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Abstract: For the classification problem in practice, one of the challenging
issues is to obtain enough labeled data for training. Moreover, even if such
labeled data has been sufficiently accumulated, most datasets often exhibit
long-tailed distribution with heavy class imbalance, which results in a biased
model towards a majority class. To alleviate such class imbalance, semi-
supervised learning methods using additional unlabeled data have been con-
sidered. However, as a matter of course, the accuracy is much lower than that
from supervised learning. In this study, under the assumption that additional
unlabeled data is available, we propose the iterative semi-supervised learning
algorithms, which iteratively correct the labeling of the extra unlabeled data
based on softmax probabilities. The results show that the proposed algorithms
provide the accuracy as high as that from the supervised learning. To validate
the proposed algorithms, we tested on the two scenarios: with the balanced
unlabeled dataset and with the imbalanced unlabeled dataset. Under both
scenarios, our proposed semi-supervised learning algorithms provided higher
accuracy than previous state-of-the-arts. Code is available at https://github.
com/HeewonChung92/iterative-semi-learning.

Keywords: Semi-supervised learning; class imbalance; iterative learning;
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1 Introduction

Image classification is a problem to categorize images into one of the multiple classes. It has been
considered one of the most important tasks since it is the basis for other computer vision tasks such as
image detection, localization and segmentation [1–6]. Since AlexNet [7] was introduced, deep neural
networks (DNNs) have evolved remarkably via VGG-16 [8], GoogLeNet [9], ResNet [10], Inception-
V3 [11], especially to solve the image classification tasks. DNNs have been widely used for a variety
of tasks and set the new state-of-the-art, sometimes even surpassing human performance on image
classification tasks.

However, when dealing with the classification problem in practice, we face many practical issues,
and one of the most challenging issues is acquiring enough labeled data for training. The acquisition
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of the labeled data often requires a lot of time while also requiring professional and delicate works.
A recent study reported that physicians spent an average of 16 minutes and 14 seconds per encounter
using electronic health record (EHRs), with chart review (33%), documentation (24%), and ordering
(17%) functions accounting for most of the time [12]. The manual labeling of medical images also
requires intensive labor [13,14]. In addition, even if the labeled data is acquired enough, there is another
challenging issue referred to as imbalanced dataset. For instance, for the classification of a specific
disease data, there is much more information about the data from healthy subjects than those from
patients.

To resolve these issues, semi-supervised learning methods using additional unlabeled data have
been being considered a lot. Semi-supervised learning is a machine learning approach that combines
a small amount of labeled data with a large amount of unlabeled data during training [15–17]. In this
study, we propose a novel semi-supervised learning algorithms providing the performance at the level
of supervised learning by focusing on automatically and accurately labeling additional unlabeled data.
More specifically, to accurately label the unlabeled data, we use a softmax probability as a confidence
index and decide whether to assign a pseudo-label to the unlabeled data. The data with labels are used
continuously for training. Finally, the process is repeated until the pseudo-labels are assigned to all
unlabeled data with high confidence. Our proposed approach is innovative because it effectively and
accurately labels the unlabeled data using a simple mathematical function of softmax. For classification
problems, softmax is essential part of a model, usually used in the last output layer. Thus, we expect
to be able to effectively label the unlabeled data without additional computational complexity.

This paper is organized as follows. Section 2 lists some related works. Section 3 provides a specific
motivation of dealing with unlabeled data. In Section 4, we introduce our proposed iterative semi-
supervised learning using softmax probabilities. In Section 5, the performance of our algorithm is
verified by comparative experiments. The conclusion and future work are described in Section 6.

2 Related Works

The difficulty of acquiring labeled data and the imbalanced data issue have been investigated by
many research groups [18–21]. One of the popular approach to handle the imbalanced data issue is
with data-level techniques including over-sampling and under-sampling [22–24]. The under-sampling
is a technique to balance an imbalanced dataset by keeping all of the data in the minority group and
decreasing the size of the majority group. This technique is mainly used when the amount of data
belonging to minority and majority groups is large. The over-sampling is a technique to balance an
imbalanced dataset by increasing the size of the minority group. This technique is mainly to duplicate
minority data by randomly selecting the data from the minority group. A more advanced technique
is the synthetic minority oversampling technique (SMOTE), which generates a new data point by
selecting a point on a line connecting a randomly chosen minority class sample and one of its k nearest
neighbors [25]. Let us denote the synthetic data point by xnew, which can be expressed as

xnew = x + λ · (x − xnear) , (1)

where x is a random data belonging to a minority group, xnear is one of the k nearest neighbors of
x. The parameter λ is independent and identically distributed number uniformly distributed on [0,1].
This SMOTE has the advantage that of being able to increase the size of the minority group without
duplicating the data. Similar to SMOTE, adaptive synthetic sampling (ADASYN) technique generates
a new data point based on the k nearest neighbors [26]. It generates more data that are harder to
learn compared to the data that are easier to learn by considering the data distribution. Thus, it
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can adaptively shift the decision boundary to focus on the hard-to-learn data. Since the data-level
techniques from over-sampling approach balance out the number of each group of data, the trained
models have worked well in a variety of applications. However, such over-sampling techniques are
available when the data is represented as a vector.

Another approach to handle the imbalanced data issue is with algorithmic methods. In the
algorithmic approach, the learning process is adjusted in a way that emphasizes the importance of
the minority group data. Most commonly, the cost or loss function is modified to weigh more towards
the minority group data or to weigh less towards the majority group data [18,27,28]. Such a sample
weighting in loss function is to weigh the loss computed for different samples differently based on
whether they belong to the majority or the minority group. For the weight factors, inverse of number
of samples or inverse of square root of the number of samples can be considered. Recently, Cui et al.
[29] introduced the effective number of samples Enc , which can be defined as

Enc = 1 − βnc

1 − β
, (2)

where nc is the number of samples in class c and β is a hyperparameter on [0,1]. By using the
effective number of samples, the weight factor 1/Enc weigh the loss from the data according to the
majority or the minority group. This algorithm approach also worked well in a variety of applications.
Nevertheless, the imbalanced dataset issue is not completely solved. The fundamental solution is to
increase the number of data with diversity by acquiring more new data.

As we mentioned above, the most challenging part of acquiring data is labeling new data. It not
only takes a lot of time, but also requires professional and delicate works. Recently, Yang et al. [30]
demonstrated that pseudo-label on extra unlabeled data can improve the classification performance,
especially with the imbalanced dataset. The method is based on the fact that the unlabeled data is
relatively easy to obtain while the labeled one is difficult to obtain. Based on the trained model with
original data, extra unlabeled data was subsequently labeled. Accordingly, it was shown that the trained
model with additional unlabeled data provided better performance. However, the pseudo-labels also
can be biased towards a majority of data. Thus, the improvement from usage of the extra unlabeled data
is limited. In our work, we focus on how to more correctly label the unlabeled data, which eventually
provides better performance.

