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Abstract: The Thoracic Electrical Bioimpedance (TEB) helps to determine
the stroke volume during cardiac arrest. While measuring cardiac signal it is
contaminated with artifacts. The commonly encountered artifacts are Baseline
wander (BW) and Muscle artifact (MA), these are physiological and non-
stationary. As the nature of these artifacts is random, adaptive filtering is
needed than conventional fixed coefficient filtering techniques. To address
this, a new block based adaptive learning scheme is proposed to remove
artifacts from TEB signals in clinical scenario. The proposed block least mean
square (BLMS) algorithm is mathematically normalized with reference to
data and error. This normalization leads, block normalized LMS (BNLMS)
and block error normalized LMS (BENLMS) algorithms. Various adaptive
artifact cancellers are developed in both time and frequency domains and
applied on real TEB quantities contaminated with physiological signals. The
ability of these techniques is measured by calculating signal to noise ratio
improvement (SNRI), Excess Mean Square Error (EMSE), and Misadjust-
ment (Mad). Among the considered algorithms, the frequency domain version
of BENLMS algorithm removes the physiological artifacts effectively then the
other counter parts. Hence, this adaptive artifact canceller is suitable for real
time applications like wearable, remove health care monitoring units.

Keywords: Adaptive learning; artifact canceller; block processing; frequency
domain; thoracic electrical bioimpedance

1 Introduction

In various reports the World Health Organization (WHO) states that mortality is increasing
globally due to most of the patients are not treated timely who suffered with cardiovascular diseases
(CVD) [1]. The most noncommunicable diseases are cardiovascular diseases and it is having 17.8

http://dx.doi.org/10.32604/cmc.2022.027672
mailto:mdzr55@gmail.com


5714 CMC, 2022, vol.72, no.3

million deaths globally, to reduce this death rate WHO member states providing drug treatment for
50% of diseased cardiovascular problems by 2025 [2]. American Heart Association [3] states that the
heart strokes encountering not only adults, but also children in the age group of 12–19 years. Therefore,
continuous monitoring of physiological vitals becomes a key task in health care industry. In such
a scenario, medical telemetry is a promising tool for remote health care monitoring of the patients.
The prime physiological events to measure the functionality of cardiac activity are electrocardiogram
(ECG) and Thoracic Electrical Bioimpedance (TEB). Among these, TEB is much useful to estimate
the stroke volume and helps to treat the patient. In this contest, providing a high-resolution signal to
the doctors for proper diagnosis is the main motivation of this work. But, during the signal acquisition,
several artifacts contaminate the signal and mask the tiny features of physiological quantities, causes
ambiguities in the diagnosis. Therefore, eliminating these artifacts before presenting TEB component
for diagnosis is the scientific problem in our work. Several contributions were made in the literature
for the analysis of TEB signal and to help the diagnosis process.

Massari et al. [4] explained bioimpedance vector analysis, to check the impedance vector to predict
length of stay of acute heart failure patients. Panagiotou et al. [5] demonstrated the non-invasive
methods to measure cardiac output in pulmonary artery hypertension using thermodilution method in
patients who are under treatment of pulmonary artery hypertension. By using cardiometry precision
and accuracy of cardiac out is calculated [6]. Sangkum et al. [7] proved the cardiac output measurement
by pulmonary artery catheterization using non-invasive method. Shin et al. [8] analyzed the phase
angle assessed method to predict clinical outcomes by impedance analysis for hemodialysis patients.
TEB also called as impedance plethysmography [9] is mainly used to study about the flow of blood
in body, particularly in to find blood flow in heart using haemodynamic method. Blood flow causes
variations in current, then by using cardiac device from impedance waveform we can measure cardiac
output. This device is used as an alternate device to the invasive methods for heart related management
conditions like calibration of pace maker, transplantation of heart and heart failure [10]. TEB is used
to find stroke volume in heart and there after several methods come into appearance in between
invasive techniques like thermodilution and non-invasive technique of TEB [11–13]. By analyzing
TEB, resistance will be calculated by passing a current through thorax area. Thorax area means the
area between neck and the abdomen, in this area set of electrodes are placed and current is passed
through these electrodes [14]. The combination of stroke volume and heart rate is known as cardiac
output and it is used to determine delivery of oxygen to organs [15]. Transportation of oxygen is main
function of cardiac output and by estimating cardiac output we can measure blood volume pumped
by heart in one minute. Among these methods, TEB is explored rapidly to know cardiac signals [16],
so that we are using this method. By using TEB method cardiac output is calculated by identifying
changes in body impedance to electrical currents. Blood and tissue stop electrical current to flow but
impedance and volume of tissues remain constant during cardiac cycle [17].

