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Abstract: The decoding algorithm for the correction of errors of arbitrary
Mannheim weight has discussed for Lattice constellations and codes from
quadratic number fields. Following these lines, the decoding algorithms for
the correction of errors of n = p−1

2 length cyclic codes (C) over quaternion
integers of Quaternion Mannheim (QM) weight one up to two coordinates
have considered. In continuation, the case of cyclic codes of lengths n = p−1

2
and 2n − 1 = p − 2 has studied to improve the error correction efficiency.
In this study, we present the decoding of cyclic codes of length n = ϕ (p) =
p − 1 and length 2n − 1 = 2ϕ (p) − 1 = 2p − 3 (where p is prime
integer and ϕ is Euler phi function) over Hamilton Quaternion integers of
Quaternion Mannheim weight for the correction of errors. Furthermore, the
error correction capability and code rate tradeoff of these codes are also
discussed. Thus, an increase in the length of the cyclic code is achieved along
with its better code rate and an adequate error correction capability.

Keywords: Mannheim distance; monoid ring; cyclic codes; parity check matrix
extension; syndromes decoding; code rate and error correction capability

1 Introduction

The study of the features of codes and their suitability for various applications is known as coding
theory. Data compression, error detection and correction, security, data storage, and data transmission
are all performed by codes. Code words are used in some digital communication systems for error
correction or detection. Because of this, all code words in a message may have the same pattern of
digits. As a result, the message becomes more redundant. As part of the message identification, each
code word (without the first) in the message would have a code syndrome. The cyclic code does not
utilize these syndromes for error correction. When a message’s code words have been switched in
specific sections of the system, simple decoding methods may reveal this. To decide which syndromes
are appropriate, random and burst error correction codes are analyzed and compared to one another.
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A perfect code is defined as one that achieves a bound (the sphere-packing bound) in a given
metric. Perfect codes have long piqued the interest of coding theorists and mathematicians, since they
play an essential theoretical and practical role in coding theory. Over finite fields, several perfect codes
with regard to the Hamming metric are known, [1–5]. In the perspective of Hamming distance, the
single error correction of cyclic codes (C) over the ring Zm of integers modulo m are defined by Han et
al. [6]. Then, Tamm et al. [7] established that integer’s cyclic codes for general construction are perfect,
and these codes are used for single error correction.

Though, in [8] Huber investigated that cyclic codes over Gaussian integers for two-dimensional
signal space are perfect for one Mannheim error, and he further shaded light on the difference in
Hamming and Mannheim distances. On the other hand, in [9] Huber substantiated the Mac William’s
theorem for the codes having symbols from a finite field with a two-dimensional modulo metric.
Neto et al. [10] spoke the cyclic codes over Gaussian integers Z[i] for Mannheim weight one and two,
besides he has given a comparison of these cyclic codes with the cyclic codes having symbols from the
ring Z[w] of algebraic integers. Nevertheless, Kostadinov [11] derived the bit error probability of the
transmitted code word of an integer cyclic code using quadrature amplitude modulation (QAM). For
two-dimensional signal patterns like QAM, Severe coding difficulties arise from the algebraic theory
of block-cyclic codes over finite fields.

The cyclic, Bose Chaudhuri Hocquenghem (BCH), Srivastava, alternant, and Goppa codes having
symbols from a unitary finite commutative ring R, are described by Andrade et al. in [12]. Accordingly,
for this purpose, they used the factor ring of polynomial ring R[x] in one indeterminate x. Özen et al.
[13] has introduced Quaternion Mannheim (QM) distance as a metric and give a decoding procedure
of Cyclic codes of length n = p−1

2
over Quaternion integers. Andrade et al. [14,15] has given the

modified Berlekamp-Massey decoding algorithm for cyclic, BCH, Goppa, alternan and Srivastava
codes designed by the monoid ring R[x, 1

2
Z0] analogue to the codes obtained by polynomial ring R[x].

In continuation, Shah et al. [16,17] in the place of a polynomial ring, the construction of cyclic, BCH,
Goppa, alternan and Srivastava codes over a finite ring are realized by the monoid ring.

Özen et al. in [18] further contributed some results on the construction of cyclic codes over some
finite Quaternion integer rings with respect to the QM distance. However, Güzeltepe et al. [19] has
discussed Gaussian, Lipschitz, and Hurwitz weight codes for error correction and revealed that these
codes are perfect. A comparison of the code rate, bandwidth, and average energy is also part of the
study of [19]. Following the cyclic code’s design through monoid ring as described in [14–19] have
introduced the decoding of C over Quaternion integers of length n = p−1

2
for QM weight two. Moreover,

they also discussed the corresponding 2n − 1 = p − 2 length cyclic codes of the n = p−1

2
length cyclic

codes for QM weight one and two.

The goal of this work is to demonstrate a decoding procedure for cyclic codes of length n = ϕ (p) =
p−1 with QM weight one and two by following the lines drawn in [13,20]. In addition, followed monoid
ring technique given in [20] for the designing of cyclic codes, the decoding procedure of the cyclic codes
of length 2n − 1 = 2ϕ (p) − 1 = 2p − 3 with QM weight one and two is obtained. Thus, a gain in the
increase code rate of cyclic codes due to prime p, is achieved.

The rest of the paper is laid out as follows: Related work is discussed in Section 2. In Section
3, single and double error-correcting cyclic codes of length n = ϕ (p) = p − 1 for QM weight one
and two by following techniques in [10,20]. In Section 4, the parity check matrix (H) of the cyclic
code of length n = ϕ (p) = p − 1 is extended to parity check matrix (H) of the cyclic code of length
2n − 1 = 2ϕ (p) − 1 = 2p − 3. Consequently, single and double error-correcting cyclic codes of length
2n − 1 = 2ϕ (p)− 1 for QM weight one and two through monoid rings by following techniques in [20]
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is obtained. In Section 5, code length and code rates comparison of the cyclic codes for different odd
primes. Finally, Section 6, concluded the findings of the study and future directions respectively.

2 Preliminaries

This section provides the key concepts and basic findings that will be used in the study of upcoming
sections. First of all, we recall definition of Quaternion integers, QM weight, QM distance and some
related results.

2.1 Hamilton Quaternion Integers

By following [21], the Hamilton Quaternion algebra over the set of the real number R, indicate by
H(R), is the associative unital algebra by the following conditions.

1. H (R) = {b0 + b1i + b2j + b3k : b0, b1, b2, b3 ∈ R} is free R module.
2. Multiplicative identity is 1.
3. i2 = j2 = k2 = −1 and jk = −kj = i, ki = −ik = j, ij = −ji = k.

The Quaternion integer ring H (Z) = {b0 + b1i + b2j + b3k : b0, b1, b2, b3 ∈ Z} is contain in H(R),
whereZ is the ring of integers. If q = b0+b1i+b2j+b3k is a Quaternion integer, then q = b0−b1i−b2j−b3k
is the Quaternion conjugate of q. N (q) = qq = b2

0 +b2
1 +b2

2 +b2
3 is the norm of q. A Quaternion integer

q having only two parts one is scalar part b0 and other is vector part b1i + b2j + b3k. In Quaternion
integer’s commutative property of multiplication is not hold. It is possible only in case of two vector
part of quaternion integers are parallel.

Define H(K) as: H(K) = {c + dV : c, d ∈ Z}, Where V indicates (i + j + k). H(K) is a subring of
the Quaternion integer ring H (Z), then the commutative property of multiplication holds over H(K).

Theorem: In [21], the set of natural numbers for each odd rational prime p, there is a prime π ∈
H (Z), such that N (π) = p = ππ . In particular, p is not prime in H (Z).

Corollary: In [18], π ∈ H (Z) is prime in H (Z) if and only if N (π) is prime in Z.

