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Abstract: Wireless sensor networks (WSNs) are considered the backbone of
the Internet of Things (IoT), which enables sensor nodes (SNs) to achieve
applications similarly to human intelligence. However, integrating a WSN
with the IoT is challenging and causes issues that require careful exploration.
Prolonging the lifetime of a network through appropriately utilising energy
consumption is among the essential challenges due to the limited resources
of SNs. Thus, recent research has examined mobile sinks (MSs), which have
been introduced to improve the overall efficiency of WSNs. MSs bear the
burden of data collection instead of consuming energy at the routeing by
SNs. In a network, some areas generate more data through SNs that contain
frequent, urgent messages. These messages carry sensitive data that must be
delivered immediately to user applications. Collecting such messages via MSs,
especially on a large scale, increases delays, which are not tolerable in some real
applications. This issue has not been studied much. Thus, the present study
utilises the advantages of the priority parameter to concentrate on these areas
and proposes a new model named ‘energy efficient path planning of MS-based
area priority’ (EEPP-BAP). This method involves non-urgent and urgent
messages. It is comprised of four procedures. Initially, after SNs are distributed
randomly in a wide monitoring field, the monitoring field is partitioned
into equal zones according to priority, either differently or equally. Next is
clustering based on the cluster head (CH) selected to perform the particle
swarm optimisation algorithm (PSO). Then, the MS moves first to the zones
with higher priority and less distance to perform the brain storm optimisation
algorithm. Finally, for urgent messages from the other zones at which the
MS continues, the proposed approach establishes a routeing technique using
multi-hop communication based on the MS position and using PSO. The pro-
posed solution is aimed at delivering urgent messages to MSs free of latency
and with minimal packet loss. The simulation results proved that the EEPP-
BAP method can improve network performance compared with other models
based on different parameters that have been used to construct the controlled
movement of MSs in large-scale environments involving urgent messages. The
proposed method increased the average lifetime of SNs to 206.6% on average,
reduced the average end-to-end delay to 7.1%, and increased the average
packet delivery ratio to 36.9%.
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1 Introduction

Recently, wireless technology communication has been considered an essential means of enabling
users to communicate via a wide range of applications, including animal monitoring, fire detection,
agriculture monitoring, and medical and military applications, using wireless sensor networks (WSNs)
[1,2]. A WSN can be described as a group of tiny devices called sensor nodes (SNs) that are
connected through wireless communication to sense data from the surrounding environment and then
transmit them to a static sink node or base station via a multi-hop communication network. In some
applications, SNs are distributed randomly in the coveted area for tracking or monitoring. A WSN can
use full, partial, or isolated connections based on the scale of the area in which the SNs are deployed.

WSNs are considered a pillar of the Internet of Things (IoT), as SNs support mobile applications
through remote communication. The IoT allows devices, objects, and people to communicate and
interact in the network without intermediate human intervention, bringing the IoT intelligence and
automation to daily life. The integration of WSNs with the IoT authorises SNs to dynamically link
with the Internet for cooperation, as illustrated in a simplified scenario depicted in Fig. 1. In the first
layer, SNs sense the required data in a particular field and then wirelessly route or transmit the data
to the static sink or MS. Next, at the transmission layer, the sink exchanges data via the Internet to a
cloud platform. The sink can execute data sensing using its unlimited resources. The last stage is the
application layer, which represents the end user and final decisions regarding the data [3].

Figure 1: Scenario depicting simplified layers of integrated WSNs in the IoT

However, the integration of WSNs with the IoT includes challenges, such as latency, reliability,
and energy efficiency, due to the enormous areas of application across different technologies using
different devices, which are increasing annually [4]. The energy usage of SNs represents the main
research concern because of the limited resources from their main energy supply, batteries [4]. SNs
consume the highest amount of energy during communication. Thus, SNs near the static sink node
are at risk of dying more quickly than those at other nodes. As Fig. 2 illustrates, SNs drain extra energy
to route accumulative data to a static sink node, causing hot spot problems.
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Figure 2: Hot spot problems in WSNs with static sinks

Hot spot problems isolate other SNs, which in turn affects the monitoring area connectivity,
preventing the SNs from transmitting data to a static sink node. Consequently, the network lifetime
decreases. Furthermore, recharging SN batteries is often difficult, especially in hazardous or inacces-
sible areas. Thus, the primary research considerations in this field involve the energy consumption of
SNs to maximise their operation and thereby extend their network lifespans [5].

The clustering technique has been applied widely in WSNs owing to its efficiency in preserving
energy. The clustering method groups the SNs in a network into multiple clusters. At each cluster, a
head node, named the cluster head (CH), is selected. The CH manages the cluster and collects data
from SNs within the cluster, called cluster members (CMs) [6].

Although the clustering technique has been used in research for energy-efficient schema that
contributes to prolonging the network life by minimising large-scale distance, improving connectivity,
increasing reliability, and balancing energy usage, the hot spot and connectivity problems remain [7].
Therefore, a mobile sink (MS) has been suggested as one way of resolving the energy consumption
problem of WSNs. As illustrated in Fig. 3, an MS can move near SNs via the path planning method,
which schedules the MS movements and collects the required data from SNs instead of utilising static
sink nodes.

As a result, the energy of the nodes is conserved by minimising the distances between the SNs
and the MS. This model also reduces multi-hop communications and alleviates hot spot problems,
enhancing the network lifetime [8].

Implementing path planning for MSs refers to finding the optimal path between SNs for data
collection. The path planning problem is considered a ‘hard optimisation’ problem; the problem can
be formulated in several ways based on the specifications of the applications involved. This type of
problem can be solved by utilising stochastic-meta-heuristic algorithms more successfully than any
other methods such as deterministic algorithms [9].

Meta-heuristic algorithms are inspired by the nature of some species based on populations.
Evolutionary algorithms and swarm intelligence optimisation algorithms (SIO) are meta-heuristic
algorithms that have been applied to solve the problem of MS path planning in WSNs. These
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Figure 3: WSN using a mobile sink

algorithms have been an area of recent concentration for research on WSN optimisation issues such
as localisation and routeing [10].

In a WSN, MSs have three primary movement patterns: random, controlled, and uncontrolled [11].

• Random: The MS can be a device attached to a mobile element. The mobile element moves
randomly in the sensing field without advance knowledge of or control over the direction and
speed of movement in an animal-like manner. In addition, this pattern has a low scheduling
prediction rate. It is viable for applications that are insensitive to delays [12].

• Controlled: The MS can be a device attached to mobile elements such as vehicles and robots. The
mobile element moves in the sensing field completely controlled by the users. The user controls
and adapts the direction, speed, and scheduling based on the purpose of the application [13].

• Uncontrolled: This is also called a ‘predictable mobility pattern’, in which the MS can be a
device attached to a mobile element such as a MS. The MS always moves in the sensing field
on a certain fixed path, like a train or bus. The speed, direction, scheduling, and routeing are
defined in advance by the users. In addition, the SNs anticipate the visiting time of the mobile
element [14].

From among these three movement patterns, research considers the controlled movement pattern
because it can optimise the main issue of mobile element path planning in terms of speed, direction,
and scheduling [15].

However, some MS applications involve on-demand needs such as urgent messages in some areas
that should be delivered immediately to the MS position. The MS movement via fixed path planning
to collect data from certain SNs without considering their residual energy leads to energy imbalances
among all SNs in the network. Thus, these SNs are vulnerable to early death. In addition, a fixed MS
path may cause data packets to be dropped by SNs that carry urgent messages because of their limited
buffer size. In addition, when data are urgently required to arrive instantly at the end user, SNs waiting
with urgent messages until the MS arrives cause unacceptable delays that make the time-sensitive data
useless [15].
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Path planning of MS-controlled movement patterns involves parameters that have been under-
explored in previous studies, including area priority and on-demand needs such as routeing urgent
messages to the position of an MS. ‘Area priority’ refers to the sub-areas in the network that are most
likely to contain urgent messages that require immediate delivery to the MS or end user. ‘On-demand’
refers to the need to immediately deliver sensitive data regarding unexpected events occurring within
the monitoring area, such as a fire event. Therefore, a more efficient path planning model is needed
for MSs to consider more parameters that enable the system to maximise the lifetime of SNs, minimise
delays, and reduce packet loss [15].

