improvement occurs, the likelihood
of tolerating a worse solution would increment depending on the objective function of the current
solution and the number of iterations. In other words, if δ is small or λ is high, the selection of a worse
solution seems probable. Algorithm 3 demonstrates the pseudo-code of TWOA and illustrates how the
acceptance probability is employed.

5.3 The Combination of SWOA and TWOA (TSWOA)

The last variant is the combination of the SWOA and TWOA, as Algorithm 4 shows.

6 Experimental Results

This section reports the assessment of the efficiency of the WOA variants and the selection of the
best one among the three, which would subsequently be benchmarked with the existing strategies (the
comparison process described in the next section). The efficiency was measured in terms of the size
of the CA (i.e., test suite size). Another measurement has been provided, which is the convergence
behavior of the proposed WOA variants.

This experiment conducted a preliminary test on the algorithm’s parameters sensitivity to deter-
mine the population size and the maximum iteration number. The covering array CA (N; 2, 57) was
chosen as a case study to tune the parameters. The justification for embracing this covering array is that
many AI-based approaches are tuned using the same covering array [12]. The best result was obtained
for a population size of 50, while the maximum number of iterations was 100. In this context, each
variant of WOA was subjected to renowned CA configurations, as depicted in Tab. 1.

The CA configurations in Tab. 1 can be divided into four groups: the first one was CA(2, 33-13)
where t = 2 and v = 3 while p varies from 3 to 13; the second one was CA(3, 34-9) where t = 3 and v =
3 while p varies from 4 to 9; the third one was CA(4, 35-7) where t = 4 and v = 3 while p ranges from 5
to 7; and the last one was CA(5-6, 210) where v = 2 and p = 10 while t varies from 5 to 6.

The proposed methods were run 31 times, and the best and average results were considered. The
results presented in Tab. 1 revealed that the enhanced variants of WOA outperformed the original one
in most cases. In addition, the results indicated that TSWOA generated better output compared to the
other variants. Both SWOA and TWOA produced better results in terms of best and average results
than the original one. In comparison, the performance of SWOA was close to that of TWOA. SWOA
performed slightly better than TWOA in certain cases.
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Table 1: Assessment of the proposed WOA variants

Configuration
CA (t, vp)

WOA MWOA TWOA TMWOA

Best Avg Best Avg Best Avg Best Avg

CA (2, 33) 9 9.74 9 9.67 9 9.29 9 9.41
CA (2, 34) 9 10.29 9 10.22 9 9.96 9 9.80
CA (2, 35) 11 12.71 11 12.64 11 12.67 11 12.12
CA (2, 36) 13 14.55 14 14.74 13 14.58 13 14.09
CA (2, 37) 15 15.16 14 15.12 15 15.22 14 14.77
CA (2, 38) 15 15.77 15 15.93 15 15.64 15 15.58

(Continued)
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Table 1: Continued
Configuration
CA (t, vp)

WOA MWOA TWOA TMWOA

Best Avg Best Avg Best Avg Best Avg

CA (2, 39) 15 16.65 15 16.83 15 16.38 15 16.09
CA (2, 310) 16 17.71 17 17.45 16 17.41 16 17.12
CA (2, 311) 17 18.00 16 17.70 16 17.67 16 17.58
CA (2, 312) 18 18.64 17 18.25 17 18.06 17 18.00
CA (2, 313) 18 19.29 18 18.96 18 19.12 18 18.83
CA (3, 34) 28 31.03 27 30.35 28 31.45 27 30.29
CA (3, 35) 38 40.06 37 39.70 38 40.06 37 39.70
CA (3, 36) 41 45.32 41 45.09 40 44.74 39 44.45
CA (3, 37) 49 50.48 48 50.35 48 50.41 48 50.06
CA (3, 38) 52 54.74 53 54.48 53 54.32 52 54.38
CA (3, 39) 57 58.26 56 58.19 57 58.25 56 58.03
CA (4, 35) 93 99.58 90 98.54 92 98.83 90 97.93
CA (4, 36) 132 135.38 131 134.41 128 133.90 128 133.25
CA (4, 37) 151 157.13 153 155.96 154 157.00 151 156.48
CA (5, 210) 72 82.13 75 82.16 73 81.58 72 80.12
CA (6, 210) 156 158.61 153 158.67 156 159.09 153 157.90

Next, the convergence behavior of the proposed WOA variants was analyzed. Two CAs were
selected for the analysis: CA (N; 2, 313) and CA (N; 4, 35). Figs. 5 and 6 depict the convergence behavior
of the WOA variants. It may be noticed that TSWOA managed to converge faster than the other
variants. Moreover, the enhanced variants SWOA and TWOA converge faster than the original WOA.
Furthermore, Figs. 5 and 6 and the results in Tab. 1 indicated that TSWOA could escape the local
optima effectively.
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Statistical analysis was performed to ensure that TSWOA was superior to the other WOA
variations, namely the Wilcoxon signed-rank test, a non-parametric test for matched or coupled data
concentrated at differential ratings. However, it also considers the extent of the observed differences in
response to evaluating the signs of the differences. The reason for utilizing the Wilcoxon signed-rank
test is that it can inform if there is a significant difference between the two results.