Definition: In [18], let residue class of H(K)π is H(K) modulo π , π = a + bV . Then, the modulo
function

ω : H (K) = {c + dV : c, d ∈ Z} → H (K)π

define as ω (q) = z mod π = q − [
qπ

ππ

]
ππ .

where z ∈ H(K)π . In the above expression, the number of [.] is rounding to the nearest integer.
Quaternion integer rounding should be possible by rounding the coefficients of vector part and scalar
part independently to the nearest integer.

Definition: Let β, ρ ∈ H(K)π and α = β − ρ = (b0 + b1i + b2j + b3k) (mod π) . The QM weight
of γ be characterized as WQM (α) = |b0| + |b1| + |b2| + |b3|
and Quaternion Mannheim distance dQM (α) between β and ρ is defined as WQM (α) = dQM(ρ, β)

Remark: Indeed, Quaternion Mannheim weight WQM is a metric.
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2.2 Construction of Cyclic Codes

Construction of cyclic codes of length n = ϕ(p) = p − 1 by following the techniques of [10]. Let
ξ is the primitive element of H(K)π , p be a prime in Z, where π = b0 + b1i + b2j + b3k, p = ππ and
ξ p−1 = 1. Then cyclic code (C) defined by H as follows;

H =
⎛
⎜⎝

ξ 0 ξ 1 · · · ξϕ(p)−1

...
. . .

...
ξ 0 ξ t+1 · · · ξ (t+1)(ϕ(p)−1)

⎞
⎟⎠ (1)

where t is nonnegative integer less than n. A vector c = (c0, c1, . . . ; , cϕ(p)−1) ∈ H(K)n
π

is a codeword
of C if and only if Hctr = 0. If c(z) = ∑n−1

j=0 cjzj is a codeword polynomial, then c(ξ i+1) = 0, for i =
0, 1, 2, · · · , t. The polynomial f (z) = (z − ξ)(z − ξ 2) · · · (z − ξ t+1) is the generator polynomial of cyclic
code C, and C = 〈f (z)〉 is a principle ideal of H(K)π [z]/〈zn − 1〉. If we multiple c(z) by z(mod(zn − 1)),
then zc(z) = c0z + c1z2 + · · · + cn−1zn. But we know that zn = 1. Therefore, if c(z) ∈ C, then zc(z) ∈ C.
Thus, multiply c(z) by z(mod(zn + 1)) means the following:

1. For Cyclic Shift c(z) shift one place to the right.
2. Locating the initial symbol of the new codeword by rotating the coefficient cn−1 by π radians.

3 Error Correction of Cyclic Codes of Length n = ϕ(p) for QM Weights One and Two

This section consists of decoding method for C of length n = ϕ(p) that uses the techniques in [
[13], Section 3, and Section 4 ] and [ [17], Section 3, Theorem 2, Lemma 1 and Theorem 3] to rectify
single and double errors of QM weight one and two.

3.1 Single Error Correcting Cyclic Codes of QM Weight One

Let ξ is the primitive element of H(K)π , π = b0 + b1i + b2j + b3k, p = ππ and ξ p−1 = 1 Then,

H = (
ξ 0 ξ 1 ξ 2 · · · ξϕ(p)−1

)
(2)

G =
⎛
⎜⎝

−ξ 1 1 0 · · · 0
...

. . .
...

−ξ ϕ(p)−1 0 0 · · · 1

⎞
⎟⎠ (3)

The one QM error-correcting codes of length n = ϕ(p) can be constructed by H. Then C defined
by H in Eq. (2) is able to correct any QM error of weight one. The possible error values are 1 or −1.
For the decoding procedure first step is to find the syndrome S(r) = Hrtr with the help of H and the
received vector r. Then the error value is computed by Sξ−l, where l(mod n = ϕ(p)) is a non-negative
integer which is helpful for error location. Hence, c = r − e is the corrected codeword.

Illustration: Let π = 4 + i + j + k, p = 19, n = ϕ(p) = 18 and ξ = 2. Then, H and G by using
Eqs. (2) and (3) and ξ be the primitive element of H(K)π , see Tab. 1 respectively;

H = (
ξ 0 ξ 1 ξ 2 · · · ξ 17

)
; G =

⎛
⎜⎝

−ξ 1 1 0 · · · 0
...

. . .
...

−ξ 17 0 0 · · · 1

⎞
⎟⎠ ;

r = (1 − i − j − k, 1, −1 + i + j + k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1)1×18

S(r) = Hrtr = i + j + k ≡ ξ 11(modπ)
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Table 1: ξ = 2 is the root of z9 +1

ξ l Value ξ l Value ξ l Value

ξ 0 1 ξ 6 3i + 3j + 3k ξ 12 2i + 2j + 2k
ξ 1 2 ξ 7 −1 + i + j + k ξ 13 3
ξ 2 −i − j − k ξ 8 −2 + 2i + 2j + 2k ξ 14 2 − i − j − k
ξ 3 −2i − 2j − 2k ξ 9 −1 ξ 15 −3i − 3j − 3k
ξ 4 −3 ξ 10 −2 ξ 16 1 − i − j − k
ξ 5 −2 + i + j + k ξ 11 i + j + k ξ 17 2 − 2i − 2j − 2k

11 ≡ 11(mod 18), it means error occur in received vector at location 12. Hence error value is
Sξ−11 = 1(mod π). c = (1 − i − j − k, 1, −1 + i + j + k, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 0, 0, 0, 0, −1).

Hctr = O(mod π). Hence, c is a codeword of C.

Perfect codes of Length n = ϕ(p) for QM Weight One:

The cyclic codes defined by H of length n = ϕ(p) = p − 1 in Eq. (2), can be generalized as

H = (
ξ 0 ξ 1 ξ 2 · · · ξϕ(pr)−1

)
(4)

The cyclic codes defined by the generalized H are perfect in Eq. (4), by the sphere packing bound,
since we have pn−r (n + 2) = pn−rpr = pn.

3.2 Double Error Correcting Cyclic Codes of QM Weight One

Theorem: Let cyclic code (C) defined by H in Eq. (1). Then cyclic code (C) can be correct error
as the form e(x) = ejxj + eixi, where 0 ≤ WQM(ej), WQM(ei) ≤ 1.

Proof: Consider two errors occur at two different places l1, l2 in received r and two error vectors
e1, e2 of QM weight 0 ≤ wQM(e1), WQM(e2) ≤ 1. First, find syndromes with the help of H and the
transpose of received vector r as;

H =
(

ξ 0 ξ 1 ξ 2 · · · ξϕ(p)−1

ξ 0 ξ 2 ξ 4 · · · ξ 2ϕ(p)−2

)
(5)

S (r) = Hrtr =
(

s1

s2

)
(modπ) (6)

Now we find a polynomial h(x) for the location and correction of errors as follows:

h(x) = (x − ξ l1)(x − ξ l2) = x2 − (ξ l1 + ξ l2)x + ξ l1 .ξ l2 = x2 − s1x + η (7)

Where we can get η by syndromes. From s1 = ξ l1 + ξ l2 , s2 = ξ 2l1 + ξ 2l2 and η = ξ l1ξ l2 . we get

s2
1 − s2 = (ξ

l1
2 + ξ l2)2 − (ξ 2l1 + ξ 2l2) = 2ξ l1ξ l2 = 2η (8)
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s2
1 − s2

2
= 2η

2
= η (modπ) (9)

Thus, h(x) helps for the locations and error values. If ξ
l1
1 and ξ

l2
2 are roots of h(x), then l1(modn) =

m1, l2(modn) = m2 are locations of error and error values are e1 = ξ l1

m1
, e2 = ξ l2

m2
which having three

possibilities. If both two syndrome s1 and s2 are zeros then no error occurs. If s2
1 = s2 �= 0, then one

error occurs. If s2
1 �= s2 and s1 �= 0, then two error occurs.