Therefore, the analysis of TEB is useful in CVD diagnosis as well as in treatment. But, during
sensing and recording the TEB several physiological artifacts contaminate the actual TEB signal. This
effects the resolution of cardiac activity and hides some minute features of the electrical component
which are very much important for diagnosis. Hence, some signal conditioning has to be applied, to
provide a clean TEB component for accurate diagnosis and treatment. As the occurrence of TEB
is non-stationery, the conventional signal conditional techniques are not suitable for processing.
In such a case, adaptive learning-based techniques are appropriate. In [18] authors presented a
methodology of stroke volume and intensity determination, artifact elimination. Several adaptive
filtering techniques are presented in [19–21] to remove the noise in cardiac output signal calculation.
Several related techniques are presented in [22,23]. Most of the conventional signal enhancement
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techniques adopt overlapping blocks. In which the processing needed many numbers of iterations and
large computations. To avoid this in our work, we proposed a block based adaptive learning scheme.
In which the entire signal is divided into several blocks and processed. Again, to improve filtering
ability data normalization, error normalization is performed in both time domain as well frequency
domains. The second section of the paper demonstrates the mathematical modeling of the block-based
techniques in time domain (TD) and frequency domain (FD). The third section elaborates the ability
of proposed schemes in the contest of TEB signal enhancement in clinical scenarios and calculates the
ability of the techniques by computing SNRI, EMSE, Mad.

2 Modeling Block Based Adaptive Learning for Artifact Cancellation in TEB Signals

Let us consider a block adaptive learning-based noise canceller for TEB enhancement as detailed
in Fig. 1. Here, the TEB data vector x(n) and is divided into small blocks of size P and are fed to an
adaptive filter of dimension L. The adaptive learning technique in which the data is processed block
by block is called as block least mean square (BLMS) algorithm. In conventional techniques sample
by sample processing takes place, as a result samples are processed multiple times. This causes the
computational complexity. However, in block processing due to averaging the signal quality in terms
of amplitude usually decreases.

Figure 1: A typical block diagram of block processing based adaptive learning scheme

The weight coefficient vector of BLMS is given by,

w (j + 1) = w (j) + μ

P−1∑
i=0

x (jP + i) e (jP + i) (1)

k refers to the block index.

w (j) = [w0 (j) , w1(j), . . . , wP−1(j)]t is coefficient vector corresponding to jth portion, x(jP + i) =
[x (jP + i) , x (jP + i − 1) , . . . , x(jP + i − P + 1)]t , e(jP + i) is error vector written as,

e (jP + i) = d (jP + i) − y(jP + i) (2)

In block processing, for the jth segment, the product x (jP + i) e (jP + i) takes the values of “i” for
the formation of the weight recursion equation given by (1).



5716 CMC, 2022, vol.72, no.3

The vector d(jP + i) is desired response and is obtained during the training phase of the algorithm
and y(jP + i) is filtered and clean TEB signal,

y (jP + i) = wt (j) x (jP + i) (3)

The scalar μ is step size value, has the limits as 0 < μ <
2

P ∗ trR
.

With reference to block length P and filter length L, the BLMS operates in the following
combinations.

1. P = L, this is an optimal choice from computational complexity point of view.
2. P < L, this offers an advantage of reduced processing delay. Moreover, this results an adaptive

filter computationally efficient when compared to LMS algorithm.
3. P > L, gives redundant operations in the adaptive learning process.

In our experiments, we have developed the optimal choice i.e., P = L.