Wilcoxon’s signed-rank test produced two factors. The first one is Asymp. Sig. (2-tailed) and Z,
which are statistical tests that indicate the difference between two groups. If the value of Asymp. Sig.
(2-tailed) was smaller than 0.05, it implied a significant difference between the two groups. Although
the value of Z is not relevant to this study, the value has nonetheless been provided in the report. The
second factor is the ranking, which ranks which values are more significant than, equal to, or less than
comparable values.

In all tables presenting the statistical results, in the part of the rank, “TSWOA <” indicates the
number of cases TSWOA generated with a smaller size of CA compared to the other variants (i.e.,
WOA, SWOA, and TWOA). In other words, the number of times TSWOA generated better results.
Similarly, “TSWOA =” indicated the number of times the results were the same, while “TSWOA >”
represented the number of times TSWOA produced the worst results.

Tabs. 2 and 3 present the consequence of the Wilcoxon test on the results reported in Tab. 1. Tabs. 2
and 3 revealed that TSWOA generated significantly different outcomes than the other WOA variants,
which confirms the superiority of TSWOA over the other WOA variants.

Table 2: Wilcoxon test of the best results reported in Tab. 1

Ranks Test statistics

TMWOA > TMWOA < TMWOA = Z Asymp. Sig. (2-tailed)

WOA 0 11 11 −3.020 0.003
MWOA 0 7 15 −2.392 0.017
TWOA 0 10 12 −2.913 0.004

Table 3: Wilcoxon test of the average results reported in Tab. 1

Ranks Test statistics

TMWOA > TMWOA < TMWOA = Z Asymp. Sig. (2-tailed)

WOA 0 22 0 −4.108 0.000
MWOA 1 20 1 −3.546 0.000
TWOA 2 20 0 −3.883 0.000
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7 Benchmarking with Existing Strategies

In order to evaluate TSWOA’s performance, it was compared to other existing techniques in terms
of CA size. The experiments were divided into two parts. The first one has been divided again into the
following two well-known datasets:

1. Comparing TSWOA with the currently available strategies using CA (t, v7), the number of
parameters remained constant, and their values varied. In addition, the interaction strength t
ranged from 2 to 6.

2. Comparing TSWOA with the existing strategies using CA (t, 3P), the number of parameters
was varied, and their values remained constant. In addition, the interaction strength t varied
from 2 to 6.

The second part of the experiments was conducted for higher interaction strength, and two
datasets were subjected to experimentation. The first one was CA (t, 210), where the number of
parameters and their values remained constant, and t varied from 2 to 10. The second one was the
CAs reported in Tab. 9, where t ranged from 2 to 20. In addition, the Wilcoxon signed-rank test was
performed on all the reported results.

In Tab. 4, the configurations of CA (t, 3P) were adopted, where t varied as 2 ≤ t ≤ 6, p varied
as 3 ≤ p ≤ 12, and v remained constant at v = 3; the results were reported in terms of the best and
average among the 31 runs. The results revealed that TSWOA outperformed all the pure computational
strategies and most AI-based strategies, including GBGA, GS, APSO, CS, and ABSVS. Moreover,
TSWOA produced competitive results compared to QLSCA and DPSO strategies.

Table 4: Test suite size performance for CA (t, 3P) where P varied from 3 to 12 and t varied from 2 to 6

CA (t, 3P) Pure computation strategies AI-based strategies

t p Jenny TConfig PICT IPOG-D IPOG GBGA QLSCA GS DPSO APSO CS ABCVS TMWOA

Best Best Best Best Best Best Best Best Best Best Best Best Best Mean

2 3 9 10 10 15 9 9 9 9 NS 9 9 9 9 9.41
4 13 10 13 15 9 9 9 9 9 9 9 9 9 9.80
5 14 14 13 15 15 12 11 11 11 11 11 11 11 12.12
6 15 15 14 15 15 14 14 13 14 12 13 13 13 14.09
7 16 15 16 15 15 15 14 14 15 15 14 15 14 14.77
8 17 17 16 15 15 15 15 15 15 15 15 15 15 15.58
9 18 17 17 15 15 16 15 15 15 16 15 16 15 16.09
10 19 17 18 21 15 16 15 16 16 17 17 17 16 17.12
11 17 20 18 21 17 17 16 16 17 NS 18 17 16 17.58
12 19 20 19 21 21 18 16 16 16 NS 18 18 17 18.00