Illustration: Let π = 4 + i + j + k, p = 19, n = ϕ(p) = 18 and ξ = 2. Then, H by using Eq. (5)

and elements see Tab. 1 respectively; H =
(

ξ 0 ξ 1 ξ 2 · · · ξ 17

ξ 0 ξ 2 ξ 4 · · · ξ 34

)
,

r = (1 − i − j − k, 1, −1 + i + j + k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1)1×18

S(r) = Hrtr =
(

i + j + k
2 − 2i − 2j − 2k

)
=

(
ξ 11

ξ 17

)
(mod π) =

(
s1

s2

)
, Both syndromes s1, s2 are non-

zeros and s2
1 �= s2 �= 0. Hence two error occurs. By Eq. (9), η = s2

1−s2
2

= ξ 13(mod π). Hence error
polynomial by Eq. (7) is h(x) = x2 − ξ 11x + ξ 13. Error locator polynomial roots h(x) are ξ l1 = ξ 4 and
ξ l2 = ξ 9, so, error locations are 4 and 9 in received vector r. Hence, error values are el1 = 1 and el2 = 1.
c = (1 − i − j − k, 1, −1 + i + j + k, 0, −1, 0, 0, 0, 0, −1, 0, 0, 0, 0, 0, 0, 0, −1)1×18.

Hctr = O( mod π). Hence, c is a codeword of C.

Theorem: The cyclic code C defined by H in Eq. (1) has the minimum QM distance dQM ≥ 4. If p
be a prime in Z then π be a prime in H(Z), where p = ππ ≥ 19 and t = 1.

Proof: The decoder’s ability to distinguish between single and double errors is all that is required
in this proof. Assume QM weight error is one. Then, s2

1 = s2 �= 0(modπ). From Eq. (7),

x1,2 =
s1 ±

√
s2
s1

2
= s1 ± s1

2
(10)

Hence, the decoder can differentiate in single and double errors.

3.3 Single Error Correcting Cyclic Codes of QM Weight Two

Theorem: Let ξ is the primitive element of H(K)π , π = b0 + b1i + b2j + b3k and p = ππ . Let a
cyclic code C of length n = ϕ(p) = p − 1 define by H.

H =
(

ξ 0 ξ 1 ξ 2 · · · ξϕ(p)−1

ξ 0 ξ 2 ξ 4 · · · ξ 2ϕ(p)−2

)
(11)

then the error of code C can be correct as of the form e(x) = elxl, where 1 ≤ wQM(el) ≤ 2.

Proof: Let ξ i is error which occurred in location j, where 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ n − 1. Let
e(x) = ξ ixj be the error structure. Then, s1 = ξ j+i and s2 = ξ 2j+i are syndromes. Let s1 = ξ l1 and s2 = ξ l2

are the basis of sj; j = 1, 2.{
s1 = ξ j+i, 
⇒ j + i ≡ l1(modp − 1)

s2 = ξ 2j+i, 
⇒ 2j + i ≡ l2(modp − 1)
(12)

Eq. (11) having unique solution at j = l2 − l1 (mod p−1), i = l1 − j (mod p−1). Hence we conclude
that error is occurred in location (l2 − l1)(mod n) with magnitude ξ i.
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Illustration: Let π = 4 + i + j + k, p = 19, n = ϕ(p) = 18 and ξ = 2. Then, we have H by using

Eq. (11) and elements of Tab. 1 respectively; H =
(

ξ 0 ξ 1 ξ 2 · · · ξ 17

ξ 0 ξ 2 ξ 4 · · · ξ 34

)
(2×18)

,

r = (1, −1, −1 + i + j + k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1)1×18

S(r) = Hrtr =
(

3i + 3j + 3k
3i + 3j + 3k

)
=

(
ξ 6

ξ 6

)
(mod π) =

(
s1

s2

)
, Both syndromes s1, s2 are non-zeros. By

using Eq. (12),

{
s1 = ξ 6, 
⇒ j + i ≡ 6(mod18)

s2 = ξ 6, 
⇒ 2j + i ≡ 6(mod18)
, Solve the above system, we get error location j = 0

and error magnitude ξ 6 = 3i + 3j + 3k.

e = (3i + 3j + 3k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)1×18 .

c = (−2 + i + j + k, −1, −1 + i + j + k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1)1×18

Hctr = O (mod π). Hence, c is a codeword of C.

3.4 Double Error Correcting Cyclic Codes of QM Weight Two

Theorem: Let a cyclic code C of length n = ϕ(p) define by H as:

H =

⎛
⎜⎜⎝

ξ 0 ξ 1 ξ 2 · · · ξϕ(p)−1

ξ 0 ξ 2 ξ 4 · · · ξ 2ϕ(p)−2

ξ 0 ξ 3 ξ 6 · · · ξ 3ϕ(p)−3

ξ 0 ξ 4 ξ 8 · · · ξ 4ϕ(p)−4

⎞
⎟⎟⎠ (13)

Then,

1. ξ l2 − ξ l1 �= 0, where l1, l2 ∈ Z, 0 ≤ l1 < l2 ≤ n − 1;
2. S1S3 − S2

2 �= 0, otherwise, in received vector only one coordinate is in error.

Proof: 1. Suppose ξ l2 − ξ l1 = 0. Then, ξ l2 = ξ l1 this implies that ξ l1−l2 = 1. So, n|(l1 − l2). But
n > n − 1 ≥ l1 − l2, a contradiction that the order of ξ is n.

2. S1.S3 − S2
2 = 0. Then, S1.S3 = S2

2. If and only if ξ 2l1S1x + ξ 2l2S2
1 − ξ 2l2S1x = (ξ l2 − ξ l1)2x2 +

ξ 2l2S2
1 +2ξ l2(ξ l1 −ξ l2)S1x. If and only if (ξ l1 −ξ l2)2x2 +2ξ l1+l2S1x−ξ 2l1S1x−ξ 2l2S1x = 0.Therefore, either

x = 0 or (ξ l1 − ξ l2)2x + 2ξ l1+l2S1 − ξ 2l1S1 − ξ 2l2S1 = 0. if x = 0 then it is not possible because ρ l+s �= 0. If
(ξ l1 − ξ l2)2x + 2ξ l1+l2S1 − ξ 2l1S1 − ξ 2l2S1 = 0, then x = (ξ l1 −ξ l2 )2.S1

(ξ l1 −ξ l2 )2
= S1.If and only if y = 0. That’s also

correct, if and only if ξ l2+s = 0. This is a contradiction that until in a received vector only one coordinate
is in error. Hence, S1.S3 − S2

2 �= 0 whenever two errors occurs.