3 Preliminaries and Motivation

Given a simple binary classification from the data PXY with a mixture of two Gaussians, consider
that each class data has the label Y : +1 or−1. Also, consider the data distribution of X |Y is N

(
μ1, σ 2

)
when Y = +1. Similarly, when Y = −1, the data distribution of X |Y is N

(
μ2, σ 2

)
, where μ1 > μ2.

Given one sample x, if x >
μ1+μ2

2
, then x can be classified into +1; otherwise −1. Accordingly, the

classifier can be expressed as f (x) = sign
(
x − μ1+μ2

2

)
, where the term μ1+μ2

2
needs to be learned based

on the data set X and the corresponding label set Y.

However, given imbalanced training data, the term μ1+μ2
2

in the trained classifier will be shifted
to the mean value of a minority class. If a majority of data has the label Y = +1, then the classifier
can be derived as f (x) = sign

(
x + α − μ1+μ2

2

)
, where α > 0. Fig. 1a illustrates an example of a biased

classifier, which focuses mainly on improving the classification performance of a majority class. Such a
class imbalance issue can be resolved by balancing data class via data sampling approach such as over-
sampling or under-sampling as shown in Fig. 1b: in this example, the predicted decision boundary
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is closer to the actual boundary after using under-or over-sampling method. Similarly, sampling
weighting methods also change the predicted decision boundary to the actual boundary.

Fig. 1c illustrates another example of a biased classifier, which focuses on improving the perfor-
mance of a majority class. However, in this example, the number of data from a minority class is too
small to generalize the data corresponding to the minority class. Since the data from the minority class
does not generalize to the actual distribution, any sampling approach cannot improve the performance
as shown in Fig. 1d: in this example, the predicted decision boundary is almost unchanged even after
using under-or over-sampling method. Similarly, sampling weighting methods also have little effect on
the predicted decision boundary.

To alleviate the class imbalance issue, Yang et al. [30] recently demonstrated that pseudo-label
on extra unlabeled data can improve the classification performance, especially with the imbalanced
dataset, theoretically and empirically. More specifically, a base classifier fB was first trained based on
the original imbalanced training data. Subsequently, extra unlabeled data was labeled using fB. At
last, by re-training fB with the additional pseudo-label data, the classifier was shown to be improved.
However, the pseudo-labels also can be biased towards a majority of data, which results in the incorrect
labeling, especially for a minority of data. Thus, the improvement from usage of the extra unlabeled
data is limited. In this study, we present the algorithms that can improve the labeling accuracy, which
eventually improves the overall classification performance.

Figure 1: Examples of a biased classifier and the effects of data-level techniques; (a) an example of
a biased classifier, (b) the effect of under-or over-sampling method (the predicted decision boundary
closer to the actual boundary), (c) another example of a biased classifier, (d) the effect of under-or
over-sampling method (little effect on the predicted decision boundary)
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4 Iterative Semi-Supervised Learning Using Softmax Probability
4.1 Algorithm Description

In this study, we propose the semi-supervised learning algorithms, which iteratively corrects the
labeling of the extra unlabeled data. Algorithm 1 presents the pseudo-code of our proposed algorithm
named iterative semi-supervised learning based on softmax probability (ISSL-SP). Let denote the
original labeled data and the extra unlabeled data by Dataori and Dataun, respectively. Regarding the
instance perspectives, let denote the ith extra unlabeled data and the corresponding label by Datai

un and
Labeli

un, respectively. Let also denote the ith original labeled data and the corresponding label by Datai
ori

and Labeli
ori, respectively. Before applying the algorithm ISSL-SP, we first train a base classifier fB using

the original training data Dataori. In the first stage, we consider the softmax probabilities corresponding
to each class for Datai

un, where i = 1, 2, . . . n
(
Datai

un

)
for the number of unlabeled data. For each of

Datai
un, if the maximum value of the softmax probabilities is equal or greater than 0.99, we assigned the

corresponding the class to Labeli
un. Here, the optimized threshold value of 0.99 was found throughout

this study, and the trade-off between accuracy metrics and the threshold value is described in Results.
On the other hand, if the maximum value of the softmax probabilities is less than 0.99, we assign the
label Labeli

un as undefined. Every iteration, we update fB using all available data for training: fB to fnew.
Finally, we arrange the data with labels assigned as undefined, and repeat the entire process until all the
data is labeled in a specific class. In this way, ISSL-SP improves the overall classification performance
by assigning the labels only with high softmax probability.

Algorithm 1 Iterative semi-supervised learning based on softmax probability (ISSL-SP). This algo-
rithm is given a base classifier fB which was trained with original training data Dataori. We consider
that the data has the label: 1, 2, . . .
Require
1: Dataori: original train data
2: Dataun : extra unlabeled data
3: fB : base classifier providing softmax probability // fB was trained with Dataori

4: function ISSL-SP (fB, Dataun, n (Dataun)) // n (Dataun) : the number of Dataun

5: fnew = fB

6: while n (Dataun) > 0 do
7: for i = 1 to n (Dataun) do
8: // Datai

un : ith unlabeled data
9: probs = fB

(
Datai

un

)
// softmax probabilities for each class

10: if max (probs) ≥ 0.99 then
11: // 0.99 or higher is considered correct
12: Labeli

un = argmax (probs)
13: else
14: Labeli

un = −1 // undefined
15: end if
16: end for
17: Update fnew based on the all available data including Dataori and Dataun with Labelun > 0
18: Update Dataun with Labeli

un = −1
19: end while
20: return fnew

21: end function
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4.2 Algorithm Insight

Based on Datai
un with Labeli

un from fB, let denote the data corresponding to Labeli
un = +1 by Datai+

un .
Similarly, let denote the data corresponding to Labeli

un = −1 by Datai−
un . As we mentioned above, our

aim is to learn μ1+μ2
2

. Here, with Datai+
un and Datai−

un , the estimator can be constructed by

θ = 1
2

(
n+∑
i=1

Datai+
un

n+ +
n−∑
i=1

Datai−
un

n−

)
, (3)

where n+ and n− are the numbers of the Datai+
un and Datai−

un , respectively. Given the distribution of
Datai+

unN
(
μ1, σ 2

)
, and that of Datai−

unN
(
μ2, σ 2

)
, the estimator can be expressed by

θ ∼ 1
2

(
n+∑
i=1

N
(
μ1, σ 2

)
n+ +

n−∑
i=1

N
(
μ1, σ 2

)
n−

)
(4)

∼ N
(

μ1 + μ2, σ 2

(
1
n+ + 1

n−

))
The term σ 2

(
1

n+ + 1
n−

)
decreases as n+ and n− increase. Based on the assumption that the unlabeled

data is correctly labelled, the estimation accuracy can increase as the number of unlabeled data
increases. However, the base classifier fB based pseudo-labels can be biased towards a majority of data.
Thus, we need to select only the pseudo-label data with high confidence and to train the model together
with Dataori. Then, the base classifier fB can be updated to the model providing higher accuracy, which
labels the remained unlabeled data. By repeating the process over and over, the accuracy of the classifier
model gradually improves.