Handling these parameters can extend the network lifetime, reduce delays, and improve readabil-
ity. In the case of area priority, SNs with urgent messages within the sub-area of priority can minimise
the routeing distance to the MS position and can even avoid extensive rerouting to the MS in the
network. Another parameter is routeing urgent messages, in which SNs are instructed to deliver urgent
messages to the MS position immediately when they appear in the network.

Thus, this research contributes the following to the field:

• A method named ‘energy efficient path planning of MS-based area priority’ (EEPP-BAP) for
utilising two parameters: area priority and routeing urgent messages to the MS position in WSN.

• Adaption of the particle swarm optimisation (PSO) algorithm for CH selection.
• Adaptation of the brain storm optimisation (BSO) algorithm to construct a MS path plan, with

consideration of the priority and distance in the fitness function formulation.
• Adaptation of the PSO algorithm to establish a dynamic routeing technique for urgent messages

that accounts for the current MS position.

The PSO and BSO algorithms have been carefully chosen due to their efficiency in many WSN
applications, as in several prior studies [16–18]. Moreover, PSO performs much better than other
algorithms in dynamic environments that require prompt responses to events and involve minimal
computation [19].

PSO is a SIO that mimics the behaviour of a swarm such as birds flocking to find food or shelter; in
other words, the flocking concept is used to find the best solution or global solutions in each generation
or iteration. In each generation, potential solutions, called particles, become candidates for the next
generation and are evaluated by the fitness function. They travel together as a group and follow each
other at the same velocity and position, exchanging their information with each other to adjust without
collisions. Each particle saves its better solution and follows the particle that has the best solution. This
process facilitates finding food or shelter as a group instead of one individual exhausting its efforts
alone [20].

The BSO algorithm is a swarm algorithm that mimics humans’ brainstorming processes to solve
a complex problem. BSO captures the essential factors in its exploration and exploitation to find
solutions called ideas. In its exploration, it uses a global search to explore potential areas containing
promising ideas in the entire search space within the domain of the problem. In addition, convergence
and divergence are the two important processes in the BSO algorithm. During convergence, solutions
are grouped into clusters, from the initial random ideas distributed across the search space domain.
Divergence generates new individuals in the population from the clusters through mutation [21]. These
two algorithms were used in this research and are presented briefly herein.

The rest of this research is organised as follows: Section 2 presents a review of the relevant literature
and related work. Section 3 explains the proposed EEPP-BAP framework, and Section 4 simulates
the proposed EEPP-BAP. Section 5 provides the performance evaluation, including the performance
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metrics and results. Finally, Section 6 discusses the conclusions, suggestions for future work, findings,
and conflicts of interest.

2 Related Works

Many studies have concentrated on energy efficiency in WSNs with stationary SNs and MSs to
prolong network lifetime. This section presents recent studies on WSNs using MSs. These studies are
categorised using cluster- and rendezvous point (RP)-based approaches, in which artificial intelligence
(AI) algorithms are utilised to build optimised solutions in WSNs. These are followed by two studies
that used a flat-based approach. These methods utilise priority parameters. Then, the problems that
persist in WSNs with MSs are discussed.

2.1 Research on MS Path Planning Based on Clustering

Prior research has used the clustering approach in WSNs such that each collection of SNs is
grouped into clusters. Each cluster has a CH that collects data from the SNs in that cluster. Then, an
MS path is planned to visit each CH to collect sensor data. Most clustering algorithms are commonly
known as the improved K-means clustering algorithm.

The energy-efficient algorithm based on the bacterial foraging optimisation algorithm (SMB-
FOA) is presented in one research [22] to address the throughput and energy conservation problems in
the clustering duty cycle mobility-aware protocol algorithm. Authors [23] have proposed an efficient
path for MS-based clustering. The same authors used the MS as an autonomous unmanned aerial
vehicle (UAV) to gather data from CHs conducting water area monitoring. The main concern was
to conserve UAV energy by reducing the path length via ant colony optimisation (ACO). To further
reduce the MS path, the bisection method was applied after ACO to find the best stopping points.
These points are located at the edge of the communication range of each CH. In another study [24],
researchers proposed the use of the ACO algorithm with dynamic clustering to allow the construction
of a shorter path among CHs to collect data in an acceptable length of time. A previous research [25]
proposed the use of the evolutionary game-based trajectory design algorithm (EGTDA) for MS path
planning to solve the energy imbalance that causes the hot spot problem. This algorithm considers the
average residual energy in each cluster, that is, the average intra- and inter-cluster energy consumption.
In addition to energy efficiency, many researchers have focused on reducing the MS path length
to collect data. Furthermore, researchers have investigated other factors to improve path planning,
such as throughput and obstacles. Another research project [26] divided data gathering in WSNs
with obstacles (DGOB) into two phases: CH selection and construction of a shorter path between
two CHs with obstacles between them. A study in [27] proposed an algorithm for inter-and intra-
cluster movement of multi-mobile sinks in order to address unbalanced energy depletion among CHs
and CMs, as well as provide solutions to the coverage hole problem. This algorithm improves the
network performance by optimizing multiple sojourn locations in each cluster with respect to the time
limitation for MSs movement using two stages (GA). Thus, the energy distributes evenly between CHs
and CMs and the coverage hole is alleviated. The energy-efficient intra-cluster routing (EIR) with MS
is proposed in [28] to balance the energy depletion among CMs within clusters. A formulation of this
algorithm optimizes the selection of many sojourn locations within a cluster with constrained sojourn
times. The movement of MS across these locations is optimized by applying (GA).
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2.2 Research on MS Path Planning Based on RPs

Some studies have used the RP approach to conserve energy at RPs, which depend mainly on the
MS in a WSN. RPs are the locations where the MS can visit to collect data in a cluster via multi-hop
communication with long-term buffering. In this approach, no CHs are selected, only RPs [29].

In another study, authors have proposed a balancing inter- and inner-cluster energy (BIIE)
algorithm for energy-balanced data collection between SNs under a constrained MS path in a WSN
[29]. An efficient path planning algorithm is presented in an additional research [30] for multiple
MSs, based on single-hop data collection in the disjointed area of a WSN. Each segment is isolated
and consists of SNs and RPs that the MS visits, considering the MS path length constraints in each
sub-tour. The main objectives of the research were to optimise the number and location of RPs and
the number of MSs to collect all data via the minimum path-planning length to avoid latency. An
energy-efficient trajectory planning (EETP) algorithm has been proposed [31] for an efficient path-
planning algorithm to conserve energy in the MS and prolong the lifetime of network RNs through
loading balance. A variable length genetic algorithm (VL-GA) was presented in the previous research
[32] to optimise the number and location of RPs to shorten the MS path length to avoid delay and
congestion buffering in SNs while waiting for the MS to arrive. The MS path planning algorithm,
called the hexogen hyper-practical swarm optimisation (hexHPOS) algorithm, was further proposed
[33] to balance the energy in each grid to improve network lifetime. An MS path planning method
based on RPs, called priority-based distribution load-balancing clustering dual data uploading, has
also been proposed [34] for data collection in WSNs to enhance energy consumption through load
balancing and minimise latency in data delivery. The priority is assigned to SNs depending on the
residual energy for each SN, and then the clustering priority is initialised. The SNs in a cluster transmit
data to CHs through multi-hop communication. These CHs are covered by RPs, which receive data
from the CHs.

Two previous studies [35,36] were flat-based, which means that each SN sends its messages to
the MS via single- or multi-hop communication. These studies focused on different uses of priority
without using an AI algorithm to construct the MS path plan.