3 4 34 32 34 27 32 29 27 27 NS 27 28 27 27 30.29
5 40 40 43 45 41 39 39 38 41 41 38 38 37 39.70
6 51 48 48 45 46 45 33 43 33 45 43 44 39 44.45
7 51 55 51 50 55 49 49 49 48 48 48 49 48 50.06
8 58 58 59 50 56 54 52 54 52 50 53 54 52 54.38
9 62 64 63 71 63 58 56 58 56 59 58 58 56 58.03

4 5 109 97 100 162 97 87 81 90 NS 94 94 98 90 97.93
6 140 141 142 162 141 133 129 129 131 129 132 135 128 133.25
7 169 166 168 226 167 156 150 153 150 154 154 157 151 156.48

(Continued)
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Table 4: Continued
CA (t, 3P) Pure computation strategies AI-based strategies

t p Jenny TConfig PICT IPOG-D IPOG GBGA QLSCA GS DPSO APSO CS ABCVS TMWOA

Best Best Best Best Best Best Best Best Best Best Best Best Best Mean

5 6 348 305 310 386 305 273 NS 301 NS NS 304 273 298 308.00
7 458 477 452 678 466 433 NS 432 NS NS 434 433 430 436.41

6 7 1089 921 1015 1201 921 982 NS 963 NS NS 973 982 945 968.61
8 1466 1515 1455 1763 1493 NS NS 1399 NS NS 1401 NS 1389 1398.58

Statistically, the Wilcoxon signed-rank test was also applied to the results reported in Tab. 4. Tab. 6
presents the outcomes of the Wilcoxon signed-rank test. It was confirmed that TSWOA produced
significantly different results from the GBGA, GS, APSO, CS, and ABCVS strategies, except the
QLSCA and DPSO strategies. However, one may argue that there were insufficient output samples
for the QLSCA and DPSO strategies to provide a comprehensive picture. Both strategies’ interaction
strength was up to four (i.e., t ≤ 4).

Tab. 5, which was for CA (t, v7) configurations where t varied as 2 ≤ t ≤ 6, v varied as 2 ≤ v ≤ 7, and
p remained constant at p = 7. The results showed that TSWOA outperformed the pure computational
and AI-based strategies. Additionally, the Wilcoxon test was implemented on the results reported in
Tab. 5, and the outcomes of the Wilcoxon test are illustrated in Tab. 7.

Table 5: Test suite size performance for CA (t, v7) where v varied from 2 to 7 and t varied from 2 to 6

CA (t, v7) Pure computation strategies AI-based strategies

t v Jenny TConfig PICT IPOG-D IPOG QLSCA GS DPSO APSO CS TMWOA

Best Best Best Best Best Best Best Best Best Best Best Mean

2 2 8 7 7 8 7 7 6 7 6 6 7 7.25
3 16 15 16 15 15 15 14 14 15 15 14 14.77
4 28 28 27 32 29 23 24 24 25 25 24 25.25
5 37 40 40 45 45 34 36 34 35 37 36 37.70
6 55 57 56 72 55 48 52 47 NS NS 51 53.16
7 74 76 74 91 49 64 68 64 NS NS 70 72.12

3 2 14 16 15 14 16 15 12 15 15 12 12 14.29
3 51 55 51 50 55 49 49 49 48 49 48 50.06
4 124 112 124 114 112 112 116 112 118 117 113 116.90
5 236 239 241 252 237 215 221 216 239 223 221 224.80
6 400 423 413 470 420 364 374 365 NS NS 382 386.25

4 2 31 36 32 40 35 31 27 34 30 27 25 30.70
3 169 166 168 226 167 149 153 150 153 155 151 156.48
4 517 568 529 704 614 477 486 472 472 487 484 488.58

(Continued)
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Table 5: Continued
CA (t, v7) Pure computation strategies AI-based strategies

t v Jenny TConfig PICT IPOG-D IPOG QLSCA GS DPSO APSO CS TMWOA

Best Best Best Best Best Best Best Best Best Best Best Mean

5 2 57 56 57 80 60 NS 51 NS NS 53 53 55.41
3 458 477 452 678 466 NS 432 NS NS 439 430 436.41
4 1938 1792 1933 2816 1792 NS 1821 NS NS 1845 1813 1822.77