4.3 A variant of ISSL-SP

ISSL-SP algorithm can be extended in a variety of forms. Algorithm 2 presents the pseudo-code
named ISSL-SP with re-labeling all the initial unlabeled data (ISSL-SPR). As a variant of ISSL-SP,
ISSL-SPR is the same as ISSL-SP, except that all of the unlabeled data is labeled again every iteration:
the line 18 in ISSL-SP (Algorithm 1) is missing. Since the updated classifier fnew is trained with ever
increasing data, it can provide better performance as the process is repeated; and thus, it may be
necessary for the initial unlabeled data Dataun to be labeled over and over again. To sum up, ISSL-
SP labels only the data assigned by undefined while ISSL-SPR labels all initial unlabeled data over
again.

Algorithm 2 A variant of ISSL-SP: ISSL-SPR. This algorithm is the same as ISSL-SP, except that all
of the unlabeled data are labeled again.
Require
1: Dataori : original train data
2: Dataun : extra unlabeled data
3: fB : base classifier providing softmax probability // fB was trained with Dataori

4: function ISSL-SPR(fB, Dataun, n (Dataun)) // n(Dataun) : the number of Dataun

5: fnew = fB

6: while True do
7: Same from lines 7 to 17 in Algorithm 1
8: if n (Labelun == −1) == 0 then

(Continued)
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Algorithm 2 Continued
9: break
10: end if
11: end while
12: return fnew

13: end function

5 Dataset and Experiment Setup
5.1 Dataset

To evaluate our proposed algorithms of ISSL-SP and ISSL-SPR, we mainly used two datasets
of CIFAR-10 [31] and the street view house number (SVHN) [32]. The two datasets include images
and the corresponding class labels. In addition, they have additional unlabeled data with similar
distributions: 80 Million Tiny Images [33] includes the unlabeled images for CIFAR-10, and extra
SVHN [32] includes the unlabeled images for SVHN. Tab. 1 summarizes the four datasets of CIFAR-
10, 80 Million Tiny Images, SVHN and extra SVHN. More specifically, for training, 80 Million Tiny
Images includes 500,000 unlabeled images while CIFAR-10 includes 50,000 labeled images. The extra
SVHN includes 531,131 unlabeled images while SVHN includes 73,257 images.

Table 1: Summary of four datasets: CIFAR-10, 80 Million Tiny Images, SVHN and extra SVHN. 80
Million Tiny Images are unlabeled images for CIFAR-10. Extra SVHN images are unlabeled images
for SVHN

CIFAR-10

Class 1 2 3 4 5 6 7 8 9 10 Total

Dataorg 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 50,000
Dataun 50,443 50,246 51,226 52,509 45,380 51,743 47,156 50,811 50,344 50,142 500,000

SVHN

Class 1 2 3 4 5 6 7 8 9 10 Total

Dataorg 4,948 13,861 10,585 8,497 7,458 6,882 5,727 5,595 5,045 4,659 73,257
Dataun 45,550 90,560 74,740 60,765 50,633 53,490 41,582 43,997 35,358 34,456 531,131

5.2 Experimental Setup

In this study, we conducted experiments on artificially created long-tailed data distribution from
CIFAR-10 and SVHN. Tab. 2 summarizes the trained data randomly drawn from datasets of CIFAR-
10, 80 Million Tiny Images, SVHN and extra SVHN. The class imbalance ratio was defined as the
number of the most frequent class divided by that of the least frequent class [29–31].
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Table 2: Summary of trained data randomly drawn from datasets from datasets of CIFAR-10,
80 Million Tiny Images, SVHN, extra SVHN and CINIC-10. For the unlabeled data Dataun, we
considered two scenarios with different imbalance ratios

CIFAR-10 Imbalance ratio 1 2 3 4 5 6 7 8 9 10 Total

Dataorg 50 5,000 3,237 2,096 1,357 878 568 368 238 154 100 13,996

Scenario 1
Dataun 1 1,399 1,399 1,399 1,399 1,399 1,399 1,399 1,399 1,399 1,399 13,990

Scenario 2
Dataun 50 5,005 3,237 2,096 1,355 876 568 368 236 153 96 13,990

SVHN Imbalance ratio 1 2 3 4 5 6 7 8 9 10 Total

Dataorg 50 20 1,000 647 419 271 175 113 73 47 30 2,795

Scenario 1
Dataun 1 279 279 279 279 279 279 279 279 279 279 2,790

Scenario 2
Dataun 50 18 1004 648 417 270 176 111 72 46 28 2,790

CINIC-10 Imbalance ratio 1 2 3 4 5 6 7 8 9 10 Total

Dataorg 50 9,000 5,827 3,773 2,442 1,581 1,024 663 429 278 180 25,197

Scenario 1
Dataun 1 2,519 2,519 2,519 2,519 2,519 2,519 2,519 2,519 2,519 2,519 25,190

Scenario 2
Dataun 50 9,000 5,827 3,773 2,442 1,581 1,024 663 429 278 180 25,190

For CIFAR-10 and SVHN, we randomly drew samples to make the imbalance ratio of 50, which
is denoted by Dataori. For the unlabeled data Dataun, we considered two scenarios with different
imbalance ratios. In Scenario 1, we assumed that the unlabeled data was balanced with the imbalance
ratio of 1. In Scenario 2, we assumed that the unlabeled data was imbalanced with the imbalance ratio
of 50. For both scenarios, we almost balanced out the numbers of labeled and unlabeled data: 13,996
Dataori and 13,990 Dataun from CIFAR-10 and 80 Million Tiny Images while 2,795 Dataori and 2,790
Dataun from SVHN and extra SVHN. Finally, we evaluated each of the trained models on the isolated
and balanced testing dataset [30,31,34,35].

We implemented and trained the models using Pytorch. For all experiments, we used the stochastic
gradient descent (SGD) optimizer with batch size of 256 and binary cross-entropy for the cost function.
The entire experiments were performed on NVIDIA GeForce GTX 1080 Ti GPU.
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5.3 Evaluation Metrics

To analyze the performance, the labeling percentage was defined as the number of the labeled data
among Dataun divided by the number of Dataun:

Labeled percentage = n(Data

‘

un)

n(Dataun)
, (5)

where Data

‘

un is with the condition Labelun > 0 given Dataun.