The first research [35] proposed a differentiated message delivery (DMD) method to gather urgent
and non-urgent messages via a controlled MS in a WSN. The SNs are grouped into bins and sub-bins
(zones) according to deadline and location. The priority of visiting SNs is then based on the overflow
time of the bins. The MS visits each SN in a bin simultaneously. Some sub-bins are visited in each
cycle, while others are visited in alternating cycles. In this method, urgent messages rarely occur. Thus,
a SN with urgent messages establishes a multi-hop routeing into the neighbouring SN in a bin that
the MS visits frequently. This approach minimises the loss rate and improves the speed of the MS in a
small monitoring field.

The second research proposed a framework for data gathering by an UAV as the uncontrolled
MS, according to priority in a WSN [36]. During the movement of the UAV, some SNs in the rare
areas of the UAV coverage are exposed to loss of UAV links. Therefore, the loss packet rate increases.
Thus, according to the locations of the SNs in the UAV coverage area, the SNs are divided into various
frames. Frames have various transmission priorities, with the rare regions in the UAV coverage area
having the highest priority and the SNs in front of the UAV having the lowest priority. Thus, this
approach minimises duplicate data and the loss rate and maximises throughput in a medium-sized
monitoring field.
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Tab. 1 presents a summary of the previous studies regarding their data collection algorithm schema
for MS path planning and their different optimisation parameters. The optimisation parameters were
as follows:

• Energy consumption: Almost all studies have taken into consideration SN energy because
batteries only hold a limited amount of power. If SN energy consumption is not optimised properly,
then the network is exposed to potential rapid death.

• MS path distance: This refers to the distance between the MS and the SNs during data
transmission from an SN to the MS. When the distance increases, SNs consume more energy during
transmission. Thus, most research has considered this parameter because of the effects of distance on
SN lifetime.

• Message delay/latency: This refers to the time packets take to arrive at the sink location, either
static or mobile. This parameter measures performance in terms of the time in delivering packets to end
users; this is an especially important metric in real-time applications that require swift data delivery.

• Obstacles: Some real applications have obstacles such as mountains. In the presence of obstacles,
clustering the SNs, routeing the MS, and constructing the MS path plan become more complicated.
Thus, some studies have taken this parameter into account for optimisation.

• Communication cost: This refers to the number of hops from SNs to the sink location. Increasing
the number of hops leads to an energy imbalance between nodes, subsequently reducing network
lifetime, especially in a large area. In addition, reducing the number of hops leads to late data delivery.
Thus, some studies have considered this parameter to optimise the number of hops to keep the network
functioning longer, with acceptable delays.

• Coverage: This refers to the coverage of all areas of data from SNs to collect data completely
without the MS losing any information. This parameter is not often considered in research because
the MS can move to any area, even those that are isolated.

• Priority: This refers to the presence of tasks in the network that are more important than others.
Thus, this parameter is performed with different uses in WSNs to be considered concentrically.

• On demand: This is also called ‘on request’ and refers to unusual events, that is, outside regular
needs, for informing the end-user application.

Table 1: Summary of previous studies’ schema of MS path planning using different optimisation
parameters

Reference Name of
algorithm

Optimisation parameters

Energy
consumption

Mobile
sink path
distance

Delay Obstacles Communi-
cation
cost

Coverage Priority On-
demand
messages

Cluster based

[22] 2018 SMBFOA √ √
[23] 2019 – √ √
[24] 2019 – √ √ √
[25] 2020 EGTDA √ √
[26] 2020 DGOB √ √ √ √ √

(Continued)
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Table 1: Continued
Reference Name of

algorithm
Optimisation parameters

Energy
consumption

Mobile
sink path
distance

Delay Obstacles Communi-
cation
cost

Coverage Priority On-
demand
messages

[27] 2020 – √ √ √ √
[28] 2020 EIR √ √ √ √

RP based

[29] 2020 BIIE √ √ √
[30] 2020 – √ √ √ -

disjoint
[31] 2019 EETP √ √ √ √
[32] 2018 VL-GA √ √ √
[33] 2019 hexHPOS √ √ √
[34] 2016 PLPCDDU √ √ √

Flat based

[35] 2006 DMD √ √ √ √ √
[36] 2016 – √ √ √

However, as Tab. 1 shows, researchers have not often recently examined optimisation parameters
such as area priority and on-demand messages. Regarding the priority parameter, different uses of
priority have been conducted, as mentioned in previous studies [34–36]. Each of these studies has
different tasks utilising priority that positively affects network performance.

The other parameter, on demand, is considered essential when the monitoring field involves
sudden urgent events, either frequently or rarely. These messages could cause a buffer overflow
that exceeds the storage allocated for transmitted data. Thus, if urgent messages are not delivered
immediately, the traffic data at some SNs could drop or overwrite. In one research [35] reviewed earlier,
urgent messages were rare. When they occur, they are routed to the nearest neighbouring SNs that the
MS frequently visits in a small monitoring field. However, if urgent messages occur frequently in some
areas for monitoring or tracking important events, such as in a battlefield in a large area, the MS could
visit these SNs after a period, causing delayed arrival of these data, which results in non-tolerance time
or loss of packets because of buffer overflow. Therefore, prior researchers have assigned priority to the
sensor data rate (message) or SNs in the rare edges of transmitting data to the MS, but the priority of
an area that can include more than one SN with high data rates (urgent messages) in a large area has
not been investigated.

Thus, the present study takes advantage of the priority parameter to utilise it differently from
previous research to increase the performance of the MS for gathering data in a large monitoring field
with sudden, frequent urgent messages. The MS moves first to those sub-areas with higher-priority
frequent urgent messages to collect data while avoiding their rerouteing or loss.

For the on-demand parameter (where urgent messages occur), this research was aimed at min-
imising delays and maximising the data packet ratio. Thus, in addition to considering the priority for
the sub-areas containing SNs with urgent messages, routeing urgent messages to the MS position is
proposed. SNs with urgent messages should deliver their data immediately to the MS position. Their
importance relative to that of the MS is different from that reported in previous studies [35]. Waiting
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for the MS to arrive leads to SNs losing data due to buffer overflow or delayed arrival at the application
end users.

However, adding more parameters to MS path planning, such as priority and routeing urgent
messages, can increase the efficiency of the MS in collecting sensor data. MS path planning algorithms
can be improved to increase SN energy efficiency; minimise the time needed to collect data from SNs,
especially when urgent messages occur; and maximise the data packet ratio. Thus, the EEPP-BAP is
proposed to address these parameters and enhance the performance of the WSN with MS. The next
section explains the framework of the proposed EEPP-BAP method in detail.

3 EEPP-BAP Framework

In this section, the proposed EEPP-BAP framework is explained in detail. The EEPP-BAP
framework combines the functionality of collecting application-monitoring data from stationary SNs
by using MS path planning and handling special cases of urgent messages occurring outside the
scheduled or planned MS path. As explained earlier, energy efficiency is widely accepted as the main
issue in WSNs because WSN operations depend heavily on the lifespan of SN batteries. Consequently,
it is essential to develop an energy-efficient MS path planning scheme, especially for large-scale WSNs.
Therefore, repositioning the sink at a regular time interval, considering the priority and distance of
each sub-area can minimise energy consumption and delivery delay by avoiding the extensive routeing
of real-time urgent messages and decreasing the failure rate. As the network structure is cluster based,
which can prolong the network lifetime, the MS should collect data by moving along a predesigned
path to reach each CH node in a regular round. Therefore, the proposed EEPP-BAP method consists
of four procedures: partitioning the area into zones; clustering and CH selection; constructing the path
plan of the MS; and establishing the routeing of urgent messages to the MS position, an additional
procedure in case the MS is not at the SNs that contain urgent messages. Fig. 4 illustrates these
procedures.

