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Abstract: Gliomas are the most aggressive brain tumors caused by the
abnormal growth of brain tissues. The life expectancy of patients diagnosed
with gliomas decreases exponentially. Most gliomas are diagnosed in later
stages, resulting in imminent death. On average, patients do not survive 14
months after diagnosis. The only way to minimize the impact of this inevitable
disease is through early diagnosis. The Magnetic Resonance Imaging (MRI)
scans, because of their better tissue contrast, are most frequently used to assess
the brain tissues. The manual classification of MRI scans takes a reasonable
amount of time to classify brain tumors. Besides this, dealing with MRI
scans manually is also cumbersome, thus affects the classification accuracy.
To eradicate this problem, researchers have come up with automatic and semi-
automatic methods that help in the automation of brain tumor classification
task. Although, many techniques have been devised to address this issue, the
existing methods still struggle to characterize the enhancing region. This is
because of low variance in enhancing region which give poor contrast in
MRI scans. In this study, we propose a novel deep learning based method
consisting of a series of steps, namely: data pre-processing, patch extraction,
patch pre-processing, and a deep learning model with tuned hyper-parameters
to classify all types of gliomas with a focus on enhancing region. Our trained
model achieved better results for all glioma classes including the enhancing
region. The improved performance of our technique can be attributed to
several factors. Firstly, the non-local mean filter in the pre-processing step,
improved the image detail while removing irrelevant noise. Secondly, the
architecture we employ can capture the non-linearity of all classes including
the enhancing region. Overall, the segmentation scores achieved on the Dice
Similarity Coefficient (DSC) metric for normal, necrosis, edema, enhancing
and non-enhancing tumor classes are 0.95, 0.97, 0.91, 0.93, 0.95; respectively.
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1 Introduction

Tumors are mainly caused because of excessive and abnormal growth of tissues. This abnormal
growth later takes the shape of a mass. Similarly, brain tumors are caused due to the abnormal growth
of brain tissues [1]. Gliomas are types of brain tumors that start from the brain and eventually spread
towards the spinal cord. These are the most aggressive kind of brain tumors [2], resulting in many
deaths worldwide. The famous types of gliomas are astrocytomas, brain stem gliomas, ependymomas,
mixed gliomas, oligodendrogliomas, and Optic pathway gliomas. These gliomas can be graded into
Hight Grade Gliomas (HGG) and Low-Grade Gliomas (LGG) with HGG being extremely belligerent
and infiltrative whereas LGG being less belligerent and non-infiltrative [2,3]. Common symptoms of
gliomas are headaches, seizures, personality changes, weakness in the arms, face or legs numbness,
problems with speech, nausea, vomiting, vision loss, and dizziness. Diagnosis of gliomas can be done
by medical history and examination, brain scans (MRI and CT), and biopsy. Brain tumors are life-
taking diseases. On average patients only survive 14 months after diagnosis [4]. The main reason for the
deaths of patients is late diagnosis. The aim of this research is solely to save as many lives as possible by
developing an automatic classification method that would produce timely results with high accuracy.

This research will help doctors to plan the treatment of patients without waiting too long for the
MRI scans to be verified by oncologists regarding the tumor localization. It will also help surgeons
during the surgery to check the location of tumors instantly before removing the tumors. Follow-up
care for cancer can be done by checking if the tumor has regrown after surgery, without waiting for
MRI scans to be assessed by oncologists. In a nutshell, this research is going to help save the lives of
patients by doing an early diagnosis so that proper treatment can be started in the early stages of cancer
and mortality rates could be reduced. MRI (Magnetic Resonance Imaging) scans are mostly used for
the diagnosis of brain tumors as they provide 3-dimensional views of a human brain [2]. Oncologists
asses these MRI scans by manually classifying tumors. But due to the structural complexity of MRI
scans the task of identification of gliomas are very time-consuming. Manually speeding up this process
is usually at the expense of inaccurate results [2]. In order to speed up the process of classification
and produce highly accurate results research communities are working to develop automatic or semi-
automatic methods for classification of gliomas [2,5]. But there are number of challenges to accomplish
this task due to variable shape, size, and location of tumor. These tumors also disturb the appearance of
surrounding tissues as well which makes classification very hard. In addition, MRI scans also possesses
problems such as intensity inhomogeneity [6] and different intensities among the same sequences of
scans [7]. With all these challenges, the enhancing tumor class is different from the other classes as in
the MRI scans the enhancing class contrast is very low as these abnormalities are in their initial growth
phase which makes them appear dark in MRI scans and eventually makes them harder to detect.