Fast Fourier transform (FFT) algorithm uses a key method for applying fast correlation, convo-
lution operations. The fast block LMS (FBLMS) is the FD version of BLMS. In FD, multiplication
is done on element-by-element, followed by IFFT and proper window result to get output vector.
Here signals are converted from TD to FD and back words using FFT and IFFT respectively. For
fast convolution procedures, overlap save method and overlap add methods are used with help of
discrete Fourier transform. The overlap save method is the most commonly used filtering technique.
Hence BLMS method is widely used to improve convergence rate and computational efficiency due to
FFT. Output filter vector is represented as (3) is computed by convolving the input vector x(n) with
weight vector w0 (j) , w1(j), . . . , wL−1(j) and it is developed using overlap-save method. Also, the weight
vector in (1), viz.,

∑P−1

r=0 x (jP + r) e (jP + r) is calculated by circular correlation of M point FFT and
setting the last P − 1 output bits as zero. This method is used for realizing the FBLMS method. For
computation, in this technique an N-point FFT is used, where N = 2M. Finally, the N-by-1 weight
vector is represented as,

W (j) = FFT
[

w(j)
0

]
(4)

denote FFT coefficients of zero padded, tap weight vector w (j). In Eq. (4), 0 is M-by-1 null vector. The
FD weight vector W (j) is twice as long as the TD weight vector w (j). Let X (j) is a diagonal matrix
determined by Fourier transforming two successive blocks of the input vector.

X (k) = diag {FFT [u (kL − L) , . . . , u (kL − 1) , u (kL) , . . . , u (kL + L − 1)]} (5)

and d (j) is the L-by-1 desired response vector.

By applying an overlap-save method to the linear convolution of (3) gets the L-by-1 vector,

YT
(k) = last L elements of IFFT [X(j) W(j)] (6)

Now corresponding L-by-1 error signal vector is given by

e (j) = d (j) − y(j) (7)

In the implementation of linear convolution described in Eq. (6), the first L elements are discarded
from the output.



CMC, 2022, vol.72, no.3 5717

Error vector e(j) in FD is denoted as,

E (j) = FFT
[

0
e(j)

]
(8)

Hence, the weight coefficient vector in (1) is determined in FD as,

W (j + 1) = W (j) + μFFT
[
�(j)

0

]
(9)

Based on the above mathematical analysis FBLMS in FD filtering and weight updating will be
done using FFT i.e., convolution is efficiently done by block processing further by applying FFT for
the entire block. Here �(j) is a matrix of first M elements of IFFT [D (j) X (j) E (j)]. Where D (j) is the
diagonal matrix of average signal power, X(j) is the diagonal matrix obtained by Fourier transform two
successive blocks of input data, E (j) is transformed of error vector. The flow diagram of FD adaptive
learning based BLMS is shown in Fig. 2.

Figure 2: The flow chart of frequency domain adaptive learning algorithm

Further, the convergence rate and filtering ability of the proposed block-based techniques are
improved using normalization operations. After data normalization, the step parameter is repre-
sented as,

μ (n) = μ

ε + ||x(n)||2 (10)

The resultant weight update equation of BNLMS is expressed as

w (j + 1) = w (j) + μ (n)

P−1∑
r=0

x (jP + r) e (jP + r) (11)

Therefore, the change in weight coefficient vector w(n) is inversely proportional to norm of x(n).
This normalized algorithm converged quicker than the LMS algorithm because it uses variable step
size aims at minimizing in instantaneous output error.
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Instead of data normalization, the weight update recursion is normalized with respect to the error
component and results in error normalization. Then the step size of BENLMS is represented as

β (n) = μ

ε + ‖e(n)‖2 (12)

Now the weight update recursion for BENLMS is represented as,

w (j + 1) = w (j) + β(n)

P−1∑
r=0

u (jP + r) e (jP + r) (13)

For BENLMS, time varying step value is inversely proportional to squared norm of error, whereas
in BNLMS algorithm it is inversely proportional to input data.

The realization of BNLMS and BENLMS algorithms follows the same methodology as that of
for FBLMS. The frequency domain versions of BNLMS and BENLMS are known as FD BNLMS
(FBNLMS) and FD BENLMS (FBENLMS) algorithms.

W (j + 1) = W (j) + μ(n)FFT
[
�(j)

0

]
(14)

and

W (j + 1) = W (j) + β(n)FFT
[
�(j)

0

]
(15)

where μ(n) and β(n) are variable step sizes due to data and error normalizations respectively.

In biotelemetry applications, the physiological, non-physiological, and channel noises fades the
features of cardiac signal. Moreover, in practical cases, large data rates are used to send the bulk data
in less time. In order to process such bulk data, the conventional filter length has to be increased, the
computational complexity of the filter increases. In this aspect to reduce the complexity FFT based
block processing is the suitable candidate.