Theorem: Let a cyclic code C of length n = ϕ(p) define by H as:

H =

⎛
⎜⎜⎝

ξ 0 ξ 1 ξ 2 · · · ξϕ(p)−1

ξ 0 ξ 2 ξ 4 · · · ξ 2ϕ(p)−2

ξ 0 ξ 3 ξ 6 · · · ξ 3ϕ(p)−3

ξ 0 ξ 4 ξ 8 · · · ξ 4ϕ(p)−4

⎞
⎟⎟⎠; then the error of C can be corrected as the form e(x) = el1

xl1 +

el2
xl2 , where 0 ≤ l1 < l2 ≤ n − 1 with, 0 ≤ WQM(el1

), WQM(el2
) ≤ 2.
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Proof: Consider el1
�= 0 and el2

�= 0. In previous Theorem either el1
= 0 or el2

= 0. So by the help
of H there are four syndromes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1 = el1
ξ l1 + el2

ξ l2

S2 = el1
ξ 2l1 + el2

ξ 2l2

S3 = el1
ξ 3l1 + el2

ξ 3l2

S4 = el1
ξ 3l1 + el2

ξ 3l2

(14)

Let u = el1
ξ l1 and v = el2

ξ l2 , we get the following linear system of equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S1 = u + v
S2 = uξ l1 + vξ l2

S3 = uξ 2l1 + vξ 2l2

S4 = uξ 3l1 + uξ 3l2

(15)

Two errors can be correct in code C if and only if the Eq. (14) has only unique solution. Since
el1

�= 0 and el2
�= 0, then the system has unique solution. By using u + v = S1 then Eq. (13) becomes,⎧⎪⎨

⎪⎩
(ξ l1 − ξ l2)u = S2 − ξ l2S1

(ξ 2l1 − ξ 2l2)u = S3 − ξ 2l2S1

(ξ 3l1 − ξ 3l2)u = S4 − ξ 3l2S1

(16)

which implies that

(ξ l1 + ξ l2)(S2 − ξ l2S1) = S3 − ξ 2l2S1 (17)

(ξ 2l1 + ξ l1ξ l2 + ξ 2l2)(S2 − ξ l2S1) = S4 − ξ 3l2S1 (18)

Consider S = ξ l1 + ξ l2 and P = ξ l1ξ l2 . Then{
S(S2 − ξ l2S1) = S3 − ξ 2l2S1

(S2 − P)(S2 − ξ l2S1) = S4 − ξ 3l2S1

(19)

From Eq. (16), we get P = SS2−S3
S1

, Since S1 �= 0, from Eq. (17), we get

S = S1S4 − S2S3

S1S3 − S2
2

(20)

S1S3 −S2
2 �= 0, otherwise in a received vector only one coordinate is in error. By Eqs. (17) and (18),

P = S2S4 − S2
3

S1S3 − S2
2

(21)

X 2 − SX + P = 0 (22)
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is the equation of sum and product of roots and the roots of this equation are x1 = ξ l1 and x2 =
ξ l2 , where l1 and l2 are error locations and error values are⎧⎪⎪⎨
⎪⎪⎩

el1
= S2 − ξ l2S1

ξ l1(ξ l1 − ξ l2)

el2
= S2 − ξ l1S1

ξ l2(ξ l2 − ξ l1)

(23)

Illustration: Let π = 4 + i + j + k, p = 19, n = ϕ(p) = 18 and ξ = 2. Then, H is define by using
Eq. (13) and elements of Tab. 1 respectively;

H =

⎛
⎜⎜⎝

ξ 0 ξ 1 ξ 2 · · · ξ 17

ξ 0 ξ 2 ξ 4 · · · ξ 34

ξ 0 ξ 3 ξ 6 · · · ξ 51

ξ 0 ξ 4 ξ 8 · · · ξ 68

⎞
⎟⎟⎠

(4×18)

, r = (0, 1, 0, 0 · · · 0, −1)1×35

S (r) = Hrtr =

⎛
⎜⎜⎝

−3i − 3j − 3k
−2 + 2i + 2j + 2k
1
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ξ 15

ξ 8

1
ξ 13

⎞
⎟⎟⎠ (modπ) =

⎛
⎜⎜⎝

S1

S2

S3

S4

⎞
⎟⎟⎠ ,

Here, S1, S2, S3 and S4 are four syndromes. By using Eqs. (20) and (21), we get, S = ξ 15 and P = 1.
X 2 − ξ 15X + 1 = 0, and roots of this equation are ξ and ξ 17. The error occurs at position 1 and 17
in the received vector r. By Eq. (23), the error values are 1 and −1. e = (0, 1, 0, 0, · · · 0, −1)1×18, c =
(0, 0, 0, 0 · · · 0, 0)1×18

Hctr = O(modπ). Hence c is a codeword of C.

4 Parity Check Matrix Extensions of n = ϕ(p) Length to 2n − 1 = 2ϕ (p)− 1 Length Cyclic Codes and
Error Correction of these Codes for QM Weight One and Two through Monoid Rings

Parity check matrix extension of C of length n = ϕ(p) to 2n − 1 = 2ϕ(p) − 1 length and this
constructed parity check matrix is in blocks of parity check matrices by following techniques in [ [20],
Section 4] will be discussed in this Section. Furthermore, single and double error correction of these
cyclic codes for quaternion mannheim weight one and two through moniod ring using techniques in [
[20]; Section 5].

Let an associative ring and semigroup are (B, +, .) and (Q, ∗). Let a set Y of all finite non zero
functions from Q into B. Let a ring Y which defines by binary operation addition and multiplication
as: For h, g ∈ Y , s′ ∈ Q, (h + g)(s′) = h(s′) + g(s′), (h.g)(s′)(x + a)n = ∑

t′∗u′=s′ h(t′).g(u′).

It is clear that the sum is obtained by the pairs (t′, u′) elements of Q so that s′ = t′ ∗ u′ and for any
t′, u′ ∈ S if s′ is not expressed as the form t′ ∗u′, then (h.g)s′ = 0. Hence Y is called a semigroup ring of Q
over B. If Q is monoid, then Y is known as a monoid ring. Hence Y ring is characterized by B[Q], here Q
indicates multiplicative semigroup and Y written as

∑
s′∈Q h(s′)s′. Here Y shows B[X , Q], where Q shows

additive semi group. Here isomorphism between additive semigroup Q and multiplicative semigroup
{X s′ : s′ ∈ Q}, Hence h′ ∈ B[X , Q] shows unique canonical form of non zero elements

∑n

k=1 h(s′
k)X

s′k =
hX s′k , where hk is non-zero and s′

k �= (s′)j. The idea of order and degree is not commonly used for
the semigroup rings if we take ordered semigroup Q, i.e., if

∑n

k=1 h(s′
k)X

s′k , s′
1 < s′

2 < s′
3 · · · < s′

n is the
canonical form of the non-zero element h ∈ B[X , Q], then deg(h) = s′

n and ord(h) = s′. Now, if integral
domain is R, then for g, h ∈ B[X , Q], then deg(g + h) = deg(g) + deg(h), ord(g.h) = ord(g) + ord(h).
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If Q is not Z0 and B would be an associative ring, semigroup B[X , Q] is called polynomial ring B[X ].
Of course, B[X ] = B[X , Z0] ⊂ B[X ; 1

2
Z0]. For semigroup ring concepts the Gilmer’s book [22] is better.

Extension of parity check matrix H of C of length 2n − 1 = p − 2 in [ [17]; Section 4]; By following
these parity check matrices, we describe H of C of length 2n − 1 = 2ϕ(p) − 1 = 2p − 3 as follows:

H =
⎛
⎜⎝

(ξ
1
2 )0 (ξ

1
2 )1 · · · (ξ

1
2 )2ϕ(p)−1−1

...
. . .

...
(ξ

1
2 )0 (ξ

1
2 )(2t+1) · · · (ξ

1
2 )(2t+1)(2ϕ(p)−1−1)

⎞
⎟⎠ (24)

1. H can be written in block form H11, H12, H21 and H22 as: H =
(

H11 H12

H21 H22

)
;

H11 =
⎛
⎜⎝

(ξ
1
2 )0 (ξ

1
2 )1 · · · (ξ

1
2 )ϕ(p)−1

...
. . .

...
(ξ

1
2 )0 (ξ

1
2 )(t+1) · · · (ξ

1
2 )(t+1)(ϕ(p)−1)

⎞
⎟⎠; H21 =

⎛
⎜⎝

(ξ
1
2 )0 (ξ

1
2 )2( t

2 )+1 · · · (ξ
1
2 )(ϕ(p)−1)(2( t

2 )+1)

...
. . .