Over the past few years, many proposals have come up and have produced high classification
results on BRATS 2013 and BRATS 2015 [5]. One of the best works is done by Sergio Pereira and
Pinto [8]. In which they have been able to produce high classification accuracy for all tumor classes
except for the enhancing tumor class that lies around 77% on the small validation dataset of BRATS
2013 dataset. These results further degrade on the large dataset of BRATS 2015. The main goal of this
research work is to propose an automatic classification method that can enhance the classification
accuracy of enhancing tumor class.

Since winning the ImageNet challenge in 2012 [9] deep learning has solved many complex image
recognition and computer vision problems. So, in order to overcome this problem, we are employing
deep learning as our classification model and using image pre-processing techniques for the removal
of noise from MRI scans. The novelty of our work is employing unique pre-processing on MRI scans,
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patch creation method, construction of deep learning architecture, and selection of well-tuned hyper-
parameters. We experimented by pre-processing MRI scans and tuned the deep learning classifier until
the right combination of hyper-parameters was achieved. After hyper-parameters were tuned and MRI
scans were pre-processed, we ran the experiments in 10-Fold cross-validation settings. We achieved
remarkable results in terms of dice similarity score for all classes including the enhancing region class
when benchmarked on BRATS 2015 dataset.

To automate the process of brain tumor classification, researchers have employed several methods.
Among these methods, the machine learning-based methods stand out. These methods are supervised
in nature and can be broadly classified as manual feature-based methods and automatic feature-based
methods. Manual features can be extracted through generalization, transformation, or other similar
techniques which are applied to the raw pixel to form features vctors. Many feature extraction methods
have been employed by researchers for example: encoding context [10–12], gradients [10,13], first-
order, and fractal-based texture [10,12–15], physical properties [16] and brain symmetry [10,13,16].
Using these feature extraction methods authors have employed supervised learning models for
classification like Condition Random Field (CRF) [10,13,17,18], and Support Vector Machines (SVM)
[17,18]. But the best results were produced by Random Forests (RF) as Tustison et al. [16] employed
RF in the form of a two-stage segmentation method in which they gave the output of the first classifier
as input to the second classifier in order to improve the classification accuracy. Whereas, Geremia et al.
[19] presented hierarchical adaptive RF scaling from rough to finer scales of textures. Meier et al. [20]
employed semi-supervised RF in their work. Until now, manual feature extraction techniques with the
combination of RF or SVM were producing good classification results, but they were not impressive to
be used for clinical practices [16–20]. The prime reason was that brain tissue has a highly variable and
complex structure. Due to this, it was hard to produce high-quality features that would make it easy
for the classifiers to label data accurately. Also, some methods produced impressive results on labeled
data for all tumors classes except for enhancing tumor class. This was typical because enhancing tumor
cells are in the early phases of growth and mostly hard to detect. Eventually, automated feature-based
methods (i.e., the second class of methods most prominently deep learning networks), were introduced
to fill this gap of feature engineering [21–23].