To evaluate the performance, we used sensitivity (recall), specificity, precision, accuracy, balanced
accuracy (BA) and F1 score as

Sensitivity = recall = TP
TP + FN

, (6)

precision = TP
TP + FP

, (7)

Specificity = TN
TN + FP

, (8)

Accuracy = TP + TN
TP + TN + FP + FN

, (9)

Balanced Accuracy = Sensitivity + Specificity
2

, (10)

F1 score = 2 × precision × recall
precision + recall

, (11)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false negative,
respectively. In addition, we also used the metrics of top-1 error.

6 Results
6.1 With Balanced Unlabeled Data: Scenario 1

Tab. 3 summarizes the results when unlabeled data is balanced. It shows sensitivity, specificity,
accuracy, BA, F1 score and top-1 error. Note since the testing dataset is balanced, the F1 score can be
both macro average and weighted average. For the CIFAR-10 dataset, if only Dataori is used for training
as a baseline, the top-1 error is 28.76%. If Dataun is additionally used for training without iteration [30],
the top-1 error is 24.93%, which is slightly decreased. On the other hand, if Dataun is ideally given with
100% labeling accuracy and additionally used for training, the top-1 error is significantly dropped to
8.83%, which can be considered the lowest bound. Our proposed algorithms ISSL-SP and ISSL-SPR
provide the top-1 error of 14.92% and 10.79%, respectively, which are much lower than that from the
method [30], and are very close to the lowest bound. Similarly, for the SVHN dataset, with Dataori only,
the top-1 error is 28.10%. If Dataun is additionally used for training without iteration [30], the top-1
error decreases to 25.73%. With the ideal condition using Dataun 100% labeling accuracy, the top-1
error is 9.17% as the lowest bound. Our proposed algorithms ISSL-SP and ISSL-SPR provide the
top-1 error of 14.87% and 11.09%, respectively, which are also much lower than that from the method
[30], and are very close to the lowest bound. More detailed results are presented in Supplementary
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Tabs. 1 and 2. In addition, the results show that ISSL-SPR provides slightly higher accuracy than
ISSL-SP, indicating that the updated classifier needs to re-label the entire initial unlabeled data.

Table 3: With balanced and unlabeled data from CIFAR-10 and SVHN datasets

CIFAR-10 Sensitivity Specificity Accuracy BA F1 Top-1

with Dataorg only 0.7471 0.9719 0.9494 0.8595 0.7479 25.29
without iteration [30], 0.7696 0.9744 0.9539 0.8720 0.7718 23.04
supervision learning
(idally with 100%
labeling accuracy)

0.9186 0.9910 0.9837 0.9548 0.9184 8.14

ISSL-SP 0.8543 0.9838 0.9709 0.9191 0.8555 14.57
ISSL-SPR 0.8955 0.9884 0.9791 0.9419 0.8959 10.45
LDAM [31] 0.8492 0.9832 0.9698 0.9162 0.8505 15.08
PI [36] 0.8525 0.9836 0.9705 0.9181 0.8522 14.75
MT [37] 0.8561 0.9840 0.9712 0.9201 0.8572 14.39
VAT [16] 0.8708 0.9856 0.9742 0.9282 0.8708 12.92
ICT [38] 0.8567 0.9841 0.9713 0.9204 0.8569 14.33
FixMatch [39] 0.8333 0.9870 0.9767 0.9352 0.8837 11.67

SVHN Sensitivity Specificity Accuracy BA F1 Top-1

with Dataorg only 0.7822 0.9801 0.9654 0.8811 0.8044 17.33
without iteration [30], 0.8124 0.9820 0.9686 0.8972 0.8291 15.68
supervision learning
(idally with 100%
labeling accuracy)

0.9406 0.9935 0.9884 0.9671 0.9398 5.78

ISSL-SP 0.9019 0.9903 0.9831 0.9461 0.9104 8.45
ISSL-SPR 0.9196 0.9919 0.9858 0.9558 0.9248 7.10
LDAM [31] 0.8513 0.9859 0.9754 0.9186 0.8650 12.31
PI [36] 0.9060 0.9903 0.9829 0.9481 0.9072 8.56
MT [37] 0.9110 0.9906 0.9835 0.9508 0.9140 8.23
VAT [16] 0.9013 0.9901 0.9826 0.9457 0.9070 8.37
ICT [38] 0.9153 0.9911 0.9842 0.9532 0.9145 7.90
FixMatch [39] 0.9046 0.9909 0.9841 0.9478 0.9143 7.95

Fig. 2 plots labeled percentages and top-1 errors using ISSL-SP and ISSL-SPR according to each
iteration. It shows that the labeled percentage increases and top-1 error decreases as the labeling
processing is repeated. Also, the tendency to change with each iteration can be observed in both
algorithms of ISSL-SP and ISSL-SPR.
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Figure 2: (Scenario 1: with balanced unlabeled data) Labeled percentages and top-1 errors using ISSL-
SP and ISSL-SPR according to each iteration

6.2 With Balanced Unlabeled Data: Scenario 2

Tab. 4 summarizes the results when unlabeled data is imbalanced. It shows sensitivity, specificity,
accuracy, BA, F1 score and top-1 error. For the CIFAR-10 dataset, with Dataori only, the top-1 error
is 28.76%. If Dataun is additionally used for training without iteration [30], the top-1 error decreases to
25.85%. As the lowest bound, if Dataun is ideally given with 100% labeling accuracy and additionally
used for training, the top-1 error is 11.62%. Our proposed algorithms ISSL-SP and ISSL-SPR provide
the top-1 error of 18.58% and 14.87%, respectively, which are also much lower than that from the
method [30], and are very close to the lowest bound. Similarly, for the SVHN dataset, with Dataori

only, the top-1 error is 28.10%. If Dataun is additionally used for training without iteration [30], the
top-1 error decreases to 25.25%. With the ideal condition using Dataun 100% labeling accuracy, the top-
1 error is 11.47% as the lowest bound. Our proposed algorithms ISSL-SP and ISSL-SPR provide the
top-1 error of 14.14% and 13.62%, respectively, which are also much lower than that from the method
[30], and are very close to the lowest bound. More detailed results are presented in Supplementary
Tabs. 3 and 4. In addition, similar to the scenario 1, the results show that ISSL-SPR provides slightly
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higher accuracy than ISSL-SP, indicating that the updated classifier needs to re-label the entire initial
unlabeled data.