Partitioning the area into 
zones and assigning the 

priority  

Clustering and selection 
of the CH

Constructing the path 
plan of the MS 

Establishing routing 
urgent messages to the 

MS position

Figure 4: Procedure for the EEPP-BAP method

3.1 Area Partitioning and Priority Assigning

The EEPP-BAP framework first gives higher priority to the areas for which the monitoring
data were generated than to the other areas (e.g., urgent messages appear frequently). Thus, the first
procedure in EEPP-BAP is to partition the monitored area into zones and assign each zone priority.
The priority could be assigned by the application user or automatically based on the calculated data
generation rate. The zones could be equal or variable in size, depending on the size of the areas that
are more exposed to high-data-rate messages. Furthermore, zones that are geographically separated
are allowed to have the same priority. As a result, the priority assignment step assists in ranking the
zones according to importance, which should be considered first by the MS for data collection.

The EEPP-BAP method equally divides a square monitoring field into zones for simplicity, as
presented in Fig. 5A, using the following equation:

Square monitoring field calculation = n × n = n2 (1)
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Eq. (1) calculates the total monitoring field area, where n is the length of a side of the monitor-
ing area.

To obtain the required number of zones, Eq. (2) is calculated, expressed as follows:

Divide the monitoring field into equal zones = n2

m
, (2)

where n2 is the area of the square monitored location and m is the number of required zones as
explained earlier. The priority is assigned in descending order, starting from the value b down to the
value (0), as shown in Fig. 5B. The value b is any natural number (positive integer) that identifies
the highest priority given to a zone. It can be assigned based on application user requirements. For
example, if there are six zones and three zones have higher priority than others, one approach to
assigning the b value would be to assign these zones a priority ranging from 3 to 1 if they have different
priorities. As for the value (0), it represents the case of a no-priority zone, which means that the data
have normal priority and are not frequently generated.

The division of the monitoring field into zones and assigning each zone a priority are followed by
clustering and CH selection.

A                                  B                                 C 

D                                             E 

b b-3

0b-2

Average distance between 
the current node and other 

nodes in the cluster Node as CH with the
highest residual energy 

and node degree 

Cluster

a

b-3

b-2 

b

(CH)

MS Path  
Planning 

a

b-3

b-2

b

Routing urgent messages 
to an MS position 

Relay 
node  

Sensor node with 
urgent messages 

MS 

Figure 5: Simple example of the EEPP-BAP steps: (A) partitioning the area, (B) assigning the priority,
(C) clustering the area, (D) MS path planning, and (E) routeing urgent messages to the MS position
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3.2 Clustering and CH Selection

In this procedure, the SNs in the monitored field are grouped into clusters to conserve energy and
reduce routeing overhead. Similar to most routeing protocols in WSNs, as explained in Section 1, the
resulting network structure will be hierarchical, with two levels of CH and CM. The clusters created
are irrelevant to the defined zones. This means that one cluster could span two zones, or one zone
could include more than one cluster.

In the first step, EEPP-BAP builds the neighbouring matrix that has the distance information
parameter between SNs by using the Euclidean distance algorithm, expressed as follows:

Edis =
√

(X2 − X1)
2 + (Y2 − Y1)

2, (3)

where X1 and Y1 are the coordinates of one SN and X2 and Y2 are the coordinates of another
neighbouring SN. If the distance between them is within their communication range, then they are
neighbours and could be included in the same cluster.

However, the EEPP-BAP method clusters SNs based on the CH selected. After CH selection,
as explained below, the neighbours of the CH are connected to comprise one cluster with single-hop
communication.

CH Selection Using PSO

Proper CH selection contributes significantly to balancing and conserving energy, which enhances
the WSN lifetime. In the EEPP-BAP method, three parameters are used to optimise the CH selection.
These parameters are SN residual energy, the average distance between SNs, and the degree of
SNs [37].

• Residual energy measures the energy of each SN in the cluster with respect to other nodes. This
prevents those SNs with less energy from being selected as CH to balance and conserve energy
among SNs. It is measured using the following equation:

X1 =
∑m

i=0 Energy (memberi)

Energy (current node)
* γ (4)

where the number of members in the current cluster is represented as m. The energy for each SN is
calculated using Eq. (27), and the variable γ is assigned using Eq. (7).

• The second parameter, the average distance between SNs, is needed to further conserve energy
and minimise delivery delays to the greatest possible extent. It is calculated using the following
equation:

X2 =
∑m

i=0 distance (current SN, memberi)

n
* γ , (5)

where again m represents the number of members in the current cluster, and n represents the number
of CMs within the communication range of the current node and the variable γ is assigned using
Eq. (7).

• The last parameter is node degree, which represents the number of members covered by a CH.
A sensor connected to more nodes reflects greater efficiency in receiving more packets [37]. This
is calculated using the following equation:

X3 = 1
numbers of CM coverd by current SN

(6)
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Finally, the variable γ indicates whether a SN is within the range of the currently selected node
(i.e., the expected CH):

γ =
{

1 if members i is covered by current node
0 otherwise (7)

Fig. 5C shows a simple example of clustering and CH selection based on three parameters
using PSO.

PSO-based CH selection:

Based on the gathered information on SNs in each cluster, the PSO algorithm was implemented
to select the most suitable CH based on SN residual energy, the average distance between SNs,
and the degree of SNs. The proposed EEPP-BAP method is used to perform the PSO algorithm to
select the CH owing to its many advantages. These advantages include swift convergence, application
in dynamic situations, and simple computation [38–40]. The steps of PSO generally involve four
processes: initialisation, computing, updating, and evaluation.

A) The initialisation step is for initialising the population of named particles = {P1,P2,. . . . . . . Pi . . .

Pn,}, where 1 ≤ i ≤ n names swarms for which n represents the population size. Each particle
represents optimal solutions in search space domain D. Each Pi is assigned a position value(
Xij

)
and velocity value

(
Vij

)
randomly, where 1 ≤ j ≤ D.

B) The computation step is performed using the fitness function, which represents the objectives
of a certain problem. This function is performed for each particle as its input and then produces
the output to evaluate the ‘goodness’ of these particles. In this step, the particles continue
tracking with the personal best value (pbesti) and global best (gbest) value. The value gbest
is for saving the best fitness value among the whole P, and pbesti is for saving the Pi with the
best value in each iteration. These two values, pbesti and gbest, are used in the next step.

C) The updating step is for Xij and Vij to update their values using the following equations:

Vnew iteration,i,j = (
ω * Vi,j

) + c1 ∗ α1

(
Xpbesti,j − Xi,j

) + c2 ∗ α2

(
Xgbest − Xi,j

)
(8)

Xnew iteration,i,j = Xold teration,i,j − Vnew iteration,i,j (9)

where ω is the inertia weight. Its value is 1 < ω < 0, which is related to the speed of the last
improvement of P. Next, c1 and c2are constant numbers with a uniform distribution between 0 and
1, called cognitive individual and social group learning, respectively, that accelerate particles to move
toward Pbest and gbest. The factors α1 and α2 are weighting factors representing the random numbers
between 1 and 0, where the summation of α = 1.

D) P is evaluated by performing the fitness function to update Pbest and gbest for the maximising
problem as follows:

Updatingpbesti
=

{
Pi if Pi > pbesti

pbesti else (10)

Updatinggbest =
{

pbest if pbesti > gbest
gbest else (11)

Therefore, the updating values of Xij and Vij for each particle are iterated until either the condition
that satisfies the value is met or the method assumes convergence.

These four steps of PSO are designed to obtain the best solution by finding the best position
for each particle evaluated using the fitness function. Thus, in the proposed EEPP-BAP method, each
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particle forms a candidate-completed solution that represents the optimal CH selection for each cluster
evaluated using the fitness function. To formulate the fitness function, the EEPP-BAP method adapts
the three parameters expressed in Eqs. (5)–(7). The fitness function obtains the maximum value of the
combined three objectives, as expressed in the following equation:

Fitness function of selecting CHs = 1
(α1∗X1 (i)) + (α2∗X2 (i)) + (α3∗X3 (i))

, (12)

where α1, α2, and α3 are weighing factors, with the summation of all three expressed as αs = 1. As a
result, the SN with the maximum value of the fitness function refers to the particle that can act as the
better CH.