Deep learning is a supervised learning algorithm that carries out automatic feature extraction
without the intervention of experts. Deep learning is also known as end-to-end learning because
raw data is given as input to the model and no external intervention is required for training. Once
raw data is given to the model it then extracts features automatically from the raw data and on
basis of these extracted features, the model classifies data into the given classes. Deep Learning
has been winning computer vision and images recognition challenges since 2012 [9]. Due to this
breakthrough deep learning has been employed for the brain tumor classification. Since deep learning
automatically crafts feature so the trend has now shifted towards the creation of architectures instead
of handcrafted features. Recently there have been many proposals of deep learning in the field of
brain tumor classification [24–29]. Zikic et al., [24] used shallow CNN with standard 2D multi-channel
convolutions. The CNN operated in the manner of the sliding window over the 3D space by taking a
patch at each point. BRATS 2013 dataset was used for training. For pre-processing, inhomogeneity
correction was applied to each channel of the dataset. After that median of each channel was set to zero
and images were down sampled by a factor of 2. Stochastic gradient descent with momentum was used
as an optimizer. The 2-Fold validation was applied to the dataset. The inputs used for validation were
also down sampled by a factor of 2 before giving them to the model for prediction. Scores reported
for the complete tumor class were good. Whereas for enhancing tumor and core regions the scores
were moderate. The model proposed by Zikic outperformed RF classifier. Urban et al. [25] presented
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a novel CNN-based architecture that used 3D filters and took inputs in the form of 3D voxels. The
3D CNN model is comprised of three spatial dimensions and one dimension for the channel. Thus, a
convolutional layer have to deal with 4-dimensional data at a time. The network consists of multiple
convolutional layers on which the filters are convolved over the inputs. Gradient descent was being
used as an optimization function and hyperbolic tangent function was3 being used as an activation
function in the CNN model. To speed up the training process Urban employed the use of GPUs. Also,
during the training synthetic data was left out because they don’t have variable intensities and have few
artifacts among them. For pre-processing of inputs mean CSF was applied. The proposed pipeline was
ranked second on BRATS 2014 challenge but despite this DSC score for enhancing tumor class was
moderate. Davy et al. [27] proposed a pipeline in which he employed a two-pathway CNN network in
which the main target was the smaller and larger context of the pixels. This model was trained on the
BRATS 2013 dataset. The inputs of the model were in the form of 2D patches extracted from the axial
plane and the patch size was 32 × 32. The N4ITK filter was applied only on T1 and T1c modalities to
remove intensity inhomogeneity. Zero mean and unit variance were applied to each modality of MRI.

Since training of 3D convolutional neural networks is computationally very expensive authors
have opted to use 2D filters [26–29]. Havaei et al. [26] used Deep Neural Network (DNN) in their
method. Segmentation was done slice by slice due to a lack of resolution in the third dimension. These
2D slices were from the axial plane. The DNN model was trained by 2D patches. Havaei et al. proposed
two DNN architectures: Two-pathway architecture and Cascaded architectures. The Two-pathway
architecture had two streams one with larger receptive fields and the other with smaller receptive fields.
The motivation was to have a larger and smaller context of visual details. Later these two paths were
concatenated and the output is given by the softmax layer. The cascaded architecture was employed
because most of the CNN’s did not give accurate segmentation at the boundaries of two or more
classes. The cascaded architecture concatenates the output of the first CNN with the input slices and
this concatenated stream was given as input to the second CNN architecture. The concatenation was
done in three ways: input concatenation, local pathway concatenation, and pre-output concatenation.
The models were evaluated on dice, specificity, and sensitivity metrics. The best results were achieved
by input cascade CNN. Classification scores for complete tumors were excellent but was moderate for
core and enhancing tumors. Lyksborg et al. [27], carried out the method in four steps: Pre-processing,
segmentation of the whole tumor, refining of segmentation, and segmentation of sub-regions from
the whole tumor. Pre-processing was done by applying the N4 method that overcomes the problem
of intensity inhomogeneity. For segmentation of whole tumor ensemble of 3 convolutional neural
networks were employed each was given the same inputs but with different planes i.e., axial, coronal,
and sagittal. Refining of segmentation was done by using cellular automata which helped to smooth
the edges at boundaries. For the segmentation of the sub-regions of the tumor, an ensemble of 3 CNN’s
was used. In which the same sequence of inputs was given but with axial, coronal, and sagittal planes to
each CNN. The models were evaluated by dice, positive predictive, and sensitivity metrics. The scores
achieved for whole, core, and enhancing tumors were moderate.