6 2 87 64 72 96 64 NS 65 NS NS 66 64 72.00
3 1087 921 1015 1201 921 NS 963 NS NS 973 945 968.61
4 6127 NS 5847 5120 4096 NS 5608 NS NS 5610 5567 5591.12

Furthermore, the results of the Wilcoxon test presented in Tabs. 6 and 7 revealed that the results
of TSWOA were not significantly different from those of QLSCA and DSPO. This occurred because
there were not sufficient samples to compare and test as the interaction strength of both these strategies
was only up to four (i.e., t ≤ 4). Moreover, it has been demonstrated previously that the higher the
interaction strength, the higher is the efficiency of the strategy (algorithm) in detecting faults [31].
Therefore, TSWOA will produce a test suite with an interaction strength of up to 20.

Table 6: Wilcoxon test for the results reported in Tab. 4

Ranks Test statistics

TMWOA > TMWOA < TMWOA = Z Asymp. Sig. (2-tailed)

ABCVS 1 15 6 −2.767 0.006
CS 0 15 8 −3.429 0.001
APSO 2 9 6 −2.157 0.031
DPSO 3 5 8 −0.574 0.566
GS 1 11 11 −2.886 0.004
QLSCA 5 4 10 −0.611 0.541
GBGA 2 16 4 −2.459 0.014
IPOG 2 17 4 −3.069 0.002
IPOG-D 1 19 3 −3.811 0.000
PICT 0 23 0 −4.208 0.000
TConfig 1 22 0 −3.563 0.000
Jenny 0 22 1 −4.116 0.000
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Table 7: Wilcoxon test for the results reported in Tab. 5

Ranks Test statistics

TMWOA > TMWOA < TMWOA = Z Asymp. Sig. (2-tailed)

CS 1 14 2 −3.254 0.001
APSO 3 7 1 −1.746 0.081
DPSO 8 3 3 −1.514 0.130
GS 4 11 5 −1.720 0.085
QLSCA 9 4 1 −1.615 0.106
IPOG 4 13 2 −1.705 0.088
IPOG-D 1 19 0 −3.212 0.001
PICT 0 19 1 −3.826 0.000
TConfig 3 14 2 −2.274 0.023
Jenny 0 20 0 −3.924 0.000

Based on previously reviewed metaheuristic strategies, it was noticed that most of these strategies
did not support higher interaction strength. Fig. 7 depicts the maximum support of the recently
developed metaheuristic strategies for interaction strength.
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Figure 7: The Maximum support for interaction strength

Fig. 7 illustrates that most AI-based strategies produced a pairwise (i.e., t ≤ 2) test suite. Moreover,
30% of the strategies supported interaction strength of up to six. Only a few strategies went beyond
that, such as the HSS [12], which supported up to 15, the GS [13], which supported up to 20, and the
GSTG [19], which supported up to 10. As observed, and unlike most strategies, TSWOA supported
high interaction strength.

Tabs. 8 and 9 display the ability of TSWOA to process higher interaction strength of up to 10 and
20, respectively. Tab. 8 presents the results for the configuration of CA (t, 210), where t varied from
2 to 10. When t = 2, two pure computational strategies IPOG and IPOG-D, along with GS, GSTG,
and TSWOA, produced the best results. While, when t = 3, GS, GSTG, and TSWOA were observed
to generate the best test suite size. When t = 4, only GS produced the best results. However, for the
rest of the interaction strengths up to 10, TSWOA outperformed the other strategies and had better
results. This implied that the proposed variant TSWOA generated better results when the search space
was larger because the larger the interaction strength, the larger the search space.



2074 CMC, 2022, vol.73, no.1

Table 8: Test suite size performance for higher interaction strength CA (t, 210) where t varied from 2
to 10

CA (t, 210) Pure computation strategies AI-based strategies

t Jenny TConfig PICT IPOG-D IPOG GS GSTG TMWOA

Best Best Best Best Best Best Mean Best Mean Best Mean

2 10 9 9 8 8 8 8.60 8 NA 8 8.48
3 18 20 18 18 20 16 16.90 16 NA 16 16.22
4 39 45 43 51 45 25 36.10 27 NA 31 38.25
5 87 95 87 124 94 79 82.90 74 NA 72 80.12
6 169 183 173 231 181 157 159.90 156 NA 153 157.90
7 311 NS 309 NS 336 293 298.60 295 NA 286 293.19
8 521 NS 504 NS 503 495 504.40 502 NA 490 501.16
9 788 NS 728 NS 512 562 635.20 580 NA 546 629.19
10 1024 NS 1024 NS 1024 1024 1024 1024 NA 1024 1024