Therefore, after performing the two procedures, the best MS visit is determined according to CH
selection to plan the MS path with respect to the zone priorities. Thus, MS path planning considers
more parameters to construct the MS path to increase the efficiency of the network, as explained in
the next procedure.

3.3 MS Path Planning Using BSO

Constructing the MS path within a clustered WSN using the selected CHs is performed by
selecting the CH positions to move the MS efficiently among them. For each cluster, the MS moves to
each CH to collect the monitoring data that must reach the base station. In the proposed EEPP-BAP
method, the zone priority and distance from the CH are the parameters considered when constructing
the MS path. The priority assigned to the partitioned zones (Section 3.1) in the first procedure of
the EEPP-BAP is used in MS path planning. The path starts from the CHs in the zones with the
highest priority. This improves the performance of the network by prioritising CHs with more data
that must be collected first. Moreover, when urgent messages occur, this prevents the rerouteing of
urgent messages from higher-priority zones, as shown in Fig. 5D. Extensive routeing of these messages
causes an energy imbalance in the network. In addition, if there are CHs located in zones with equal
priorities, the MS will be assigned to move to the nearest CH to collect its data. This is where the
second parameter, distance, is needed in MS path planning.

To ensure optimisation in MS path planning, the EEPP-BAP method applies the BSO algorithm
to construct the MS path. The fitness function of the algorithm includes the two parameters of zone
priority and distance, as explained in the following steps:

BSO-based MS path planning:

Based on the construction of the MS path plan, the BSO algorithm was implemented to select the
most suitable path based on zone priority and distance. The proposed EEPP-BAP method performs
the BSO algorithm to construct the path, as this method has been used in many applications [9]. BSO
has four main operators: initialisation, clustering the solution, generating, and selection.

A) The initialisation operator is used to initialise the population of named individuals = {N1,

N2,. . . . . . . Ni . . . Nn,}, where 1 ≤ i ≤ n is the named ideas and n is the population size. Each
individual represents the optimal solution in search space domain D.

B) Clustering the solution operator involves a convergence process. This operator groups the
similar solutions N into small areas named clusters, = {G1, G2,. . . . . . . Gi . . . Gm,}, where 1 ≤
i ≤ m and m represents the number of clusters using any clustering algorithms such as the
K-means method. After that, the fitness function value for each Ni in each Gi is computed to
evaluate the ‘goodness’ of each solution to generate better individuals from m to be in the next
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iteration. Next, the cluster centre of each group with the maximum fitness function value for
maximisation is selected.

C) The generation operator produces new individuals by mutation. This operator utilises diver-
gence to generate new individuals from the cluster centre with the best fitness function or from a
non-cluster centre using one or more old individuals from one or more clusters. Thus, Gaussian
mutation is used to generate new individuals expressed as follows:
xi

new individual = xi
old individual + ξ (t) × N

(
μ, σ 2

)
(13)

ξ(t) = log sig(
0.5 × T − t

C
) × rand(), (14)

where xi
old individual represents the existing individual used for generating a new individual,

xi
new individual, for the ith dimension. The current iteration is indicated by the value t, while T is

the number of maximum iterations and ξ(t) is the weight factor contribution in the Gaussian
mutation. C is the coefficient number for adjusting the slope of the log sig() function. Log sig()

is the sigmoid transfer function, which is logarithmic and ranges from 0 to 1. N
(
μ, σ 2

)
is

the Gaussian mutation function with mean and sigma values, and rand()is the uniformly
distributed random function that generates values between 0 and 1.

D) The selection strategy decides which new individuals with better fitness function values to
retain for the next iteration. This iteration continues until the condition that satisfies the value is
met or the method is assumed to have converged. These BSO operators are aimed at obtaining
the best solution by reducing the search space by clustering the ideas and generating new
individuals from the old individuals with the best fitness function value, expressed as follows:

xi
new individual =

{
xi

old individual if xi
new individual < xi

old individual

xi
new individual else

(15)

Thus, in the proposed EEPP-BAP method, each individual (idea) comprises candidate-completed
solutions for MS path planning that have the same dimension D evaluated by the fitness function. To
formulate the fitness function for MS path planning in this research, the proposed EEPP-BAP method
combines two parameters: zone priority and the shorter distance between CHs and S. To design the
fitness function, these parameters are expressed as follows:

1. Priority zones. The MS moves first to the CHs in the zones with high priority zpi,chi at the
beginning to collect data and then gradually visits the zones with less priority. This parameter
is expressed as follows:

X1 = zpi,chi (16)

2. Distance from MS to CH. MS moves to the nearest CH, represented as chi, that is within
communication range. Therefore, a shorter distance minimises the length of the MS, which
decreases the delay and causes the MS to consume less energy. This parameter is expressed as
follows:

X2 = 1
dis(MS, chi)

, (17)

where dis(MS, chi) is the distance between the MS and the CHs when they are within
communication range. The distance () equation is calculated using Eq. (3).
Thus, the BSO-based MS path planning of the EEPP-BAP method formulates the fitness
function to obtain the maximum value of the two combined objective functions, expressed as
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follows:

Fitness function of MS path planning = (α1 ∗ X1) + ((α1 − 1) ∗ X2) , (18)

where α1is the weighing factor whose summation is equal to 1. In this method, (α1) is the
reward factor, which is dynamically adjusted to obtain ordered CHs starting from the CHs
with the highest zone priority. Therefore, a fitness function with a maximum value refers to
the better individual with the better MS path, considering the zone priority and CH distance.

When the algorithm reaches a satisfied value that represents the optimal MS path or when the
method assumes convergence, the process terminates. After the optimal selection of the MS, normal
data collection starts and continues until a change in the network occurs; for example, the CH energy
is lower than a certain threshold, or a zone priority changes.

During normal MS operations, there are special cases in which urgent messages must be delivered
to the MS. These urgent messages should be delivered immediately; otherwise, they might get
lost because of buffer overflow, causing a decline in the network throughput, a delay due to the
retransmission of the same data packets, and a reduction in energy efficiency due to wastage of
resources. Consequently, the network lifetime is reduced. An example of urgent messages is sudden
contingency events in zones where the MS has either not yet or already visited. To alleviate this
problem, establishing the routeing of urgent messages to the MS position is considered the next
procedure of the proposed EEPP-BAP method.

3.4 Establishing the Routeing of Urgent Messages to the MS Position Using PSO

Some zones, especially those with higher priorities, tend to have urgent messages at any time.
Thus, the MS visiting each CH one time per round is insufficient because of the urgent messages after
or before MS visits. Thus, in the EEPP-BAP framework, a procedure for handling urgent messages
was added in parallel with the normal MS path planning procedure. It is important to handle urgent
messages separately by applying an efficient and optimised routeing algorithm as discussed in previous
studies [35,40–42]. This is because ignoring urgent messages until the next MS round will negatively
affect network performance and lifetime. This procedure is a special case that does not happen in each
round of data collection.

Routeing urgent messages refers to a situation in which any SN with urgent messages transfers its
data to the MS position. Urgent messages are routed by selecting SNs between the source and the MS,
named RNs. Messages can be transmitted using single- or multi-hop communication. Moreover, an
RN is an SN that can also be a CH or CM in the network. In the urgent message routeing procedure,
two parameters are considered: the distance between SNs and MS and residual energy. Selecting the
SNs with the shortest distances to the MS helps in the delivery of urgent messages with minimum delay.
In addition, selecting the SNs with the highest residual energy leads to an energy consumption balance
among SNs by preventing SNs with less energy from acting as RNs. Thus, the proposed EEPP-BAP
method considers these two parameters to optimise the selection of RNs for routeing urgent messages
to the MS position using the PSO algorithm.