Table 4: With imbalanced and unlabeled data from CIFAR-10 and SVHN datasets

CIFAR-10 Sensitivity Specificity Accuracy BA F1 Top-1

with Dataorg only 0.7471 0.9719 0.9494 0.8595 0.7479 25.29
without iteration [30], 0.7688 0.9743 0.8538 0.8716 0.7689 23.12
supervision learning
(idally with 100%
labeling accuracy)

0.8838 0.9871 0.9768 0.9354 0.8841 11.62

ISSL-SP 0.8383 0.9820 0.9677 0.9102 0.8393 16.17
ISSL-SPR 0.8723 0.9858 0.9745 0.9291 0.8731 12.77
LDAM [31] 0.8324 0.9814 0.9665 0.9069 0.8330 16.76
PI [36] 0.8037 0.9782 0.9607 0.8909 0.8054 19.63
MT [37] 0.8042 0.9782 0.9608 0.8912 0.8043 19.58
VAT [16] 0.8166 0.9796 0.9633 0.8981 0.8177 18.34
ICT [38] 0.7854 0.9762 0.9571 0.8808 0.7867 21.46
FixMatch [39] 0.8472 0.9830 0.9694 0.9151 0.8476 15.28

SVHN Sensitivity Specificity Accuracy BA F1 Top-1

with Dataorg only 0.7822 0.9801 0.9654 0.8811 0.8044 17.33
without iteration [30], 0.7981 0.9816 0.9680 0.8898 0.8197 16.02
supervision learning
(idally with 100%
labeling accuracy)

0.8952 0.9904 0.9832 0.9428 0.9076 8.40

ISSL-SP 0.8437 0.9858 0.9755 0.9147 0.8648 12.23
ISSL-SPR 0.8761 0.9886 0.9801 0.9323 0.8886 9.96
LDAM [31] 0.8491 0.9850 0.9733 0.9170 0.8524 13.34
PI [36] 0.8665 0.9874 0.9780 0.9270 0.8771 11.20
MT [37] 0.8760 0.9887 0.9798 0.9323 0.8797 10.95
VAT [16] 0.8616 0.9927 0.9791 0.9245 0.8192 11.57
ICT [38] 0.8745 0.9886 0.9800 0.9316 0.8838 10.01
FixMatch [39] 0.8480 0.9864 0.9764 0.9172 0.8667 11.79

Fig. 3 plots labeled percentages and top-1 errors using ISSL-SP and ISSL-SPR according to each
iteration. It also shows that the labeled percentage increases and top-1 error decreases as the labeling
processing is repeated.
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Figure 3: (Scenario 2: with balanced unlabeled data) Labeled percentages and top-1 errors using ISSL-
SP and ISSL-SPR according to each iteration

6.3 Effect of Softmax Threshold Values

To investigate the effect of the softmax threshold values, we changed the threshold values from 0.5
to 0.999: by the increment of 0.01 from 0.5 to 0.9, and the increment of 0.001 from 0.9 to 0.999. Fig. 4
shows the accuracy metrics of F1 score, balanced accuracy and top-1 error according to the softmax
threshold values. The results show that the threshold value of 0.99 provides the highest accuracy values.
Throughout this study, we have used the softmax threshold value of 0.99 for the simulation results.
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Figure 4: F1 score, Balanced accuracy and top-1 errors according to softmax threshold values

7 Conclusion and Discussion

In this study, we propose new semi-supervised learning algorithms, which iteratively corrects the
labeling of the extra unlabeled data based on softmax probabilities. We first train a base classifier using
original labeled data, and evaluate unlabeled data using softmax probabilities. For each unlabeled data,
if the maximum value of the softmax probabilities is equal or greater than 0.99, we assign the unlabeled
data with the corresponding class. Every iteration, we update the classifier using all available data for
training. Regarding the labeling, ISSL-SP considers only the remaining unlabeled data while ISSL-
SPR considers the entire initial unlabeled data. To validate the proposed algorithms, we tested on the
two scenarios: with balanced unlabeled dataset and with imbalanced unlabeled dataset. The results
show that the two proposed algorithms, ISSL-SP and ISSL-SPR, provide the accuracy as high as that
from supervised learning, where the unlabeled data is given 100% labeling accuracy.

Comparing the performance of the two algorithms of ISSP-SP and ISSP-SPR, ISS-SPR outper-
forms ISS-SP regardless of the datasets and the imbalance ratio of unlabeled data. The results indicate
that the updated classifier needs to re-label the entire initial unlabeled data. Furthermore, ISS-SPR
outperforms previous state-of-the-arts. In the future work, we plan to validate the algorithm efficacy
using more extended datasets. In addition, we need to investigate an optimum strategy to reduce the
lengthy training time caused by the iteration process.
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Supplementary Table 1: Results from Scenario 1 with CIFAR-10

with Dataorg only TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,203 797 73 927 0.9270 0.9114 0.9130 0.6806 0.9192
2 8,762 238 62 938 0.9380 0.9736 0.9700 0.8621 0.9558
3 8,725 275 316 684 0.6840 0.9694 0.9409 0.6983 0.8267
4 8,392 608 341 659 0.6590 0.9324 0.9051 0.5814 0.7957
5 8,669 331 255 745 0.7450 0.9632 0.9414 0.7177 0.8541
6 8,833 167 468 532 0.5320 0.9814 0.9365 0.6263 0.7567
7 8,853 147 263 737 0.7370 0.9837 0.9590 0.7824 0.8603
8 8,816 184 337 663 0.6630 0.9796 0.9479 0.7179 0.8213
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Supplementary Table 1: Continued

with Dataorg only TN FP FN TP Sensitivity Specificity Accuracy F1 BA

9 8,952 48 456 544 0.5440 0.9947 0.9496 0.6834 0.7693
10 8,919 81 305 695 0.6950 0.9910 0.9614 0.7827 0.8430
mean 8,712 288 288 712 0.7124 0.9680 0.9425 0.7133 0.8402

without iteration TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,347 653 59 941 0.9410 0.9274 0.9288 0.7255 0.9342
2 8,778 222 42 958 0.9580 0.9753 0.9736 0.8789 0.9667
3 8,795 205 281 719 0.7190 0.9772 0.9514 0.7474 0.8481
4 8,261 739 219 781 0.7810 0.9179 0.9042 0.6198 0.8494
5 8,726 274 198 802 0.8020 0.9696 0.9528 0.7726 0.8858
6 8,891 109 430 570 0.5700 0.9879 0.9461 0.6790 0.7789
7 8,903 97 249 751 0.7510 0.9892 0.9654 0.8128 0.8701
8 8,882 118 306 694 0.6940 0.9869 0.9576 0.7660 0.8404
9 8,972 28 435 565 0.5650 0.9969 0.9537 0.7094 0.7809
10 8,952 48 274 726 0.7260 0.9947 0.9678 0.8185 0.8603
mean 8,751 249 249 751 0.7507 0.9723 0.9501 0.7530 0.8615

supervision learning
(idally with 100%
labeling accuracy)