Rao et al. [28], used BRATS 2015 dataset for training. The pipeline proposed by Rao employed
four different CNN classifiers to train four modalities of MRI and the output of these four classifiers
were concatenated and given to an RF classifier as an input. The inputs were pre-processed using the
ITK library on patches. The patches were prepared from a naive histogram classification algorithm
which extracted Cerebral Spinal Fluid (CSF) patches. The patch size was 32 × 32. The activation
function used in the CNN model was Relu and the loss function was stochastic gradient descent.
Dvorak et al. [30] developed a brain tumor segmentation pipeline on BRATS 2015 dataset. In his
proposed pipeline he divided the problem into three sub-problems. These sub-problems consisted of
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classification of the whole tumor, core tumor, and enhancing tumor. Each sub-problem was a binary
class classification problem. To carry out training, Dvorak created a label dictionary used for the
binary classification in all three sub-problems. The model used for classification was CNN which had
convolution and pooling layers in alternating order. The filter was 5 × 5 and 24 convolutional filters
were used. The 2D slice was given as input to the model. For pre-processing N4 bias field correction
was applied. For normalization of image intensities, average intensity and the standard deviation were
applied. The pipeline performed very well for all the tumor classes except for the enhancing tumor
class. For a large image dataset, the authors in [31] formulized the effect of convolutional layers on the
performance of CNN. The authors concluded that a significant improvement on the configurations
can be achieved with the network depth of 16 to 19 weighted layers.

The proposed work in this paper is inspired by the work of Pereira et al. [8]. In their work, first
pre-processing was applied to correct bias field distortion using the N4ITK method and to overcome
intensity inhomogeneity across MRI scans, intensity normalization method proposed by Nyul et al.
was applied. Next 2D patches were extracted from all four modalities. Later they were pre-processed by
applying zero mean and unit variance. Deeper CNN models with smaller kernel sizes were used so that
more convolutional layers can be stacked without over-fitting the training data. Secondly more layers
were stacked to increase the number of weights so that more information can be stored in the form
of weights. Data augmentation was also done to avoid over-fitting. The model was evaluated by Dice
Similarity Coefficient (DSC), Positive Predictive Value (PPV), and sensitivity. The results achieved
were excellent and Pereira et al. won the BRATS 2013 challenge. Despite all this, the classification
accuracy of enhancing tumor region was mediocre. The prime reason for low classification scores for
enhancing tumor class is due to the low contrast as these tumors are in the early phases of growth and
difficult for the classifiers to identify them.

2 Proposed Methodology

Brain tumors are the most fatal tumor that spread rapidly across the brain tissues. In order to
diagnose brain tumour in early stages, in this work we are proposing an automatic segmentation
method that will be able to help oncologists classify brain tumors into five different classes to facilitate
the treatment. An overview of the proposed method is shown in Fig. 1 below. The method consists
of five steps namely: MRI Pre-Processing, Patch Creation, Patch Pre-Processing, Weights Tuning,
Classification Model.

Figure 1: Proposed method for classification of enhancing tumor regions
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2.1 MRI Pre-Processing

The MRI scans usually have inherited noise due to the biased distortion field which cause the
intensity variation in tissues across an image. The CNN’s models are normally noise-tolerant up to
a certain level. Experiments have proved that if pre-processed data is provided to these models, they
perform exceptionally well as compared to the un-processed data. The Probability Density Function
(PDF) Of 2D MRI slices indicate the presence of Gaussian noise. So, in order to remove the Gaussian
noise, we have employed the non-local means filter [32], as it performs very well for the Gaussian
noise removal and preserve the edge information, which is very crucial for the segmentation task.
Conventional local mean filters take the mean of pixels within the window. Whereas in non-local
mean filter, the pixels having similar intensity values within a defined window are used for the mean
calculation. The mathematical form of non-local mean filter [32] is given as:

u(p) = 1
C(p)

∫
�

v(q)f (p, q)dq. (1)

C(p) = ∫
�

f (p, q)dq. (2)

where � is the image size, u(p) is the filtered value at point p of an image. Whereas v(q) is the original
value at point q. The weighted function is given as f(p, q) and C(p) is the normalizing factor.

2.2 Patch Creation

Once 2D slices of all modalities are pre-processed and noise is removed, 2D patches are created
which are then used for training the CNN model. In order to create these patches, we used the 2D
slices of all 4 modalities, namely T1, T1c, T2, FLAIR along with the ground truth. Next, we randomly
search for the pixel with the value close to the ground truth value of the class. Once that ground truth
value is found we crop a region around that pixel to extract the patch. The cropped region has the same
size as of the ground truth patch. In our case, we used a moderate 31 × 31 patch size to accommodate
variation in the tumor lesions. After region cropping as a patch, it is ensured that it must contain at
least 50% of pixels of that class for which the patch is being created otherwise discard the patch and
create a new one until the above condition is met.