Table 9: Assessment of TSWOA against other strategies for higher interaction strength

CA Pure computation strategies AI-based strategies

Jenny TConfig PICT IPOG-D IPOG GS HSS TMWOA

Best Best Best Best Best Best Best Best Mean

CA (2, 34) 13 10 13 15 9 9 9 9 9.8
CA (3, 35) 40 40 43 45 41 38 39 37 39.7
CA (4, 36) 140 141 142 162 141 129 132 128 133.2
CA (5, 37) 458 477 452 678 466 432 436 430 436.4
CA (6, 38) 1466 1515 1455 1493 1409 1339 1402 1389 1398.5
CA (7, 39) 4746 >day 4618 NS NS 4437 4454 4418 4439.9
CA (8, 310) 14999 >day 14599 NS NS 13907 13990 13872 13914.3
CA (9, 311) 47009 >day 45521 NS NS 43809 44120 43793 43827.6
CA (10, 312) 147004 >day 141990 NS NS 136096 137006 136029 136123.6
CA (11, 312) 305797 >day 278993 NS NS 267631 >day 267391 267672.2
CA (12, 214) 9422 >day 9112 NS NS 8893 8905 8889 8895.1
CA (13, 214) 13251 >day 12441 NS NS 10251 10250 10250 10267.1
CA (14, 215) 26579 >day 25036 NS NS 23377 24121 23809 23822
CA (15, 216) 53977 >day 51127 NS NS 46575 46893 46575 46599.9
CA (16, 217) >day >day 100266 NS NS 95680 NS 95680 95702.1
CA (17, 218) >day >day >day NS NS 179546 NS 179506 179568.9

(Continued)
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Table 9: Continued
CA Pure computation strategies AI-based strategies

Jenny TConfig PICT IPOG-D IPOG GS HSS TMWOA

Best Best Best Best Best Best Best Best Mean

CA (18, 219) >day >day >day NS NS 330391 NS 330367 330433.9
CA (19, 220) >day >day >day NS NS 624940 NS 624919 624991.5
CA (20, 220) >day >day >day NS NS 1048576 NS 0000 1111

Tab. 9 presents the results for various configurations of CAs with interaction strength of up to
20. The results presented in Tab. 9 were obtained from a previously published report [13]. IPOG and
IPOG-D supported interaction strength of up to 6 and did not produce better results. While PICT
generated a test suite with a higher interaction strength up to 16, it took more than a day to produce the
test suite for the interaction strengths greater than that. Similar observations were noted for TConfig
and Jenny, where TConfig generated a test suite with interaction strengths of 6 and Jenny generated
up to 16. GS and HSS developed test suites with interaction strengths up to 20 and 15, respectively.
TSWOA outperformed both pure computational and AI-based strategies and generated a smaller test
suite size with an interaction strength of up to 20.

8 Threats to validity

It is worth mentioning that we faced threats to the validity and attempted to minimize them.
During our research, we encountered a couple of threats. The first threat is that the impartiality of
benchmark experiments based on meta-heuristics may be a concern. Many comparisons with similar
work rely solely on published results due to a lack of source codes. The second threat is the statistical
analysis focused on the best-reported values rather than the mean or average values. The main issue is
that some of the best results may be obtained by chance, affecting the conclusion.

9 Conclusion

This study proposed three variants of WOA, which supported a higher interaction strength of up
to 20 (i.e., 2 ≤ t ≤ 20), unlike most AI-based strategies. The proposed variants of WOA were developed
through structure modification (SWOA), incorporation of the acceptance probability of the EMC-
FC algorithm (TWOA), and a combination of both SWOA and TWOA (TSWOA). The results of
the experiments indicated that the proposed variants of WOA effectively managed to overcome the
issue of premature convergence and escaped the local optima. Moreover, TSWOA performed better
than the other variants by statistically generating smaller test suite sizes. Furthermore, the TSWOA
variant performed better than the pure computational-based strategies by statistically generating
smaller test suite sizes. Further, it outperformed most of the existing AI-based strategies by conducting
various experiments on different configurations. Additionally, the experimental results illustrated that
TSWOA could support higher interaction strengths up to 20 while competing against other state-of-
the-art strategies in terms of efficiency and performance. The higher the interaction strength, the more
time it takes to produce test suites. Higher interaction strength would exponentially increase the search
space (i.e., the t-tuple table). Within the context of the future work to be conducted by our research
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group, this report extends the possibility of TSWOA to support variable strength t-way testing with
constraints.
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