However, urgent messages are routed to the MS position between CH to CH within communica-
tion range and between CH to MS through multi-hop communication. When there is no CH within
communication range, then the neighbouring node (CM) is selected as the next RN. Moreover, the CH
can transmit urgent messages directly through single-hop communication to the MS if the distance
between them is shorter than the distance between the CH and other CHs. The selection between RNs
is based on the shortest distance to the MS position and the SNs with the highest residual energy to
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formulate the fitness function in the next section. Fig. 5E shows a simple process of routeing urgent
messages to the MS position using PSO.

PSO-based RN selection:

Based on routeing urgent messages to the MS, the PSO algorithm is implemented to select the
most suitable RNs through multi-hop communication based on SN residual energy and the average
distance between SNs with urgent messages relative to the MS position. The PSO steps were previously
discussed in Section 3.2.

Thus, in the proposed EEPP-BAP method, each particle forms a candidate-completed solution
that represents the optimal relay SNs, having the routeing path from the SNs with urgent messages to
the MS position evaluated by the fitness function.

To formulate the fitness function of the selection relay SNs, the proposed EEPP-BAP method is
performed to select the next hop of relay SNs based on the minimum path distance and highest residual
energy, as in a prior study [37]. However, the proposed EEPP-BAP method reformulates the fitness
function in relation to the MS position and considers the neighbouring SNs beside the CHs, expressed
as follows:

1. Distance from the SN to the MS (dis): The SN with urgent messages, represented as SNcurrent,
routes the data to the nearest CH or CM, represented as SNneighbours, that is within communication range.
This parameter is expressed as follows:

X1 = dis
(
SNcurrent, SNneighbours

)
, (19)

where X1 indicates the distance from the current cluster to its neighbour (CH or CM).

X2 = dis (SNcurrent, MS) , (20)

where X2 indicates the distance from the current cluster to MS.

X3 = dis (X1)
2 + (X2)

2 , (21)

where X3 is the entire distance from the current SNs to the MS position. The dis function is computed
using Eq. (13).

Therefore, to compute the minimum distance to route urgent messages between the current SNs
and the MS, the following equation is applied:

X1 = X3

Max(X3)
(22)

2. Residual energy: The energy of the SNs is measured for each SN that is a candidate RN. This
prevents the SN with less energy from being selected as a RN. Thus, this parameter is expressed as
follows:

First, residual energy is computed per round as follows [42]:

REnext round,i = Eintial energy,i − Econsumed energy,i

Eintial energy,i

(23)

where REnext round is situated at each round for data gathering by MS by computing the remaining
energy of SNs, Eintial energy represents the completed energy of the SNs before starting any process, while
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Econsumed energy,i represents the energy consumed by the ith SNs using Eq. (27). Then, the second parameter
of the fitness function (X2) is calculated as follows:

X2 = RE
(
SNneighbours,i

)
Einitial energy,i

(24)

where RE represents the remaining energy in the SN that is selected as RN, computed using Eq. (35).

Therefore, by combining these two objectives, the fitness function is formulated to obtain the
minimum value expressed as follows:

Fitness function of the selection relay node = (α1 × X1) + (α2 × X2) , (25)

where α1 and α2 are weighting factors with the summation for all αi = 1. As a result, the minimum
value of the fitness function refers to the better particle that contains RNs forming a routeing path
from SNs to MS.

After explaining the four procedures of the EEPP-BAP method, we present in the next section the
experiments using the proposed method in comparison with other studies using simulation.

4 EEPP-BAP Simulation

This section discusses the simulation environment for the EEPP-BAP method. Moreover, it
illustrates the amount of data generated by SNs using the Poisson distribution method and the energy
consumption and packet reception rate (PRR) of both models, which are used for simulation purposes
in WSNs.

4.1 Simulation Environment

In this research, the simulation environment consisted of 100 stationary SNs deployed at random
on a field of 1000 × 1000 m (large area) and one MS. All the later simulation experiments were
performed for homogeneous SNs with the same capability and specification on a custom, and their
locations were awarded using a MATLAB simulator. Fig. 6 provides a simplified illustration of the
EEPP-BAP procedure starting from the random deployment of SNs and sink node/MS placement up
to MS path planning.

4.2 Generating Data in the Network

Data traffic on the SNs is generated based on the Poisson process of intensity λ packets per second
[43]. The Poisson process represents a model that describes a random event occurring by finding the
number of probable events over a certain time by using the Poisson distribution expressed as

Poisson distribution (k event in time period) = e−λ *
λk

k!
(26)

where λ is the rate parameter representing the event/time × time period. The λ value expresses the data
traffic in the network, divided into urgent and non-urgent. In later experiments, the value of λ ranged
from 3 to 11.

In addition, the harsh wireless channel model was chosen, including shadowing and fading effects
and noise. The simulation parameters are outlined in Tab. 2.
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Figure 6: Simple illustration of the main procedures of the proposed EEPP-BAP method. (A) SN
distribution and MS placement. (B) Area partitioning and zone assigning. (C) Area clustering and
CH selection. (D) MS path planning

4.3 Energy Consumption Model

The energy consumption model utilised in the EEPP-BAP simulation and used for the evaluation
of the performance metrics explained in Section 5 is described here. It refers to the summation of the
amount of energy consumed to transmit or receive the data packet by SNs, expressed as follows:

ECi =
N∑

i=1

Energytransmission data packets i + Energyreciving data packets i

= V × (f × Itx × Ttx + f × Irx × Trx) , (27)

where V is the supplement of the voltage; f is the frame size of data packet; Itx and Irx are the required
current during the transmission and reception, respectively; and Ttx and Trx are the required current
time during transmission and reception listed in Tab. 3 [43].
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Table 2: Experimental simulation parameter setup

Parameter Value

Number of MS 1
Number of SNs 100
Node distribution Random
Packet size 50 bytes
Frequency 868 MHz
Transmission power 0 dBm
Maximum transmission range 150–250 m
Path loss exponent 2.5
Shadow fading variance 0 means, σ 2 = 3
Initial energy for each node 125 mJ
Noise power −115 dBm/−145 dB
Reference distance 1 m
Sensor type Mica2
Transmitting power −0 dB

Table 3: Parameters of energy model based on Mica2 radio

Operation Duration (ms) Current (mA)

Transmission (1 byte) 0.416 (Ttx) 20 (Itx)
Reception (1 byte) 0.416 (Trx) 15 (Irx)

4.4 PRR Model

The PRR model is utilised in EEPP-BAP to measure the loss or quality of the link in the WSN,
which means that the data packet arrives at the correct MS. It is used in the next section to evaluate
performance metrics. This has been adopted from the PRR metric used in a prior study [44], which
was built using wireless channel statistics, expressed as

PRR (distanceT&R) =
(

1 − 1
2

exp
(

−γ (distanceT&R)

2
1

0.64

))8(2f −l)

0 ≤ PRR (distanceT&R) ≤ 1, (28)

where distanceT&R is the distance between the transmitter and the receiver; γ (distanceT&R) is the signal-
to-noise ratio in decibels; and f is the data packet size named ‘frame size’, which contains the preamble
l = 2 bytes. For characterising the wireless link with respect to path loss and fading (log-normal
shadowing), γ (distanceT&R)is calculated as follows:

γ (distanceT&R) = PowertdB − PathLossdB − Pnoise dB, (29)
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where PowertdB represents the transmitting power, PnoisedB represents the noise floor, and PathLossdB is
expressed as:

PathLossdB = PL (RD0)dB + 10n log10

distanceT&R

RD0

+ Xα dB, (30)

where RD0 is the reference distance, n is the path loss exponent, and XαdB represents log-normal
shadowing.

5 Performance Evaluation

In this section, we describe the various experiments we conducted to achieve our objectives
and evaluate the effectiveness of the proposed solution. These simulation experiments consist of six
experiments as shown in Fig. 7. The first three experiments study the variation of network lifetime,
packet delivery rate, and end-to-end delay with respect to the average traffic load. The average
traffic rate changes from 3 to 11. In addition, through the last three experiments, the total energy
consumption, average residual energy of sensor nodes, and the energy imbalance factor have been
calculated during the running time. The performance metric parameters are presented first, followed
by the simulation results.