2.3 Patch Pre-Processing

The next step in the proposed methodology is pre-processing the created patches. The main goal of
patch pre-processing is to achieve convergence faster in the training process. For that, we normalized
the patches with zero mean and unit variance. As a result, the intensity values of all the patches lie
between −1 and 1 which helps the CNN to converge faster. The patch normalization is done using the
following equation.

x̂ = x − μ

σ
(3)

where μ, σ represents the mean and standard deviation of patch x, respectively.

The pre-processed patches x̂ are then used to train the CNN model.

2.4 Training Weights

The training weights are useful in boosting the prediction accuracy of the CNN model. They are
used to help in predicting the class labels. In the proposed method, the CNN model is trained using 2D
patches along with the associated ground truth patch. After training, the 10-fold cross-validation is



CMC, 2022, vol.73, no.1 1007

applied to check the model performance on different cases. Once training is complete, the best trained
weights are then saved. These trained weights are then used in step 5 of the proposed method to predict
the class labels for each patch.

2.5 Model

The class labels are predicted using a CNN model. The CNN model have been producing state-
of-the-art results since their breakthrough in ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [22]. The CNN’s are very similar to simple neural networks as they have neurons that are
given inputs and in return, they produce some output. These neurons have trainable weights and biases.
In CNN, there are convolutional layers in which inputs are convolved using a kernel, and as results
feature maps are produced. In the training phase, the weights of kernels are adjusted when the error
is back-propagated. Since connections are made sparsely in convolutional layers so there are fewer
weights to train as compared to fully connected layers where dense connections are made. The purpose
of kernels is to extract features from data such as edges or blotch of some colors. Variable size of
kernels can be used, depending on the neighborhood and the amount of information required to learn
[24,33,34].

In practice, convolutional layers are stacked on each other. Each convolutional layer extract
features maps that gets abstract on layer after layer. A simple CNN contains convolutional layers, dense
layers (FC layers), pooling layers, softmax layer, activation functions, loss function, and regularization
parameters.

1) Initialization: Weight initialization is used to achieve convergence and to propagate signal
through the network. For the initialization of weights, we use Xavier Initialization [35], given
below.

Var (w) = 2
nin + nout

(4)

where nin and nout are the number of inputs and outputs of a layer, respectively . The Xavier initialization
[35] helps in adjusting weights for signals propagating in the network.

2) Activation Function: The activation function in CNN produce an output of the node when
it given some input. In our model, we have used a rectifier linear unit (ReLU) which performs
better than traditional sigmoid or hyperbolic tangent functions. ReLU is defined as:

f (x) = max(0, x) (5)

3) Pooling: Pooling is used for down-sampling in a CNN to reduce the computational load. In
the pooling, we can use average pooling [9] or max-pooling depending on our needs. Pooling
should not be used in starting layers as important information might be lost. In our model, we
are using max pooling.
4) Regularization: Regularization is used in CNN during training to avoid over-fitting. In order
to generalize overall training examples, we used regularization techniques to discard a certain
amount of signal. In our model, we are using dropout [36,37] in dense and convolutional layers.
5) Architecture: Combination of convolutional, pooling, fully connected and softmax layers
form a convolutional neural network. The table below shows the arrangement of layers and
their configurations in order to build the proposed model for improving the class accuracy of
enhancing the tumor region are shown is the Tab. 1 below.



1008 CMC, 2022, vol.73, no.1

Table 1: Proposed CNN model for improving the classification accuracy of enhancing tumor region

Sr No. Model BraTS
dataset

Whole Core Enhancing

1 Proposed Model 2015 0.926 0.892 0.820
2 Proposed Model + Pre-Processing 2015 0.942 0.913 0.862
3 Proposed Method 2018 0.914 0.907 0.781
4 Proposed Model + Pre-Processing 2018 0.935 0.932 0.826
5 Proposed Method 2019 0.944 0.943 0.8533
6 Proposed Model + Pre-Processing 2019 0.939 0.936 0.8394

3) Loss Function: Loss function calculates the difference between predicted value and the actual
value (ground truth). We are using categorical cross-entropy as loss function for our model.

H =
∑

jεVoxels

∑

kεClasses

cj,k log(ĉj,k) (6)

Here ĉ is probabilistic predictions after softmax and c is the target value.