...
(ξ

1
2 )0 (ξ

1
2 )2t+1 · · · (ξ

1
2 )(ϕ(p)−1)(2t+1)

⎞
⎟⎠;

H12 =
⎛
⎜⎝

(ξ
1
2 )ϕ(p) · · · (ξ

1
2 )(2ϕ(p)−1)−1

...
. . .

...
(ξ

1
2 )(t+1)(ϕ(p)) · · · (ξ

1
2 )(t+1)((2ϕ(p)−1)−1)

⎞
⎟⎠ ; H22 =

⎛
⎜⎝

(ξ
1
2 )(ϕ(p))(2( t

2 )+1) · · · (ξ
1
2 )((2ϕ(p)−1)−1)(2( t

2 )+1)

...
. . .

...
(ξ

1
2 )(ϕ(p))(2t+1) · · · (ξ

1
2 )((2ϕ(p)−1)−1)(2t+1)

⎞
⎟⎠;

Here, H11 is equal to H of length n = ϕ(p) = p − 1 as like in Eq. (1).
2. Parity check matrix of n = ϕ(p) = p − 1 length is extended to 2n − 1 = 2(ξ

1
2 )(p) − 1 = 2p − 3

length parity check matrix by adding rows and columns.

4.1 Single Error Correcting Cyclic Codes of Length 2n − 1 = 2ϕ(p) − 1 for QM Weight One

Let ξ
1
2 is the primitive element of H(K)π , p be a prime in Z, π = b0 + b1i + b2j + b3k, p = ππ and

(ξ
1
2 )p−1 = 1. Then, H and G are define as;

H =
(
(ξ

1
2 )0(ξ

1
2 )1 · · · (ξ 1

2 )2ϕ(p)−2
)

(25)

G =
⎛
⎜⎝

(ξ
1
2 )0 1 0 · · · 0
...

. . .
...

(ξ
1
2 )0 0 0 · · · 1

⎞
⎟⎠ (26)

The one QM error-correcting codes of length 2n − 1 = 2ϕ(p) − 1 can be constructed by H.
Then C defined by H in Eq. (25) can correct any QM error of weight one. 1 or −1 are the values
of one quaternion Mannheim errors. For the decoding procedure first step is to find the syndrome
S(r) = Hrtr with the help of H and the received vector r. Then the error value is computed by S(ξ

1
2 )−l,

where l(mod 2ϕ(p) − 1) is a non-negative integer which helps for error locations. Hence, c = r − e is
the corrected codeword.
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Illustration: Let π = 4 + i + j + k, p = 19, 2n − 1 = 2ϕ(p) − 1 = 35 and ξ
1
2 = 2. Then, H, G by

Eqs. (25) and (26) and the primitive element of H(K)π from Tab. 2 respectively;

Table 2: ξ
1
2 = 2 is the root of (z

1
2 )9 + 1

ξ
l
2 Value ξ

l
2 Value ξ

l
2 Value

(ξ
1
2 )0 1 (ξ

1
2 )6 3i + 3j + 3k (ξ

1
2 )12 2i + 2j + 2k

(ξ
1
2 )1 2 (ξ

1
2 )7 −1 + i + j + k (ξ

1
2 )13 3

(ξ
1
2 )2 −i − j − k (ξ

1
2 )8 −2 + 2i + 2j + 2k (ξ

1
2 )14 2 − i − j − k

(ξ
1
2 )3 −2i − 2j − 2k (ξ

1
2 )9 −1 (ξ

1
2 )15 −3i − 3j − 3k

(ξ
1
2 )4 −3 (ξ

1
2 )10 −2 (ξ

1
2 )16 1 − i − j − k

(ξ
1
2 )5 −2 + i + j + k (ξ

1
2 )11 i + j + k (ξ

1
2 )17 2 − 2i − 2j − 2k

H = (
1 2 −i − j − k · · · 1 − i − j − k

)
; G =

⎛
⎜⎝

−1 1 0 · · · 0
...

. . .
...

−1 + i + j + k 0 0 · · · 1

⎞
⎟⎠ ;

r = (1, 0, −1 + i + j + k, 0, 0, · · · , −1)1×35, S(r) = Hrtr = −1 + i + j + k ≡ (ξ
1
2 )7(modπ)

The error location is 7 ≡ 7( mod 35) then, we get error value as S(ξ
1
2 )−7 = 1( mod π).

c = (1, 0, −1 + i + j + k, 0, 0, 0, 0, −1, 0, · · · , −1)1×35. Hctr = O(mod π). Hence c is a corrected
codeword of C.

4.2 Double Error Correcting Cyclic Codes of Length 2n − 1 = 2ϕ(p) − 1 for QM Weight One

Theorem: Let a cyclic code C of length 2n − 1 = 2ϕ(p) − 1 define by H.

H =
(

(ξ
1
2 )0 (ξ

1
2 )1 (ξ

1
2 )2 · · · (ξ

1
2 )2ϕ(p)−2

(ξ
1
2 )0 (ξ

1
2 )2 (ξ

1
2 )4 · · · (ξ

1
2 )4ϕ(p)−4

)
(27)

Then C can correct any error in the form e(x) = ej(z
j
2 ) + ei(z

i
2 ), where 0 ≤ WQM(ej), WQM(ei) ≤ 1.

Proof: Consider double error is occur at two different places l1, l2 in received r and two error vectors
e1, e2 of quaternion mannheim weight as, 0 ≤ wQM(e1), WQM(e2) ≤ 1. First find syndromes by help of
parity check matrix H in Eq. (27) and transpose of received vector r as;

S(r) = Hrtr =
(

s1

s2

)
(modπ) (28)

Now we find a polynomial h(x) for the location of errors as follows:

h(x
1
2 ) = (x

1
2 − ξ

l1
2 )(x

1
2 − ξ

l2
2 ) = x − (ξ

l1
2 + ξ

l2
2 )x

1
2 + (ξ

l1
2 ).(ξ

l2
2 ) = x − s1x

1
2 + η (29)

we get η by syndromes. From s1 = ξ
l1
2 + ξ

l2
2 , s2 = ξ l1 + ξ l2 and η = ξ

l1
2 .ξ

l2
2 . we get

s2
1 − s2 = (ξ

l1
2 + ξ

l2
2 )2 − (ξ l1 + ξ l2) = 2ξ

l1
2 .ξ

l2
2 = 2s (30)

s2
1 − s2

2
= 2η

2
= η(modπ) (31)
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Thus, h(x) lead us to find the location and error values. If ξ
l1
2 and ξ

l2
2 are roots of h(x), then l1(mod

2n − 1) = m1, l2(mod 2n − 1) = m2 are locations of error and error values are e1 = ξ

l1
2

m1
, e2 = ξ

l2
2

m2
. Then

there are possibilities. If both two syndrome s1 and s2 are zeros then no error occurs. If s2
1 = s2 �= 0,

then one error occurs. If s2
1 �= s2 and s1 �= 0, then two error occurs.

Illustration: Let π = 4 + i + j + k, p = 19, 2n − 1 = 2ϕ(p) − 1 = 35 and ξ
1
2 = 2. Then, H by

using Eq. (27) and Tab. 2 respectively; H =
⎛
⎝1 2 · · · 1 − i − j − k

1 −i − j − k · · · 2 − i − j − k

⎞
⎠

2×35

,

r = (1 − i − j − k, 1, −1 + i + j + k, 0, · · · , 0, −1)1×35 S (r) = Hrtr =
(

1
−1

)
=

(
(ξ

1
2 )0

(ξ
1
2 )9

)
(modπ) =(

s1

s2

)
, Both syndromes s1, s2 are non-zeros and s2

1 �= s2 �= 0. Hence two error occurs. By Eq. (31),

η = s2
1−s2

2
= 1(modπ). Hence error polynomial by Eq. (29) is h(x

1
2 ) = x − x

1
2 + 1. The error locator

polynomial h(x
1
2 ) has roots (ξ

1
2 )l1 = (ξ

1
2 )3 and (ξ

1
2 )l2 = (ξ

1
2 )15, so, error locations are 3 and 15 in

received vector r. Hence, error values are el1 = 1 and el2 = 1. c = (1 − i − j − k, 1, −1 + i + j +
k, −1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, · · · , 0, −1)1×35.