Performance 
Metrics

Network 
Lifetime

Packet 
Delivery Ratio

Average End-
to-End Delay

Energy 
Consumption 

Average 
Residual 
Energy 

Energy 
Imbalance 

Factor (EIF)

Figure 7: Performance metrics for testing the simulations

5.1 Performance Metric Parameters

The performance of our proposed EEPP-BAP method was evaluated using the following
metrics:

• Network Lifetime [45]: This refers to the time until the first SN runs out of battery after starting
network operation. To calculate the lifetime of each SN, the following equation is applied:

SNlifetime = Energycurrent

Eneragytotal

, (31)

In the equation, if any Energycurrentof the SNs in the network, calculated using Eq. (5), is less than
the required energy to transmit or receive, then the SNlifetime dies (stops operating). Thus, the system
stops execution.

• Packet delivery ratio (PDR) [46]: This defines the ratio of the data packets sent to the MS by SNs,
without packet loss. This is determined using the PRR model, considering the entire number of
data packets to measure the reliability of the network, and is expressed as

PDR = number of the data packets received by the MS successfully
total number of data packets sent by the SNs

(32)

• Average end-to-end delay (AveDelay) [47]: This represents the average time for N, which
represents the entire SN spent to route or transmit a data packet from the source to the target
destination. This includes propagation, transmission, transmission and reception current delay,
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and retransmission. The processing delay can be ignored as a result of the fast processing speed,
which is expressed as:

Total delay =
N∑
i

(p ropagation delayi + transmission delayi + reception delayi

+ transmission and reception current delayi + retransmission delyi) (33)

AveDelay = Total delay
length of total delay

(34)

• Energy consumption (EC) [48]: This represents the whole energy in the network that N consumes
to transfer and receive the data packet. Therefore, EC is the total summation of the energy
consumed by each SN i to transmit and receive the data packet, calculated using Eq. (27).

• Average residual energy (REavg) [49]: This is another performance evaluation criterion related to
routeing energy balance. This could be computed as the average residual energy of all nodes,
expressed as follows:

REavg = 1
N

N∑
i=1

(REi) , (35)

where the total number of SNs is represented as N and the energy of each SN is represented as REi.

• Energy Imbalance Factor (EIF) [50]: This indicates the standard deviation of the residual energy
of all SNs in the network. It measures the efficiency of the energy balance during running time
in the network, expressed as

EIF = 1
N

√√√√ N∑
i=1

(
REi − REavg

)2
, (36)

where N is the total number of SNs, REi on SNi is the residual energy, and REavg is the average residual
energy of whole SNs.

5.2 Simulation Results

Performance was compared to verify the feasibility and effectiveness of the proposed method
in terms of network lifetime, energy consumption, average end-to-end delay, and average residual
energy with the algorithms presented in previous studies [22,25]. To compare the performance of the
parameters used in the proposed EEPP-BAP method with the other parameters used [22,25], in all later
experiments, all algorithms were considered to have the same environment, clustering, and delivery
of urgent messages to the MS using the routeing technique described in a previous study [37]. The
differences lie in the selection of parameters for the movement of the MS.

5.2.1 Network Lifetime Evaluation

In this experiment, the performance evaluation of the proposed method, EEPP-BAP, was com-
pared with two previously published studies [22,25] in terms of network lifetime. Based on the average
traffic rate λ, the simulation experiment studies showed that the network lifetime varies when the first
node dies. To test this variation, a simulation experiment was started by varying the average traffic
rate λ from 3 to 11. Fig. 8 shows the variation in the network lifetime under different average values
of the traffic rate λ. From Fig. 8, it can be clearly seen that the network lifetime decreases as the
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value of λ increases. As the network traffic increases with increments of λ, the relay loads of the node
increase, leading to more energy consumption. Moreover, the higher the traffic rate, the more incoming
data packets at each SN, which leads to a smaller buffer space, which in turn leads to a higher waste
of energy due to the retransmission of lost packets resulting from buffer overflow. Consequently,
the network lifetime decreases. However, the figure illustrates obviously how the proposed method
remarkably enhanced the network lifetime while increasing the average traffic rate in comparison with
the other traffic rates in the network. The proposed method effectively conserves the network energy
consumption, which can be attributed to two reasons: The first reason is that the proposed path plan
considers the zone priority, which can provide a significant improvement in the network lifetime, as
it conserves energy consumption. This can be justified as follows: the zones with higher priority than
others in gathering data are expected to have urgent messages that should be evaluated first for the
MS to behave and respond quickly. Thus, considering such areas avoids urgent message routeing to
the MS and positively affects the network lifetime by consuming less energy. Second, the proposed
algorithm utilises the distance to the MS to reduce energy consumption.
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Figure 8: Comparison of network lifetime and average traffic rate for a homogeneous network

In the case of the algorithm from Hamidouche et al. [22], the MS visits the CH at each cluster based
on the nearest CH, according to its current position, which is based on distance. In the algorithm from
Bencan et al. [25], as a new location for the sink node, a cluster with higher residual energy and a closer
distance from other clusters is chosen. Nevertheless, they suffer from being unaware of information
about the zone/area priority, resulting in energy wastage due to the routeing of urgent messages to the
MS position, which exposes the SNs to consume more energy in multi-hop communication and thus
negatively affects network lifetime.

Tab. 4 shows the percentage improvement in the network lifetime with the proposed method
compared with that achieved in the previous works [22,25]. For example, at a λ value of 11 packets
per second, the proposed method achieved a network lifetime of approximately 6400 s, whereas the
lifetimes achieved in the previous works [22,25] were 2400 s and 2100 s, respectively. This means that
the proposed method can achieve approximately 166.6% and 204.7% improvements in network lifetime
compared with the results of the works of Hamidouche et al. [22] and Bencan et al. [25], respectively.

5.2.2 Network PDR Evaluation

When traffic load increases, more packets are pushed into the network, which can cause congestion
and packets to be dropped.
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Table 4: Percentages of improvement in the network lifetime of the proposed method over the results
achieved in the previous works for a homogeneous network with different average traffic rate

λ Lifetime of the
proposed method
(EEPP-BAP), s

Lifetime in [22], s Improvement
over [22]

Lifetime in [25], s Improvement
over [25]

3 15,200 7200 111.1% 5000 204%
5 9200 3600 155.5% 3000 206.6%
7 6400 2400 166.6% 2100 204.7%
9 2600 1600 62.5% 1400 85.7%
11 2300 1200 91.6% 1150 100%

In this experiment, we compared the performance of the proposed method with those of two
previous studies using the PDR metric [22,25] for homogeneous networks. With this simulation
experiment, we examined how network PDR varies with the average traffic rate λ for homogeneous
networks. This experiment started by increasing the average traffic rate λ from 3 to 11. Fig. 9 shows
the variation of the network PDR with the average traffic rate λ. In general, with an increase in the
average traffic rate, the network traffic load increases. This is due to increases in the number of packets
pushed into the network as traffic load increases; thus, congestion and dropped packets can occur in
the network. However, the figure shows that the network throughput of the proposed method slightly
decreased as the average traffic rate increased. Meanwhile, the proposed method obtained the highest
PDR compared with the other PDRs even while increasing the average traffic rate in the network
because the proposed method attempted to avoid urgent message routeing to the MS by considering
the zone/area priority. During multi-hop wireless communication, data packets are lost as a result of
the dynamic nature of wireless communication links and unstable channel conditions. Thus, avoidance
of urgent message routeing enhances the network PDR, as it prevents packets from going to possible
unreliable paths. On the contrary, the previous works [22,25] did not consider zone/area priority, where
loss of packets reduced the network throughput as a result.
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Figure 9: Comparison of PDR and traffic rate for homogeneous networks

Tab. 5 shows the percentages of improvement in the network PDR of the proposed method over
the results of the previous works with different data rates. For example, at λ of 7 packets per second, the
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proposed method has a network PDR of approximately 0.8188. Meanwhile, the PDR value obtained
in the first previous work [22] was 0.6602, while it was 0.6400 in the second previous work [25]. This
means that the proposed method can achieve approximately 24% and 27.9% improvements in network
PDR compared with the results achieved in the previous works [22,25], respectively.