5) Model Output: Finally, once the input patch is processed by the deep learning model,
the class labels are produced from one of the five classes namely: normal, necrosis, edema,
enhancing, and non-enhancing. Each class has a score between 0 and 1. The class having score
higher than 0.5 is considered a positive prediction otherwise it is a negative prediction. The
model can predict multiple labels at the same time.

3 Experimental Results

In this section, we are presenting an insight into the dataset and study the significance of
the proposed method by experimental evaluation. First, we discuss the configurations and hyper-
parameters that are required for setting up the experiment. Later, we are going to talk about the metrics
used to evaluate the performance of our classification model. Lastly, we will explain the results of our
experiments in detail.

A. Dataset

The experiments are conducted on the BRATS 2015 training database [5,38]. BRATS dataset has
both real patient data and synthetic data along with their ground truth. The dataset is divided into two
parts Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG) with LGG being less aggressive
than HGG. There are 220 samples of HGG and 54 samples of LGG. Each sample of the patient has
four modalities namely T1, T1 Contrast (T1c), T2, and T2 FLAIR. In T1 modality, tissues with high-
fat content appear bright and compartments filled with water appear dark. In T1c modality has high
contrast in comparison to T1 modality other than that both modalities are similar. In T2 modality,
compartments filled with water appear bright and high-fat content appears dark. Whereas, T2 FLAIR
is similar to T2, but with comparatively longer Echo Time (TE) and Repetition Time (TR). First, we
conduct experiments on HGG because samples of necrosis and enhancing tumor are small in the LGG
dataset. Figs. 2a–2d gives a visual of all four MRI modalities.
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Figure 2: Imaging modalities in BRATS 2015 dataset

B. Setup

In order to replicate the experiment, the hyper-parameters setting of the model are given in Tab. 2.
For training the model we extracted 125, 000 patches from the HGG samples of the BRATS dataset.
The CNN model was developed using Keras [39] along with Tensorflow-GPU [40] back-end.

Table 2: Hyper-parameters of the proposed method

Stage Hyper-parameters Value

Initialization bias 0.1
weights Xavier

ReLU α -
Dropout p 0.1–0.3
Training epochs 11

v 0.9
∈ 0.01
batch 25

C. Example

In this section we are presenting an example of our proposed method. We will visualize the output
of each step: 2D Slice Extraction, MRI Pre-Processing, 2D Patch Extraction, and 2D Patch Pre-
Processing. The dataset used in this example is from BRATS 2015.

1) 2D Slice Extraction: The 2D slices are extracted from the volumes of all four MRI modalities.
Each 3D volume contains 155 slices. The extracted 2D slices can be seen in Fig. 3 along with
their ground truth.

2) MRI Pre-Processing: The histograms of the 2D MRI slices of all 4 modalities indicate the
presence of Gaussian noise. This Gaussian noise is mainly due to the intensity inhomogeneity
problem in MRI scans. We have applied the non-local means filter on the 2D MRI slices. The
denoising effect of non-local means filter can be seen in Fig. 4.

3) 2D Patch Extraction: We extracted equal number of patches for each tumor classes. The patches
of each tumor class can be seen in Fig. 5. These patches are then used for the CNN model
training.
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4) 2D Patch Pre-Processing: The extracted patches are normalized so that the CNN classifier can
converge faster and training process can speed up. For normalization of patches, we applied
zero mean and unit variance to patches.

Figure 3: 2D slices extracted from MRI volume

Figure 4: 2D slices of T1, T1c, T2 and T2 flair after non-local means filter is employed for denoising

D. Evaluation

Once the training phase is completed next comes the phase of evaluating the performance of the model.
In order to do that the model needs to be evaluated on certain metrics. Accuracy alone cannot be used
to compute a model’s performance as it has its own shortcomings. For evaluating our trained model,
we used Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), Sensitivity, Negative
Predictive Value (NPV), False Positive Rate (FPR), Recall and F-1 score. A brief introduction to these
metrics is given below. Where True Positive (TP) is an outcome when the model correctly predicts the
positive class. True Negative (TN) is when the model correctly predicts the negative class. False Positive
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(FP) is when the model incorrectly predicts the positive class. False Negative (FN) is when the model
incorrectly predicts the negative class.