Hctr = O(modπ). Hence c is a corrected codeword of C.

4.3 Single Error Correcting Cyclic Codes of Length 2n − 1 = 2ϕ(p) − 1 for QM Weight Two

Theorem: Let ξ
1
2 is the primitive element of H(K)π , π = b0 + b1i + b2j + b3k and p = ππ . Let a

cyclic code C of length 2n − 1 = 2ϕ(p) − 1 = 2p − 3 define by H.

H =
(

(ξ
1
2 )0 (ξ

1
2 )1 (ξ

1
2 )2 · · · (ξ

1
2 )2ϕ(p)−2

(ξ
1
2 )0 (ξ

1
2 )2 (ξ

1
2 )4 · · · (ξ

1
2 )4ϕ(p)−4

)
(32)

then C can correct errors as the form of e(x) = el(x
l
2 ), where 1 ≤ wQM(el) ≤ 2.

Proof: Suppose that (ξ
1
2 )i is error magnitude, 0 ≤ i ≤ 2n − 2 has occurred in location j, where

0 ≤ j ≤ 2n − 2. Let e(x) = (ξ
1
2 )ixj be the error pattern. Then, s1 = (ξ

1
2 )j+i and s2 = (ξ

1
2 )2j+i are

syndromes. Let s1 = (ξ
1
2 )l1 and s2 = (ξ

1
2 )l2 are the basis of sj; j = 1, 2. We have{

s1 = (ξ
1
2 )j+i, 
⇒ j + i ≡ l1(modϕ(p))

s2 = (ξ
1
2 )2j+i, 
⇒ 2j + i ≡ l2(modϕ(p))

(33)

Eq. (33) having unique solution at j = l2 − l1( mod p − 1), i = l1 − j( mod p − 1). Hence, error is
occurred in location (l2 − l1)( mod 2n − 1) with magnitude (ξ

1
2 )i.

Illustration: Let π = 4 + i + j + k, p = 19, n = ϕ(p) = 18 and (ξ
1
2 ) = 2. Then, H is defined by

using Eq. (32) and Tab. 2 respectively; H =
⎛
⎝1 2 · · · 1 − i − j − k

1 −i − j − k · · · 2 − i − j − k

⎞
⎠

2×35

,

r = (1, −1, −1 + i + j + k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0 · · · 0, 0)1×35 ;
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S(r) = Hrtr =
(

3i + 3j + 3k
3i + 3j + 3k

)
=

(
(ξ

1
2 )6

(ξ
1
2 )6

)
(modπ) =

(
s1

s2

)
,

{
s1 = (ξ

1
2 )6, 
⇒ j + i ≡ 6(mod18)

s2 = (ξ
1
2 )6, 
⇒ 2j + i ≡ 6(mod18)

Solve the above system and get error location j = 0 and error magnitude (ξ
1
2 )6 = 3i + 3j + 3k.

e = (
3i + 3j + 3k, 0, 0, · · · 0, 0

)
1×35

r = (1, −1, −1 + i + j + k, 0, 0, 0, −3i − 3j − 3k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0 · · · 0, 0)1×35

Hctr = O(modπ). Hence c is a codeword of cyclic code C.

4.4 Double Error Correcting Cyclic Codes of Length 2n − 1 = 2ϕ(p) − 1 for QM Weight Two

Lemma: Let C be a cyclic code of length 2n − 1 = 2ϕ(p) − 1 define by H as:

H =

⎛
⎜⎜⎜⎝

(ξ
1
2 )0 (ξ

1
2 )1 (ξ

1
2 )2 · · · (ξ

1
2 )2ϕ(p)−2

(ξ
1
2 )0 (ξ

1
2 )2 (ξ

1
2 )4 · · · (ξ

1
2 )4ϕ(p)−4

(ξ
1
2 )0 (ξ

1
2 )3 (ξ

1
2 )6 · · · (ξ

1
2 )6ϕ(p)−6

(ξ
1
2 )0 (ξ

1
2 )4 (ξ

1
2 )8 · · · (ξ

1
2 )8ϕ(p)−8

⎞
⎟⎟⎟⎠ (34)

then,

1. (ξ
1
2 )l2 − (ξ

1
2 )l1 �= 0, where l1, l2 ∈ Z, 0 ≤ l1 < l2 ≤ 2n − 2.

2. S1S3 − S2
2 �= 0, otherwise in received vector only one coordinate is in error.

Proof:

1. Suppose (ξ
1
2 )l2 − (ξ

1
2 )l1 = 0. Then, (ξ

1
2 )l2 = (ξ

1
2 )l1 this implies that (ξ

1
2 )l1−l2 = 1.So, (2n −

1)|(l1 − l2). But 2n − 1 > n − 1 ≥ l1 − l2, a contradiction that the order of (ξ
1
2 ) is 2n − 1.

2. S1.S3 − S2
2 = 0. Then, S1.S3 = S2

2 if and only if (ξ
1
2 )2l1S1x + (ξ

1
2 )2l2S2

1 − (ξ
1
2 )2l2S1x = ((ξ

1
2 )l2 −

(ξ
1
2 )l1)2x2+(ξ

1
2 )2l2S2

1+2(ξ
1
2 )l2((ξ

1
2 )l1−(ξ

1
2 )l2)S1x if and only if ((ξ

1
2 )l1−(ξ

1
2 )l2)2x2+2(ξ

1
2 )l1+l2S1x−

(ξ
1
2 )2l1S1x − (ξ

1
2 )2l2S1x = 0. Therefore, either x = 0 or ((ξ

1
2 )l1 − (ξ

1
2 )l2)2x + 2(ξ

1
2 )l1+l2S1 −

(ξ
1
2 )2l1S1 − (ξ

1
2 )2l2S1 = 0. if x = 0 then it is not possible because ρ l+s �= 0. If ((ξ

1
2 )l1 − (ξ

1
2 )l2)2x+

2(ξ
1
2 )l1+l2S1 − (ξ

1
2 )2l1S1 − (ξ

1
2 )2l2S1 = 0, then x = ((ξ

1
2 )l1 −(ξ

1
2 )l2 )2.S1

((ξ
1
2 )l1 −(ξ

1
2 )l2 )2

= S1. If and only if y = 0.

That is, if and only if (ξ
1
2 )l2+s = 0. This is a contradiction unless in a received vector only one

coordinate is in error. Thus, S1.S3 − S2
2 �= 0. So, two error occurs.

Theorem: Let C be a cyclic code of length 2n − 1 = 2ϕ(p) − 1 defined by H in previous Theorem.