Table 5: Percentages of improvement in the network PDR of the proposed method over the results of
the previous works for homogeneous networks with different average traffic rates

λ PDR in the proposed
method
(EEPP-BAP)

PDR in [22] Improvement
over [22]

PDR in [25] Improvement
over [25]

3 0.8608 0.7193 19.6% 0.6973 23.4%
5 0.8304 0.7101 16.9% 0.685 21.2%
7 0.8188 0.6602 24% 0.64 27.9%
9 0.8104 0.6428 26% 0.6361 27.4%
11 0.8093 0.6238 29.7% 0.5909 36.9%

5.2.3 Evaluation of Average End-to-End Delay

This experiment compares the performance of the proposed method with that of previous studies
in terms of end-to-end delays in homogeneous networks.

In this experiment, we compared the performance of the proposed method with those of the
methods reported in previous studies [22,25] in terms of end-to-end delay in homogenous networks.
The average traffic rate λ is used to study the variation in average end-to-end delay in this simulation
experiment. The experiment starts by increasing the average traffic rate λ in a network. Fig. 10 shows
the variation of the average end-to-end delay with the average traffic rate. The simulation results clearly
show that the end-to-end delay increases with the average traffic rate. When traffic rates are high, the
number of incoming packets from a node increases, thereby reducing the buffer space and resulting
in a higher probability of buffer overflows. In other words, end-to-end delay increases as a result of
queuing delay and delay due to the retransmission of lost packets.
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Figure 10: Average end-to-end delay according to traffic rate for homogeneous networks
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However, based on the comparison of the different methods, the proposed method obtained the
lowest end-to-end delay. This can be justified as follows: the proposed method avoids the routeing
of urgent messages as much as possible, which in turn reduces propagation delays. Moreover, as
the proposed model prevents packets from going to possible unreliable paths, the delay due to the
retransmission of the lost packets is decreased. In the case of the previous works [22,25], the urgent
messages move to the MS on long paths due to multi-hop transmissions, thus increasing the packet
propagation delay. In addition, the transmission over the lossy wireless links increases the delay due
to the retransmission of the lost packets. Tab. 6 shows the percentages of the improvement in average
end-to-end delay with the proposed method over the results of the previous works [22,25] with different
data rates. For example, at a λ value of 7 packets per second, the proposed method achieved an end-
to-end delay of approximately 0.3316 s. On the other hand, the end-to-end delays achieved in the
previous works were 0.3571 and 0.3533 s, respectively. This means that the proposed method can
achieve approximately 7.1% and 6.7% improvements in the average end-to-end delay when compared
with the results of the previous works.

Table 6: Percentages of improvement in the average end-to-end delay of the proposed method over the
results of the previous work for homogeneous networks with different average traffic rates

Average traffic
rate

Delay with the
proposed
method
(EEPP-BAP), s

Delay in [22], s Improvement
over [22]

Delay in [25], s Improvement
over [25]

3 0.2887 0.3093 6.6% 0.2903 0.5%
5 0.3180 0.3363 5.4% 0.3208 0.8%
7 0.3316 0.3571 7.1% 0.3533 6.1%
9 0.3661 0.3844 4.7% 0.3727 1.7%
11 0.3808 0.4034 5.6% 0.4281 11%

5.2.4 Energy Consumption Evaluation

The proposed EEPP-BAP method was compared with the previous works [22,25] in this exper-
iment, which was performed to evaluate energy consumption. During operation of the network, the
energy consumption was calculated to observe the network energy efficiency, which adapted the energy
consumption model described in Section 4.1.2. The average traffic rate λ is fixed at 7 packets per
second. As shown in Fig. 11, the energy consumption varied over time during the simulation. The
simulation results presented in the figure verify that energy consumption increases with increases in
running time. Thus, as the proposed method achieved a longer lifetime than the methods described
in the previous works [22,25], the proposed method used less energy during the network process, as
illustrated in Fig. 11.

5.2.5 Average Residual Energy Evaluation

In this experiment, the performance of the proposed method was evaluated in terms of energy
balance compared with the presented algorithms in [22] and [25]. The average residual energy was
calculated during the running time to determine the balance efficiency of the network. The average
traffic rate λ is fixed to 7 packets per second. Fig. 12 presents the variation in the average residual
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energy over the simulation time. The figure clearly shows that the average residual energy decreases
with a longer running time. Indeed, in random topologies, some areas are highly dense, whereas
others are less dense. As these areas do not necessarily overlap, an imbalance in the distribution
of sensors is subsequently enforced. Undoubtedly, the average residual energy across the network
is negatively affected. It is for this reason that the average residual energy decreases with increased
running time. However, the average residual energy of the proposed method can balance energy
consumption efficiently better than the methods used in the previous studies [22,25]. This is due to
the preservation of node energy per round as a result of the minimal energy consumption due to the
energy-efficient path planning algorithm.
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Figure 11: Energy consumption according to simulation time for homogeneous networks
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Figure 12: Average residual energy according to simulation time for homogeneous networks

5.2.6 Energy Imbalance Factor

In this experiment, the performance of the proposed method was evaluated in terms of EIF
compared with the presented algorithms in the previous studies [22,25]. The network balance efficiency
was calculated using the EIF metric during the running time. The average traffic rate λ is fixed
to 7 packets per second. The EIF variation over the simulation time is shown in Fig. 13, which is
clearly augmented with a longer running time. This is due to the different average amounts of residual
energy of the areas with different densities of SNs in the network caused by the random distribution
of the SNs. However, the proposed method achieved a lower EIF value during network execution
compared with the previous methods [22,25]. This illustrates that the energy use in the proposed
method approaches the average energy of the entire network, which attains energy balance. Therefore,
the proposed method can balance energy use more effectively than the previously described methods
[22,25] because the proposed method attempts to avoid extensive routeing and minimise hop count by
considering priority relative to using the MS. Thus, in the proposed model, the energy consumption
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in SNs preserved energy remarkably. Although all the methods used the residual energy parameters at
CH and RN selection for routeing urgent messages, in the study by Bencan et al. [25], the stability of
the curve for energy consumption due to the method used primarily depended on the energy balance of
the MS movement. From the results of these experiments, we can conclude that the proposed method
improved the data collection process in WSNs.
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Figure 13: EIF according to simulation time in the network

6 Conclusion

In this study, the EEPP-BAP framework is proposed to further improve the overall efficiency of
WSNs and application monitoring data collection. The EEPP-BAP utilises two additional parameters
for MS deployment in WSNs. One parameter defines zone priority, and the other uses on-demand
routeing requests. The four processes in the framework were defined, and their operations were
explained. Moreover, the PSO and BSO algorithms were adapted to solve optimisation issues in
the WSNs. They were used in the CH selection, constructing the MS path plan and routeing
urgent messages to the MS position. These two added parameters significantly impacted network
performance. This was demonstrated through simulations and comparisons with other approaches
that used different parameters to construct MS path plans based on distance [22] and on distance
and energy [25]. The comparisons showed that the performance of the proposed method was better
in terms of maximising energy efficiency up to 206.6% on average, minimising data packet loss up
to 36.9% on average, and minimising urgent message delivery time up to 7.1% on average. In future
research, with the delay-bound parameter that refers to a certain deadline for message arrival at the
sink, and multiple MS can be distributed differently on a large-scale monitoring field. Moreover, future
research can consider the sub-areas with greater priority in the MS path using the zigzag technique to
further minimise the routeing of urgent messages.
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