The convergence curves of BLMS and its variants in both TD, FD are shown in Fig. 3 and it is
clear that convergence characteristics of BLMS are approximately similar to LMS algorithm. However,
by adopting normalization fast convergence is achieved in both BNLMS and BENLMS algorithms.
Because of normalization, step size is varied iteratively; this step size is proportional to inverse of
total expected energy of instantaneous values of the input data vector coefficients. The BNLMS
and BENLMS algorithms usually converge faster than LMS algorithm, because it uses a variable
convergence factor aims at minimizing instantaneous output error. Advantage of the BNLMS and
BENLMS algorithms is that step size is chosen independent of input signal power and number of tap
weights. Therefore, these algorithms has a steady state error and convergence rate better than BLMS
algorithm. As a result of frequency domain implementation, Fast block least mean square (FBLMS)
algorithm is widely used to improve convergence rate due to the use of FFT.

3 Adaptive Learning Based Artifact Elimination and Discussion

To test the ability of proposed algorithm in clinical situations several experiments are performed
on read TEB signals. TEB signals with different artifact components are obtained using VU-AMS
ambulatory system. For TEB recordings, system uses Kendall ARBO H98SG ECG electrodes. For
simulations, 10,000 samples of TEB components are recorded from five different persons. But to
get high resolution signals processed only 1000 samples of data and length of the filter is 10. For
evaluation process of the proposed method, signal to noise ratio (SNR), excess mean square error
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(EMSE) and misadjustment are calculated and averaged over ten experiments. A Gaussian noise of
variance of 0.01 is added to TEB component in telemetry system to show the similarity free space
effect. For experiments records 1, 2, 3, 4, and 5 are used and these are contaminated with physiological
artifacts. For TEB enhancement signal enhancement unit is developed using block LMS algorithm
and its variants. The BLMS, its variants, and block based normalized algorithms; its variants are
two different independent categories of block adaptive filters. However, we have considered both
categories in noise removal experiments and compared them individually. In the former case, we
process non overlapping blocks, whereas in the latter case we process overlapping blocks. Input signal is
partitioned into non overlapping blocks using serial to parallel converter then it generates synthetically
four types of artifacts with help of real artifacts are obtained from MIT-BIH database. Artifact
canceller compares contaminated input signal PSD then from obtained reference generator artifact is
synthesized. Reference generator can identify noise type in the input signal. Adaptive learning-based
artifact cancellation is carried for artifacts like BA and MA.
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Figure 3: Typical convergence characteristics of various block adaptive learning algorithms in time
domain and frequency domain

3.1 Adaptive Baseline Wander Removal from TEB Signals
It demonstrates cancellation of BW; it is a non-stationary noise cancellation. The input to the

filter is TEB signal is contaminated with respiration baseline wander it is applied to a noise canceller
shown in Fig. 1. Reference signal is a real BW obtained from MIT-BIH Database. Contaminated
TEB signal is applied as input x(n) and output is y(n). Various filter structures are implemented
using nonoverlapping block filters in time domain and frequency domain to eliminate the artifact
components from TEB signals. The simulation results for adaptive BW removal using BLMS, its
variants are shown in Fig. 4. SNRI contrast for this case is shown in Tab. 1. The EMSE and Mad are
calculated for different types of artifacts, averaged values are tabulated in Tabs. 2 and 3 respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Adaptive artifact cancellation results for base line wander (a) TEB with BW, (b) enhanced
TEB due to LMS based adaptive learning, (c) enhanced TEB due to BLMS based adaptive learning,
(d) enhanced TEB due to BNLMS based adaptive learning, (e) enhanced TEB due to BENLMS based
adaptive learning, (f) enhanced TEB due to FBLMS based adaptive learning, (g) enhanced TEB due
to FBNLMS based adaptive learning, (h) enhanced TEB due to FBENLMS based adaptive learning

Table 1: Computed SNRI in various block adaptive learning-based artifact cancellers (In dBs)

Rec. No. LMS
[15]

LMF
[16]