Then error of C can be correct in the form of e(x) = el1
xl1 + el2

xl2 , where 0 ≤ l1 < l2 ≤ 2n − 2
with, 0 ≤ WQM(el1

), WQM(el2
) ≤ 2.
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Proof: Consider el1
�= 0 and el2

�= 0. In Lemma, either el1
= 0 or el2

= 0. So by the help of parity
check matrix there are four syndromes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S1 = el1
(ξ

1
2 )l1 + el2

(ξ
1
2 )l2

S2 = el1
(ξ

1
2 )2l1 + el2

(ξ
1
2 )2l2

S3 = el1
(ξ

1
2 )3l1 + el2

(ξ
1
2 )3l2

S4 = el1
(ξ

1
2 )3l1 + el2

(ξ
1
2 )3l2

(35)

Let u = el1
(ξ

1
2 )l1 and v = el2

(ξ
1
2 )l2 , we get the following linear system of equations⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S1 = u + v

S2 = u(ξ
1
2 )l1 + v(ξ

1
2 )l2

S3 = u(ξ
1
2 )2l1 + v(ξ

1
2 )2l2

S4 = u(ξ
1
2 )3l1 + v(ξ

1
2 )3l2

(36)

Two errors can be correct in cyclic code C if and only if the Eq. (35) has only unique solution.
Since el1

�= 0 and el2
�= 0, then the system has unique solution. By using u + v = S1, then Eq. (34)

becomes,⎧⎪⎪⎨
⎪⎪⎩

((ξ
1
2 )l1 − (ξ

1
2 )l2)u = S2 − (ξ

1
2 )l2S1

((ξ
1
2 )2l1 − (ξ

1
2 )2l2)u = S3 − (ξ

1
2 )2l2S1

((ξ
1
2 )3l1 − (ξ

1
2 )3l2)u = S4 − (ξ

1
2 )3l2S1

(37)

((ξ
1
2 )l1 + (ξ

1
2 )l2)(S2 − (ξ

1
2 )l2S1) = S3 − (ξ

1
2 )2l2S1 (38)

((ξ
1
2 )2l1 + (ξ

1
2 )l1(ξ

1
2 )l2 + (ξ

1
2 )2l2)(S2 − (ξ

1
2 )l2S1) = S4 − (ξ

1
2 )3l2S1 (39)

Consider S = (ξ
1
2 )l1 + (ξ

1
2 )l2 and P = (ξ

1
2 )l1(ξ

1
2 )l2 . Then{

S(S2 − (ξ
1
2 )l2S1) = S3 − (ξ

1
2 )2l2S1

(S2 − P)(S2 − (ξ
1
2 )l2S1) = S4 − (ξ

1
2 )3l2S1

(40)

From Eq. (37), we get P = SS2−S3
S1

, Since S1 �= 0, from Eq. (38) we get

S = S1S4 − S2S3

S1S3 − S2
2

(41)

Let S1S3 − S2
2 �= 0, otherwise in a received vector only one coordinate is in error. Put Eq. (38) in

Eq. (39) we get

P = S2S4 − S2
3

S1S3 − S2
2

(42)

(X
1
2 )2 − S(X

1
2 ) + P = 0 (43)
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is the equation of sum and product of roots and the roots of this equation are x1 = (ξ
1
2 )l1 and x2 =

(ξ
1
2 )l2 , where l1 and l2 are error locations and error values are⎧⎪⎪⎪⎨

⎪⎪⎪⎩
el1

= S2 − (ξ
1
2 )l2S1

(ξ
1
2 )l1((ξ

1
2 )l1 − (ξ

1
2 )l2)

el2
= S2 − (ξ

1
2 )l1S1

(ξ
1
2 )l2((ξ

1
2 )l2 − (ξ

1
2 )l1)

(44)

Illustration: Let π = 4 + i + j + k, p = 19, 2n − 1 = 2ϕ(19) − 1 = 35 and (ξ
1
2 ) = 2. Then, Parity

check matrix H by Eq. (34) and Tab. 2 respectively; H =

⎛
⎜⎜⎜⎜⎜⎝

(ξ
1
2 )0 (ξ

1
2 )1 (ξ

1
2 )2 · · · (ξ

1
2 )34

(ξ
1
2 )0 (ξ

1
2 )2 (ξ

1
2 )4 · · · (ξ

1
2 )68

(ξ
1
2 )0 (ξ

1
2 )3 (ξ

1
2 )6 · · · (ξ

1
2 )102

(ξ
1
2 )0 (ξ

1
2 )4 (ξ

1
2 )8 · · · (ξ

1
2 )136

⎞
⎟⎟⎟⎟⎟⎠ ,

r = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −1, 0, 0, · · · 0)1×35

S (r) = Hrtr =

⎛
⎜⎜⎝

−3i − 3j − 3k
−2 + 2i + 2j + 2k
1
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(
ξ

1
2

)15

(
ξ

1
2

)8

1(
ξ

1
2

)13

⎞
⎟⎟⎟⎟⎟⎟⎠

(modπ) =

⎛
⎜⎜⎝

S1

S2

S3

S4

⎞
⎟⎟⎠ ,

By Eqs. (41) and (42) we get, S = ξ 15 and P = 1. (X
1
2 )2 − (ξ

1
2 )2(X

1
2 ) + P = 0, and roots of this

equation are ξ and ξ 17. Error occurs at position 1 and 17 in the received vector. By using Eq. (44), the
error values are 1 and −1. e = (0, 1, 0, 0, · · · 0, −1)1×35, c = (0, 0, 0, 0, · · · 0, 0)1×35. Hctr = O(modπ).
Hence, c is a corrected codeword of C.

5 Lengths and Code Rates of Cyclic Codes Comparison

In this section, we will discuss the lengths and the code rates of cyclic codes for every prime p. In
[13], Özen et al. have discussed the cyclic codes of length n = p−1

2
for every prime p. According to this

length n = p−1

2
, code rate of the cyclic code will be n−1

n
= p−3

p−1
. Similarly, In [17] Shah et al. have discussed

the cyclic code of length 2n − 1 = p − 2 for every prime p. According to this length 2n − 1 = p − 2,
the code rate of C will be 2n−2

2n−1
= p−3

p−2
, which shown in the table and pictorial depictions given below:

Tab. 3 shows the previous results of lengths and code rates of paper cited [13] and [17]. Which are
given in the last of these papers. And Tab. 4 shows our proposed word according to Tab. 3.

Table 3: Code rate verses different odd primes in [13] and [17]

p [n, n − 1] Code Rate p [2n−1, 2n−2] Code Rate

3 [1, 0] 0.0000 3 [1,0] 0.0000
5 [2, 1] 0.5000 5 [3,2] 0.6667

(Continued)
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Table 3: Continued
p [n, n − 1] Code Rate p [2n−1, 2n−2] Code Rate

7 [3, 2] 0.6667 7 [5, 4] 0.8000
11 [5, 4] 0.8000 11 [9, 8] 0.8889
13 [6, 5] 0.8333 13 [11, 10] 0.9091
17 [8, 7] 0.8750 17 [15, 14] 0.9333
19 [9, 8] 0.8889 19 [17, 16] 0.9412
23 [11, 10] 0.9091 23 [21, 20] 0.9524
29 [14, 13] 0.9286 29 [27, 26] 0.9630

Figures 1, 2, 3 and 4: Code Rate of C of Length n = p−1
2

and 2n − 1 = p − 2 for Primes in [13] and [17]

However, in proposed study by following [13] and [17], the cyclic codes of length n = ϕ(p) = p−1
for every prime p. According to this length n = ϕ(p) = p − 1, code rate of C will be n−1

n
= ϕ(p)−1

ϕ(p)
= p−2

p−1
.