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,849 151 59 941 0.9410 0.9832 0.9790 0.8996 0.9621
2 8,956 44 28 972 0.9720 0.9951 0.9928 0.9643 0.9836
3 8,871 129 108 892 0.8920 0.9857 0.9763 0.8827 0.9388
4 8,836 164 185 815 0.8150 0.9818 0.9651 0.8236 0.8984
5 8,895 105 73 927 0.9270 0.9883 0.9822 0.9124 0.9577
6 8,891 109 161 839 0.8390 0.9879 0.9730 0.8614 0.9134
7 8,925 75 50 950 0.9500 0.9917 0.9875 0.9383 0.9708
8 8,962 38 82 918 0.9180 0.9958 0.9880 0.9387 0.9569
9 8,969 31 69 931 0.9310 0.9966 0.9900 0.9490 0.9638
10 8,963 37 68 932 0.9320 0.9959 0.9895 0.9467 0.9639
mean 8,912 88 88 912 0.9117 0.9902 0.9823 0.9117 0.9509

ISSL-SP TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,659 341 48 952 0.9520 0.9621 0.9611 0.8304 0.9571
2 8,866 134 20 980 0.9800 0.9851 0.9846 0.9272 0.9826
3 8,794 206 175 825 0.8250 0.9771 0.9619 0.8124 0.9011
4 8,699 301 217 783 0.7830 0.9666 0.9482 0.7514 0.8748
5 8,842 158 139 861 0.8610 0.9824 0.9703 0.8529 0.9217
6 8,865 135 205 795 0.7950 0.9850 0.9660 0.8238 0.8900
7 8,898 102 138 862 0.8620 0.9887 0.9760 0.8778 0.9253
8 8,947 53 174 826 0.8260 0.9941 0.9773 0.8792 0.9101
9 8,977 23 227 773 0.7730 0.9974 0.9750 0.8608 0.8852
10 8,961 39 149 851 0.8510 0.9957 0.9812 0.9005 0.9233
mean 8,851 149 149 692 0.8508 0.9834 0.9702 0.8516 0.9171

ISSL-SPR TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,802 198 39 961 0.9610 0.9780 0.9763 0.8902 0.9695
2 8,948 52 27 973 0.9730 0.9942 0.9921 0.9610 0.9836
3 8,836 164 118 882 0.8820 0.9818 0.9718 0.8622 0.9319
4 8,789 211 190 810 0.8100 0.9766 0.9599 0.8016 0.8933
5 8,875 125 116 884 0.8840 0.9861 0.9759 0.8800 0.9351
6 8,854 146 169 831 0.8310 0.9838 0.9685 0.8407 0.9074
7 8,899 101 87 913 0.9130 0.9888 0.9812 0.9067 0.9509

(Continued)
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Supplementary Table 1: Continued

with Dataorg only TN FP FN TP Sensitivity Specificity Accuracy F1 BA

8 8,968 32 123 877 0.8770 0.9964 0.9845 0.9188 0.9367
9 8,981 19 129 871 0.8710 0.9979 0.9852 0.9217 0.9344
10 8,969 31 81 919 0.9190 0.9966 0.9888 0.9426 0.9578
mean 8,892 108 108 692 0.8921 0.9880 0.9784 0.8925 0.9401

Supplementary Table 2: Results from Scenario 1 with SVHN

with Dataorg
only

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,131 157 879 865 0.4960 0.9935 0.9602 0.6255 0.7448
2 19,897 1,036 376 4,723 0.9263 0.9505 0.9458 0.8700 0.9384
3 19,578 2,305 437 3,712 0.8947 0.8947 0.8947 0.7303 0.8947
4 21,984 1,166 1,072 1,810 0.6280 0.9496 0.9140 0.6180 0.7888
5 23,190 319 500 2,023 0.8018 0.9864 0.9685 0.8317 0.8941
6 22,662 986 498 1,886 0.7911 0.9583 0.9430 0.7177 0.8747
7 23,466 589 902 1,075 0.5438 0.9755 0.9427 0.5905 0.7596
8 23,887 126 695 1,324 0.6558 0.9948 0.9685 0.7633 0.8253
9 24,058 314 926 734 0.4422 0.9871 0.9524 0.5421 0.7146
10 24,121 316 1,029 566 0.3549 0.9871 0.9483 0.4570 0.6710
mean 22,697 731 731 1,872 0.6534 0.9678 0.9438 0.6746 0.8106
without
iteration

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,165 123 793 951 0.5453 0.9949 0.9648 0.6749 0.7701
2 19,694 1,239 287 4,812 0.9437 0.9408 0.9414 0.8631 0.9423
3 19,815 2,068 365 3,784 0.9120 0.9055 0.9065 0.7567 0.9088
4 22,164 986 955 1,927 0.6686 0.9574 0.9254 0.6651 0.8130
5 23,163 346 409 2,114 0.8379 0.9853 0.9710 0.8485 0.9116
6 22,878 770 479 1,905 0.7991 0.9674 0.9520 0.7531 0.8833
7 23,520 535 831 1,146 0.5797 0.9778 0.9475 0.6266 0.7787
8 23,927 86 694 1,325 0.6563 0.9964 0.9700 0.7726 0.8263
9 24,048 324 862 798 0.4807 0.9867 0.9544 0.5737 0.7337
10 24,210 227 1,029 566 0.3549 0.9907 0.9518 0.4740 0.6728
mean 22,758 670 670 1,933 0.6778 0.9703 0.9485 0.7008 0.8241

supervision
learning
(idally with
100% labeling
accuracy)

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,119 169 120 1,624 0.9312 0.9930 0.9889 0.9183 0.9621
2 20,574 359 284 4,815 0.9443 0.9829 0.9753 0.9374 0.9636
3 21,603 280 315 3,834 0.9241 0.9872 0.9771 0.9280 0.9556
4 22,684 466 340 2,542 0.8820 0.9799 0.9690 0.8632 0.9309
5 23,340 169 163 2,360 0.9354 0.9928 0.9872 0.9343 0.9641
6 23,433 215 262 2,122 0.8901 0.9909 0.9817 0.8990 0.9405
7 23,805 250 238 1,739 0.8796 0.9896 0.9813 0.8770 0.9346
8 23,902 111 244 1,775 0.8791 0.9954 0.9864 0.9091 0.9373
9 24,244 128 264 1,396 0.8410 0.9947 0.9849 0.8769 0.9179
10 24,197 240 157 1,438 0.9016 0.9902 0.9847 0.8787 0.9459
mean 23,190 239 239 2,365 0.9008 0.9897 0.9817 0.9022 0.9452