Figure 5: Extracted 2D patches of normal, necrosis, edema, enhancing and non-enhancing tumor class

1) Dice Similarity Coefficient (DSC): This is used for comparison between two samples, given as

DCS = 2TP
2TP + FP + FN

(7)

2) Positive Predictive Value (PPV) or Precision: It is the proportion of cases correctly identified
as belonging to class c among all cases in which the classifier claims that they belong to class c
given as:

PPV = TP
TP + FP

(8)

3) Sensitivity: Sensitivity is the measure to evaluate actual positives identified as positive, given
as:

Sensitivity = TP
TP + FN

(9)

4) Negative Predictive Value (NPV): It is the probability that the samples truly do not have
disease, given as:

NPV = TN
FN + TN

(10)

5) False Positive Rate (FPR): It is ratio between negative events wrongly categorized as positive;
given by :

FPR = FP
FP + TN

(11)

6) Recall: Recall is the proportion of cases correctly identified as belonging to class c among all
cases that truly belong to class c given as:
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Recall = TP
TP + FN

(12)

7) F-1 Score: F1-Score is the harmonic average of the precision and recall, where an F1 score
reaches its best value at 1 (perfect precision and recall) and worst at 0 which is given as:

F1 = 2.
Precsion.Recall

Precision + Recall
(13)

E. Results

In this section, we are going to analyze the effect of key components on the experiment and discuss
the acquired results. BRATS is a multi-class MRI dataset. We have employed the patch wise training
for the CNN model instead of training the whole MRI scan. A comparison of accuracy and number
of epochs for the training phase is presented in Fig. 6. To report the accuracy scores, we have trained
the model for 12 epochs. As we can see, from the 1st epoch the training accuracy is in low 80’s whereas
the validation accuracy is in the high 80’s. After the 5th epoch, we can see an increase in training and
validation accuracy until the mid-90’s. From the 5th epoch onwards the trend of validation and training
accuracy tends to get static with no further improvements. So, after the 12th epoch, we stop the model
training as global minima are achieved and we do not want our model to over-fit the training data.

Figure 6: Trend of accuracy during 12 epochs of training

Now to check the loss trend during the training phase, we have trained the model for 12 epochs
and the results are plotted in Fig. 7. We see that training loss starts at 0.55 and drops gradually until
the 2nd epoch. After the 2nd epoch, the training loss keeps on decreasing slowly till 12th epoch and
then training is stopped. Validation loss starts from 0.35 and gradually drops till the 2nd epoch. After
the 2nd epoch validation loss sluggishly decreases to 0.19. After the 12th epoch, we stop training in
order to prevent classifier from over-fitting training data. In Fig. 8, we present the classification report
on metrics namely: Precision, Recall, and F-1 Score; on the x-axis and the tumor classes. The scores
for enhancing tumor class are 0.94, 0.94, 0.94 for Precision, Recall and F1-Score; respectively. We
have acquired impressive results for enhancing tumor class along with high Precision, Recall and F-1
Score for all the remaining classes as well. The obtained scores by the proposed method range between
0.91–0.98, which is in the high range for tumor classification.
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Figure 7: Trend of loss during 12 epochs of training

Figure 8: Classification report of proposed model on precision, recall and F1-score

It can be seen from the results shown in Figs. 6–8 that the trained model is performing very well
on validation data but in order to examine predictive performance of the classifier new data or unseen
examples of data needs to be given.

In order to check this, we employed K-Fold Cross-validation. The K-Fold cross-validation works
as K-1 samples are used for training and the remaining 1 sample is used for validation. This process
is repeated K times with each sample being used once as validation data. In this experiment, we used
10-Fold cross-validation. The DSC is used for comparison of the similarity between two samples. The
performance of our proposed method on the DSC metric can be witnessed by looking at Tab. 3. In
the table, we can see the average DSC score for all tumor classes on 10-Folds validation is 0.94. The
average DSC score for enhancing tumor over the 10-Folds of validation is 0.93.