Also, the cyclic codes of length 2n − 1 = 2ϕ(p) − 1 = 2p − 3 for every prime p. According to this
length 2n − 1 = 2ϕ(p) − 1 = 2p − 3, code rate of C will be 2n−2

2n−1
= 2ϕ(p)−2

2ϕ(p)−1
= 2p−4

2p−3
, shown in the table and

pictorial depictions given below;

Table 4: Code rate of cyclic code of lengths n = ϕ(p) and 2n − 1 = 2ϕ (p) − 1 for primes in proposed
study

p [n, n − 1] Code Rate p [2n −
1, 2n − 2]

Code Rate

3 [2,1] 0.5000 3 [3, 2] 0.6667
5 [4,3] 0.7500 5 [7, 6] 0.8571
7 [6, 5] 0.8333 7 [11, 10] 0.9091
11 [10, 9] 0.9000 11 [19, 18] 0.9474
13 [12, 11] 0.9167 13 [23, 22] 0.9565
17 [16, 15] 0.9375 17 [31, 30] 0.9677
19 [18, 17] 0.9444 19 [35, 34] 0.9714
23 [22, 21] 0.9545 23 [43,42] 0.9767
29 [28, 27] 0.9643 29 [55,54] 0.9818
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Figures 5, 6, 7 and 8: Code Rate of Cyclic Code of Lengths n = ϕ(p) and 2n − 1 = 2ϕ (p) − 1 for
Primes in Proposed Study

Mutual comparison of Lengths and Code Rates of the Cyclic Codes of lengths n = p−1
2

, 2n − 1 =
p − 2 with n = ϕ(p) = p − 1 and 2n − 1 = 2ϕ(p) − 1 Lengths and Code Rates of Cyclic Codes as:

Figures 9 and 10: Mutual comparison of proposed work with previous existing works

We observed that if the length of the cyclic codes increases due to prime p, then the code rate and
error correction capability of C will be better.

6 Conclusions

The following are the contributions of this study for the efficacy of the cyclic codes over
Quaternion integers of QM weight. An effective and consistent modified decoding algorithm for the
cyclic codes of lengths n = ϕ(p) and 2n − 1 = 2ϕ(p) − 1 to obtain the error correction capability has
been furnished. The length of cyclic codes increased due to large prime p. For a given prime p, a higher
code rates for cyclic codes of lengths n = ϕ(p) = p − 1 and 2n − 1 = 2p − 3 is achieved as compared to
the code rates of cyclic codes having lengths n = p−1

2
and 2n−1 = p−2. The error correction capability

of the cyclic codes of lengths n = ϕ(p) = p − 1 and 2n − 1 = 2ϕ(p) − 1 = 2p − 3 has been improved
and it is better than the customary case of the cyclic codes of lengths n = p−1

2
and 2n − 1 = p–2.

Furthermore, the decoding procedure on the base of quaternion integers may be extended to the
decoding procedure of octonion integers.

Funding Statement: The authors extend their gratitude to the Deanship of Scientific Research at
King Khalid University for funding this work through research groups program under grant number
R. G. P. 1/85/42.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



1194 CMC, 2022, vol.73, no.1

References
[1] M. Best, “Perfect codes hardly exist,” IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 349–351,

1983.
[2] V. Lint and H. Jacobus, “Nonexistence theorems for perfect error correcting codes,” Computers in Algebra

and Number Theory (Proceedings, New York NY, USA, March 25-26, 1970), SIAM-AMS Proceedings,
American Mathematical Society, vol. 4, pp. 89–95, 1971.

[3] H. J. Conway and N. J. A. Sloane, “Self-dual codes over the integers modulo 4,” Journal of Combinatorial
Theory, Series A, vol. 62, no. 1, pp. 30–45, 1993.

[4] A. Tietavainen, “On the nonexistence of perfect codes over finite fields,” SIAM Journal on Applied
Mathematics, vol. 24, no. 1, pp. 88–96, 1973.

[5] V. A. Zinoviev and V. K. Leontiev, “The nonexistence of perfect codes over Galois fields,” Probl. Control
and Inform. Theory, vol. 2, no. 2, pp. 123–132, 1973.

[6] A. J. Han and H. Morita, “Codes over the ring of integers modulo m,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. 81, no. 10, pp. 2013–2018, 1998.

[7] Tamm and Ulrich, “On perfect integer codes,” in Proc. Int. Symp. on Information Theory IEEE, vol. 9, no.
1, pp. 117–120, 2005.

[8] K. Huber, “Codes over Gaussian integers,” IEEE Transactions on Information Theory, vol. 40, no. 1, pp.
207–216, 1994.

[9] K. Huber, “The MacWilliams theorem for two-dimensional modulo metrics,” Applicable Algebra in
Engineering, Communication and Computing, vol. 8, no. 1, pp. 41–48, 1997.

[10] T. P. D. N. Neto, T. Pires, J. C. Interlando, O. M. Favareto, M. Elia et al., “Lattice constellations and codes
from quadratic number fields,” IEEE Transactions on Information Theory, vol. 47, no. 4, pp. 1514–1527,
2001.

[11] H. Kostadinov, H. Morita and N. Manev, “Derivation on bit error probability of coded QAM using integer
codes,” IEICE TRANSACTIONS on Fundamentals of Electronics Communications and Computer Sciences,
vol. 87, no. 12, pp. 3397–3403, 2004.

[12] D. Andrade, A. Aparecido and R. J. Palazzo, “Linear codes over finite rings,” Trends in Computational and
Applied Mathematics, vol. 6, no. 2, pp. 207–217, 2005.

[13] M. Özen and M. Güzeltepe, “Codes over quaternion integers,” European Journal of Pure and Applied
Mathematics, vol. 3, no. 4, pp. 670–677, 2010.

[14] D. Andrade, A. Aparecido, T. Shah and A. Khan, “Cloud Goppa codes through generalized polynomials
and its decoding principle,” International Journal of Applied Mathematics, vol. 23, no. 3, pp. 517–526, 2010.

[15] D. Andrade, A. Aparecido, T. Shah and A. Khan, “A note on linear codes over semigroup rings,” TEMA
(São Carlos), vol. 12, no. 2, pp. 79–89, 2011.

[16] T. Shah, A. Khan and A. A. Andrade, “Encoding through generalized polynomial codes,” Computational
& Applied Mathematics, vol. 30, no. 2, pp. 349–366, 2011.

[17] T. Shah, A. Khan and A. A. D. Andrade, “Constructions of codes through the semigroup ring B [X; 122Z0]
and encoding,” Computers & Mathematics with Applications, vol. 62, no. 4, pp. 1645–1654, 2011.

[18] M. Özen and M. Güzeltepe, “Cyclic codes over some finite quaternion integer rings,”Journal of the Franklin
Institute, vol. 348, no. 7, pp. 1312–1317, 2011.

[19] M. Güzeltepe and O. Heden, “Perfect Mannheim, Lipschitz and Hurwitz weight codes,” Mathematical
Communications, vol. 19, no. 2, pp. 253–276, 2014.

[20] T. Shah and S. S. Rasool, “On codes over quaternion integers,” Applicable Algebra in Engineering,
Communication and Computing, vol. 24, no. 6, pp. 477–496, 2013.

[21] G. F. Davidoff, P. Sarnak and A. Valette, “Elementary number theory, and Ramanujan graphs,” Cambridge
University Press, vol. 55, pp. 45–80, 2003.

[22] R. Gilmer, “Commutative semigroup rings,” University of Chicago Press, Chicago, London, vol. 22, no. 1,
pp. 63–129, 1984.


	Quaternion Integers Based Higher Length Cyclic Codes and Their Decoding Algorithm
	1 Introduction
	2 Preliminaries
	3 Error Correction of Cyclic Codes of Length <0:inline-formula 0:id="ieqn-112" ><0:alternatives ><0:inline-graphic 4:href="ieqn-112.tif" ></0:inline-graphic> n=varphi p</0:alternatives> for QM Weights One and Two
	4 Parity Check Matrix Extensions of <0:inline-formula 0:id="ieqn-373" ><0:alternatives ><0:inline-graphic 4:href="ieqn-373.tif" ></0:inline-graphic> n=varphi p</0:alternatives> Length to <0:inline-formula 0:id="ieqn-374" ><0:alternatives ><0:inline-graphic 4:href="ieqn-374.tif" ></0:inline-graphic> 2n-1=2varphi p  -1</0:alternatives> Length Cyclic Codes and Error Correction of these Codes for QM Weight One and Two through Monoid Rings
	5 Lengths and Code Rates of Cyclic Codes Comparison
	6 Conclusions