(Continued)
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Supplementary Table 2: Continued
with Dataorg
only

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

ISSL-SP TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,120 168 458 1,286 0.7374 0.9931 0.9760 0.8043 0.8652
2 20,218 715 280 4,819 0.9451 0.9658 0.9618 0.9064 0.9555
3 21,110 773 361 3,788 0.9130 0.9647 0.9564 0.8698 0.9388
4 22,326 824 413 2,469 0.8567 0.9644 0.9525 0.7997 0.9106
5 23,272 237 260 2,263 0.8969 0.9899 0.9809 0.9011 0.9434
6 23,315 333 326 2,058 0.8633 0.9859 0.9747 0.8620 0.9246
7 23,694 361 485 1,492 0.7547 0.9850 0.9675 0.7791 0.8698
8 23,870 143 340 1,679 0.8316 0.9940 0.9814 0.8743 0.9128
9 24,174 198 415 1,245 0.7500 0.9919 0.9765 0.8024 0.8709
10 24,319 118 532 1,063 0.6665 0.9952 0.9750 0.7659 0.8308
mean 23,042 387 387 692 0.8215 0.9830 0.9703 0.8365 0.9023

ISSL-SPR TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,199 89 294 1,450 0.8314 0.9963 0.9853 0.8833 0.9139
2 20,254 679 208 4,891 0.9592 0.9676 0.9659 0.9169 0.9634
3 21,390 493 271 3,878 0.9347 0.9775 0.9707 0.9103 0.9561
4 22,687 463 384 2,498 0.8668 0.9800 0.9675 0.8550 0.9234
5 23,314 195 208 2,315 0.9176 0.9917 0.9845 0.9199 0.9546
6 23,433 215 286 2,098 0.8800 0.9909 0.9808 0.8933 0.9355
7 23,649 406 226 1,751 0.8857 0.9831 0.9757 0.8471 0.9344
8 23,918 95 293 1,726 0.8549 0.9960 0.9851 0.8990 0.9255
9 24,254 118 406 1,254 0.7554 0.9952 0.9799 0.8272 0.8753
10 24,303 134 311 1,284 0.8050 0.9945 0.9829 0.8523 0.8998
mean 23,140 289 289 692 0.8691 0.9873 0.9778 0.8804 0.9282

Supplementary Table 3: Results from Scenario 2 with CIFAR-10

with Dataorg
only

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,203 797 73 927 0.9270 0.9114 0.9130 0.6806 0.9192
2 8,762 238 62 938 0.9380 0.9736 0.9700 0.8621 0.9558
3 8,725 275 316 684 0.6840 0.9694 0.9409 0.6983 0.8267
4 8,392 608 341 659 0.6590 0.9324 0.9051 0.5814 0.7957
5 8,669 331 255 745 0.7450 0.9632 0.9414 0.7177 0.8541
6 8,833 167 468 532 0.5320 0.9814 0.9365 0.6263 0.7567
7 8,853 147 263 737 0.7370 0.9837 0.9590 0.7824 0.8603
8 8,816 184 337 663 0.6630 0.9796 0.9479 0.7179 0.8213
9 8,952 48 456 544 0.5440 0.9947 0.9496 0.6834 0.7693
10 8,919 81 305 695 0.6950 0.9910 0.9614 0.7827 0.8430
mean 8,712 288 288 712 0.7124 0.9680 0.9425 0.7133 0.8402

without
iteration

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,450 550 71 929 0.9290 0.9389 0.9379 0.7495 0.9339
2 8,770 230 40 960 0.9600 0.9744 0.9730 0.8767 0.9672
3 8,736 264 286 714 0.7140 0.9707 0.9450 0.7219 0.8423
4 8,335 665 284 716 0.7160 0.9261 0.9051 0.6014 0.8211
5 8,592 408 185 815 0.8150 0.9547 0.9407 0.7332 0.8848
6 8,851 149 425 575 0.5750 0.9834 0.9426 0.6671 0.7792

(Continued)
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Supplementary Table 3: Continued

with Dataorg
only

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

7 8,921 79 315 685 0.6850 0.9912 0.9606 0.7766 0.8381
8 8,872 128 335 665 0.6650 0.9858 0.9537 0.7418 0.8254
9 8,930 70 310 690 0.6900 0.9922 0.9620 0.7841 0.8411
10 8,958 42 334 666 0.6660 0.9953 0.9624 0.7799 0.8307
mean 8,742 259 259 742 0.7415 0.9713 0.9483 0.7432 0.8564

supervision
learning
(idally with
100% labeling
accuracy)

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,851 149 63 937 0.9370 0.9834 0.9788 0.8984 0.9602
2 8,864 136 14 986 0.9860 0.9849 0.9850 0.9293 0.9854
3 8,843 157 113 887 0.8870 0.9826 0.9730 0.8679 0.9348
4 8,760 240 170 830 0.8300 0.9733 0.9590 0.8019 0.9017
5 8,829 171 69 931 0.9310 0.9810 0.9760 0.8858 0.9560
6 8,860 140 178 822 0.8220 0.9844 0.9682 0.8379 0.9032
7 8,906 94 108 892 0.8920 0.9896 0.9798 0.8983 0.9408
8 8,969 31 147 853 0.8530 0.9966 0.9822 0.9055 0.9248
9 8,970 30 134 866 0.8660 0.9967 0.9836 0.9135 0.9313
10 8,986 14 166 834 0.8340 0.9984 0.9820 0.9026 0.9162
mean 8,884 116 116 884 0.8838 0.9871 0.9768 0.8841 0.9354

ISSL-SP TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,517 483 41 959 0.9590 0.9463 0.9476 0.7854 0.9527
2 8,803 197 22 978 0.9780 0.9781 0.9781 0.8993 0.9781
3 8,740 260 145 855 0.8550 0.9711 0.9595 0.8085 0.9131
4 8,640 360 230 770 0.7700 0.9600 0.9410 0.7230 0.8650
5 8,764 236 125 875 0.8750 0.9738 0.9639 0.8290 0.9244
6 8,838 162 262 738 0.7380 0.9820 0.9576 0.7768 0.8600
7 8,929 71 212 788 0.7880 0.9921 0.9717 0.8478 0.8901
8 8,958 42 266 734 0.7340 0.9953 0.9692 0.8266 0.8647
9 8,975 25 304 696 0.6960 0.9972 0.9671 0.8088 0.8466
10 8,978 22 251 749 0.7490 0.9976 0.9727 0.8458 0.8733
mean 8,814 186 186 692 0.8142 0.9794 0.9628 0.8151 0.8968