The sensitivity metric is used to check if the actual positives are identified as positive. In Tab. 3
we report the sensitivity value achieved by the proposed method. The average sensitivity score for all
tumor classes is 0.94 over 10-Folds of validation. Whereas the average sensitivity score for enhancing
tumor class is 0.92.
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Table 3: Result produced by our proposed method on the BRATS 2015 dataset

Class DSC PPV Sensitivity NPV FPR

Enhancing Tumor 0.934 0.939 0.928 0.982 0.015
All Tumor Classes 0.945 0.943 0.946 0.987 0.014

Similarly, in Tab. 3 we also presented the performance of our proposed CNN model on the Positive
Predictive Value (PPV) metric. The purpose of the PPV metric is to check that the model predicts the
true positives as positives. We can see that for all tumor classes the average PPV score is 0.94 for
the 10-Folds of validation. For enhancing tumor class average PPV scores is 0.93 during 10-Folds of
validation. The difference in the value is due to the variation in the sample examples.

Also, Tab. 3 shows the trend of Negative Predictive Value (NPV) over the 10 folds of cross
validation. The purpose of NPV is to evaluate how accurately classifier can predict negative classes.
We can see that average NPV scores remain in excess of 0.98 for all the classes. Our main objective was
to increase the performance of enhancing tumor class and by looking at the table we observe that the
scores for enhancing tumor class are very consistent as average NPV score stays around 0.98. Next,
we look at the False Positive Rate (FPR) trend. The purpose of FPR is to check the percentage of false
labels assigned to a sample during the testing phase. In Tab. 3 we can see that the FPR score is low for
all tumor classes. The average score lies around 0.014. For enhancing tumor class, the average score
remains around 0.01517 through entire 10 folds of validations.

4 Discussion

The main goal of this work is to devise an automatic classification method for the enhancing
tumor class, with improved accuracy. Also, the method should be able to achieve higher accuracies for
all the other tumor classes as well. This is a challenging task due to the complex symmetry and variable
shape of brain structure. Secondly, the enhancing tumor class has a low classification accuracy due to
the fact that these tumors are in their initial phases of growth and appear dark on MRI which makes
them difficult to identify.

In the proposed solution we have improved the classification accuracy for enhancing tumor class.
This was mainly achieved by applying a pipeline of pre-processing, a customized CNN classifier
followed by the post processing. We observed that the PDF of MRI scans possess Gaussian noise and
in order to remove that we applied non-local mean filters [32]. After MRI was pre-processed, we then
created 2D slices from the 3D volumes of MRI. The reason for using 2D slices was because training
a model with 3D voxels is computationally very expensive. The extracted patches were from the axial
plane. Once the 2D patches were created they were then pre-processed to normalize to achieve faster
convergence during the training of CNN model. Last, the pre-processed patch was given as input to
the model which in return predicted the class labels for the given patch.

For training the model we did MRI pre-processing, patch extraction, patch pre-processing and
tuning of training weights for CNN model. The model was trained for 12epochs and 10-fold cross-
validation was applied to check CNN model performance on easy and hard examples. Once 10-folds
of cross-validation was completed the best weights were saved and used in the model for prediction
of class labels. Once training of the model is completed and model is predicting class labels. The next
step was evaluating the performance of CNN model. For evaluation accuracy alone cannot be used
as it comes with its own shortcomings. Due to this reason, we have used Dice Similarity Coefficient
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(DSC), Specificity, Negative Predictive Value (NPV), False Positive Rate (FPR), Precision, Recall, and
F-1 Score to evaluate the performance of the CNN model. The reported scores for all the metrics that
are used to evaluate the model were not only impressive for enhancing tumor class but also for all the
other tumor classes. The problem of classification accuracy for enhancing tumor region was eradicated
by using small patches of the 31 × 31 size which was small enough to represent a class. Secondly, we
ensured that the created patches for a certain class must contain 50% pixels of that class in the patch.
Due to this novelty, the accuracy massively increased for enhancing tumor class and for other classes
as well. We also used equal samples for all classes during the training phase which also eradicates the
problem of class imbalance and eventually prevents classier from making biased predictions.

5 Conclusion

The objective of this research was to devise an automatic method that would be able to improve
the classification accuracy for enhancing tumor region without degrading the accuracy of other tumor
classes. For this purpose, we proposed an automatic classification method based on CNN model that
enabled us to increase the classification accuracy of enhancing tumor region along with that it also
achieved high classification scores for other tumor classes as well.

Future work that can be carried out for incremental research can be by doing segmentation from
these classifications. Besides this different model e.g., U-nets or V-nets, with a slight variation can be
employed to improve the prediction confidence for a larger dataset.
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