BLMS BNLMS BEN
LMS

FB
LMS

FBN
LMS

FBEN
LMS

BW 1 3.2587 3.6852 4.9584 5.4623 6.6478 18.8871 19.6599 20.3691
2 3.0425 3.5247 4.1545 5.5613 6.8662 18.6328 19.5236 20.5682
3 3.1587 3.8963 4.5852 5.5820 6.6090 18.0236 19.0869 20.8791
4 3.2314 3.7852 4.9621 5.6714 6.3905 18.6307 19.3691 20.3691
5 3.4783 3.9854 4.3015 5.8231 6.0631 18.9630 19.5286 20.4569
Avg 3.2339 3.7753 4.5923 5.6200 6.5153 18.6274 19.4336 20.5284

MA 1 4.4578 4.6987 5.7850 6.4503 7.7561 19.8139 20.2716 21.6547
2 4.0125 4.8521 5.4559 6.5207 7.8305 19.7537 20.7438 21.6283
3 4.2578 4.8742 5.1479 6.1804 7.5216 19.1771 20.9635 21.5896
4 4.3245 4.7852 5.7650 6.7186 7.6548 19.8975 20.2587 21.5278
5 4.4782 4.6958 5.4143 6.1079 7.8019 19.5280 20.5871 21.6397
Avg 4.3061 7.7812 5.5136 6.3955 7.7129 19.6340 20.5649 21.6080
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Table 2: Computed EMSE in various block adaptive learning-based artifact cancellers (In dBs)

Rec.
No.

LMS
[15]

LMF
[16]

BLMS BN
LMS

BEN
LMS

FB
LMS

FBN
LMS

FBEN
LMS

BW 1 –6.4589 –7.1258 –9.1800 –10.5989 –13.4050 –14.5258 –15.2709 –16.3691
2 –6.3528 –7.2578 –9.3257 –10.6735 –13.0261 –14.8629 –15.0871 –16.5287
3 –6.0152 –7.3658 –9.2848 –10.3658 –13.4325 –14.9631 –15.8268 –16.3217
4 –6.4782 –7.4582 –9.4129 –10.5287 –13.4621 –14.8536 –15.1308 –16.7821
5 –6.2574 –7.0789 –9.9006 –10.6258 –13.6924 –14.9857 –15.3007 –16.5201
Avg –6.3125 –7.2573 –9.4208 –10.5585 13.4036 –14.8382 –15.3232 –16.5043

MA 1 –8.0509 –9.9428 –11.9029 –13.0100 –15.8683 –16.1559 –16.8466 –17.6860
2 –8.1528 –9.8524 –11.7441 –13.3120 –15.7531 –16.8329 –16.9181 –17.1918
3 –8.3269 –9.6932 –11.9146 –13.6278 –15.1162 –16.2181 –16.0625 –17.5845
4 –8.4587 –9.7525 –11.6038 –13.8987 –15.5601 –16.3504 –16.9125 –17.7568
5 –8.2369 –9.5478 –11.6456 –13.3724 –15.9567 –16.2369 –16.8905 –17.6391
Avg –8.2452 –9.7577 –11.7622 –13.4441 –15.6508 –16.3588 –16.7260 –17.5716

Table 3: Computed misadjustment in various block adaptive learning-based artifact cancellers

Rec. No. LMS
[15]

LMF
[16]

BLMS BN
LMS

BEN
LMS

FB
LMS

FBN
LMS

FBEN
LMS

BW 1 1.5621 1.0895 0.9852 0.8989 0.8254 0.7728 0.7152 0.6501
2 1.4528 1.1547 0.9682 0.8142 0.8541 0.7315 0.7578 0.6782
3 1.6985 1.2536 0.9274 0.8236 0.8751 0.7841 0.7628 0.6321
4 1.7852 1.3528 0.9258 0.8758 0.8631 0.7526 0.7452 0.6391
5 1.6985 1.4587 0.9631 0.8629 0.8014 0.7425 0.7563 0.6328
Avg 1.6394 1.2618 0.9539 0.8550 0.8438 0.7567 0.7474 0.6464

MA 1 1.5289 0.9852 0.5396 0.4528 0.4787 0.3186 0.3085 0.2100
2 1.6852 0.8524 0.5213 0.4281 0.4521 0.3188 0.3069 0.2396
3 1.7521 0.7548 0.5471 0.4962 0.4879 0.3933 0.3052 0.2805
4 1.4589 0.6587 0.5962 0.4758 0.4021 0.3649 0.3078 0.2945
5 1.8521 0.5142 0.5361 0.4157 0.4403 0.3878 0.3027 0.2758
Avg 1.6554 0.7530 0.5480 0.4537 0.4522 0.3566 0.3062 0.2600