ISSL-SPR TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 8,619 381 24 976 0.9760 0.9577 0.9595 0.8282 0.9668
2 8,855 145 16 984 0.9840 0.9839 0.9839 0.9244 0.9839
3 8,814 186 112 888 0.8880 0.9793 0.9702 0.8563 0.9337
4 8,668 332 185 815 0.8150 0.9631 0.9483 0.7592 0.8891
5 8,811 189 104 896 0.8960 0.9790 0.9707 0.8595 0.9375
6 8,896 104 248 752 0.7520 0.9884 0.9648 0.8103 0.8702
7 8,911 89 150 850 0.8500 0.9901 0.9761 0.8767 0.9201
8 8,973 27 220 780 0.7800 0.9970 0.9753 0.8633 0.8885
9 8,986 14 246 754 0.7540 0.9984 0.9740 0.8529 0.8762
10 8,980 20 182 818 0.8180 0.9978 0.9798 0.8901 0.9079
mean 8,851 149 149 692 0.8513 0.9835 0.9703 0.8521 0.9174
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Supplementary Table 4: Results from Scenario 2 with SVHN

with Dataorg
only

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,131 157 879 865 0.4960 0.9935 0.9602 0.6255 0.7448
2 19,897 1,036 376 4,723 0.9263 0.9505 0.9458 0.8700 0.9384
3 19,578 2,305 437 3,712 0.8947 0.8947 0.8947 0.7303 0.8947
4 21,984 1,166 1,072 1,810 0.6280 0.9496 0.9140 0.6180 0.7888
5 23,190 319 500 2,023 0.8018 0.9864 0.9685 0.8317 0.8941
6 22,662 986 498 1,886 0.7911 0.9583 0.9430 0.7177 0.8747
7 23,466 589 902 1,075 0.5438 0.9755 0.9427 0.5905 0.7596
8 23,887 126 695 1,324 0.6558 0.9948 0.9685 0.7633 0.8253
9 24,058 314 926 734 0.4422 0.9871 0.9524 0.5421 0.7146
10 24,121 316 1,029 566 0.3549 0.9871 0.9483 0.4570 0.6710
mean 22,697 731 731 1,872 0.6534 0.9678 0.9438 0.6746 0.8106

without
iteration

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,105 183 742 1,002 0.5745 0.9925 0.9645 0.6842 0.7835
2 19,952 981 347 4,752 0.9319 0.9531 0.9490 0.8774 0.9425
3 20,098 1,785 451 3,698 0.8913 0.9184 0.9141 0.7679 0.9049
4 22,488 662 1,148 1,734 0.6017 0.9714 0.9305 0.6571 0.7865
5 23,262 247 551 1,972 0.7816 0.9895 0.9693 0.8317 0.8856
6 22,718 930 386 1,998 0.8381 0.9607 0.9494 0.7523 0.8994
7 23,109 946 550 1,427 0.7218 0.9607 0.9425 0.6561 0.8412
8 23,944 69 103 1,316 0.9274 0.9971 0.9932 0.9387 0.9623
9 24,090 282 928 732 0.4410 0.9884 0.9535 0.5475 0.7147
10 23,953 484 763 832 0.5216 0.9802 0.9521 0.5716 0.7509
mean 22,772 657 597 1,946 0.7231 0.9712 0.9518 0.7284 0.8471

supervision
learning
(idally with
100% labeling
accuracy)

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,227 61 378 1,366 0.7833 0.9975 0.9831 0.8616 0.8904
2 20,356 577 165 4,934 0.9676 0.9724 0.9715 0.9301 0.9700
3 21,202 681 195 3,954 0.9530 0.9689 0.9663 0.9003 0.9609
4 22,592 558 323 2,559 0.8879 0.9759 0.9662 0.8531 0.9319
5 23,282 227 167 2,356 0.9338 0.9903 0.9849 0.9228 0.9621
6 23,478 170 292 2,092 0.8775 0.9928 0.9823 0.9006 0.9352
7 23,615 440 248 1,729 0.8746 0.9817 0.9736 0.8341 0.9281
8 23,969 44 370 1,649 0.8167 0.9982 0.9841 0.8885 0.9075
9 24,239 133 440 1,220 0.7349 0.9945 0.9780 0.8098 0.8647
10 24,342 95 408 1,187 0.7442 0.9961 0.9807 0.8252 0.8702
mean 23,130 299 299 2,305 0.8574 0.9868 0.9771 0.8726 0.9221
ISSL-SP TN FP FN TP Sensitivity Specificity Accuracy F1 BA
1 24,263 25 680 1,064 0.6101 0.9990 0.9729 0.7511 0.8045
2 20,257 676 188 4,911 0.9631 0.9677 0.9668 0.9191 0.9654
3 21,223 660 248 3,901 0.9402 0.9698 0.9651 0.8958 0.9550
4 22,561 589 484 2,398 0.8321 0.9746 0.9588 0.8172 0.9033
5 23,227 282 202 2,321 0.9199 0.9880 0.9814 0.9056 0.9540

(Continued)
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Supplementary Table 4: Continued

with Dataorg
only

TN FP FN TP Sensitivity Specificity Accuracy F1 BA

6 23,265 383 304 2,080 0.8725 0.9838 0.9736 0.8583 0.9281
7 23,471 584 321 1,656 0.8376 0.9757 0.9652 0.7854 0.9067
8 23,939 74 342 1,677 0.8306 0.9969 0.9840 0.8897 0.9138
9 24,198 174 547 1,113 0.6705 0.9929 0.9723 0.7553 0.8317
10 24,202 235 366 1,229 0.7705 0.9904 0.9769 0.8035 0.8805
mean 23,061 368 368 692 0.8247 0.9839 0.9717 0.8381 0.9043

ISSL-SPR TN FP FN TP Sensitivity Specificity Accuracy F1 BA

1 24,233 55 512 1,232 0.7064 0.9977 0.9782 0.8129 0.8521
2 20,088 845 188 4,911 0.9631 0.9596 0.9603 0.9048 0.9614
3 21,188 695 242 3,907 0.9417 0.9682 0.9640 0.8929 0.9550
4 22,620 530 511 2,371 0.8227 0.9771 0.9600 0.8200 0.8999
5 23,233 276 269 2,254 0.8934 0.9883 0.9791 0.8921 0.9408
6 23,422 226 346 2,038 0.8549 0.9904 0.9780 0.8769 0.9227
7 23,573 482 278 1,699 0.8594 0.9800 0.9708 0.8172 0.9197
8 23,933 80 370 1,649 0.8167 0.9967 0.9827 0.8799 0.9067
9 24,232 140 451 1,209 0.7283 0.9943 0.9773 0.8036 0.8613
10 24,220 217 379 1,216 0.7624 0.9911 0.9771 0.8032 0.8768
mean 23,074 355 355 692 0.8349 0.9843 0.9728 0.8504 0.9096
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