From Figs. 4c–4e it is observed that the amplitude of the TEB signals is decreased due to signal
averaging. This in turn decreases the SNRI in the time domain-based block processing. The problem of
signal averaging could be avoided using frequency domain analysis, where better filtering ability can
be achieved. More accurate estimate of gradient vector is used in BLMS because of time averaging
and estimation accuracy increasing as the block size P is increased. The filtering capability of BLMS
based ANC is better when compared to LMS, moreover the smoothing capability of BLMS algorithm
is better. In Fig. 5, difference signals after base line wander elimination with various block-based
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methods are presented. Fig. 6 illustrates the nature of EMSE in the BW elimination process. The
experimental results confirm that FBENLMS based artifact elimination performs better than the
other counterparts and is well suited for remote health care systems.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Difference signals after base line wander elimination (a) Real BW artifact, (b) difference
signal after LMS based adaptive learning, (c) difference signal after BLMS based adaptive learning,
(d) difference signal after BNLMS based adaptive learning, (e) difference signal after BENLMS based
adaptive learning, (f) difference signal after FBLMS based adaptive learning, (g) difference signal after
FBNLMS based adaptive learning, (h) difference signal after FBENLMS based adaptive learning
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Figure 6: EMSE variations for BW cancellation using block adaptive learning algorithms
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3.2 Adaptive Muscle Artifact Removal from TEB Signals
In these experiments the TEB contaminated with MA is given as input to the adaptive artifact

canceller as shown in Fig. 1. The reference signal is a real MA obtained from MIT-BIH database. MA
originally had a sampling frequency of 360 Hz and they are anti-alias resampled to 128 Hz in order
to match sampling rate of the TEB. Various filter structures are developed using non overlapping
based block adaptive learning techniques. The experimental results for MA removal using block
processing are shown in Fig. 7, difference signals after muscle artifact elimination are shown in Fig. 8.
The variations in EMSE are shown in Fig. 9. From Fig. 7, it is clear that the signal averaging due to
block processing reduces the amplitude of the filtered signals. Even though the noise is eliminated but
due to amplitude reduction, the calculated SNRI and other performance measures are less. The SNRI,
EMSE, Mad are tabulated in Tabs. 1–3 respectively. Experimental results confirm that in the case of
MA also FBENLMS eliminates the artifact component better than the other block adaptive learning
algorithms.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Adaptive artifact cancellation results for muscle artefact (a) TEB with MA, (b) enhanced
TEB due to LMS based adaptive learning, (c) enhanced TEB due to BLMS based adaptive learning,
(d) enhanced TEB due to BNLMS based adaptive learning, (e) enhanced TEB due to BENLMS based
adaptive learning, (f) enhanced TEB due to FBLMS based adaptive learning, (g) enhanced TEB due
to FBNLMS based adaptive learning, (h) enhanced TEB due to FBENLMS based adaptive learning
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: Difference signals after muscle artifact elimination (a) Real muscle artifact, (b) difference
signal after LMS based adaptive learning, (c) difference signal after BLMS based adaptive learning,
(d) difference signal after BNLMS based adaptive learning, (e) difference signal after BENLMS based
adaptive learning, (f) difference signal after FBLMS based adaptive learning, (g) difference signal after
FBNLMS based adaptive learning, (h) difference signal after FBENLMS based adaptive learning
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Figure 9: EMSE variations for MA cancellation using block adaptive learning algorithms

4 Conclusion

In this paper, we have developed several block adaptive learning algorithms in both TD and FD
to eliminate physiological artifacts from TEB signals. The proposed implementations are improved by
including normalization with respect to data and error components. This demonstrates significant
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improvements in filtering ability and convergence characteristics. Again, the frequency domain
analysis also presented to avoid signal averaging due to block processing. To judge the performance
of the proposed block adaptive learning methods, several performance measures like SNRI, EMSE,
Mad, and convergence characteristics are determined. Among the considered classes of block-based
techniques, the frequency domain block error normalized adaptive learning algorithm proved that
this technique is better than other block processed algorithms. This technique seems to be suitable for
implementing real-time remote health monitoring devices in a medical telemetry network.
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