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Abstract: Predicting the value of one or more variables using the values
of other variables is a very important process in the various engineering
experiments that include large data that are difficult to obtain using differ-
ent measurement processes. Regression is one of the most important types
of supervised machine learning, in which labeled data is used to build a
prediction model, regression can be classified into three different categories:
linear, polynomial, and logistic. In this research paper, different methods
will be implemented to solve the linear regression problem, where there is
a linear relationship between the target and the predicted output. Various
methods for linear regression will be analyzed using the calculated Mean
Square Error (MSE) between the target values and the predicted outputs.
A huge set of regression samples will be used to construct the training
dataset with selected sizes. A detailed comparison will be performed between
three methods, including least-square fit; Feed-Forward Artificial Neural
Network (FFANN), and Cascade Feed-Forward Artificial Neural Network
(CFFANN), and recommendations will be raised. The proposed method has
been tested in this research on random data samples, and the results were
compared with the results of the most common method, which is the linear
multiple regression method. It should be noted here that the procedures for
building and testing the neural network will remain constant even if another
sample of data is used.

Keywords: Linear regression; ANN; CFFANN; FFANN; MSE; training cycle;
training set

1 Introduction

In many engineering experiments, practical results are obtained that require finding the relation-
ship between some of the inputs and outputs so that this relationship can be applied to find the output
values depending on the input values without resorting to experiment and measurement provided that
the output values are accurate and achievable at a very low error rate (very close to zero). The process
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of finding the relationship between the independent variables and the dependent ones (response) as
shown in Fig. 1 is called solving the linear regression model (or linear prediction process) [1–5].

Figure 1: Linear regression (prediction) model [3]

Methods other than linear regression are used to approximate the solution of an equation for some
system, in [6] they used two different techniques to compare the analytical solutions for the Time-
Fractional Fokker-Plank Equation (TFFPE); including the new iterative method and the fractional
power series method (FPSM). The experimental result shows that there is a good match between the
approximated and the exact solution.

On the other hand, the relation between the target value and the predicting variables is non-linear
in most cases. Therefore, more techniques that are sophisticated must be used in similar cases. In [7],
the authors used the reduced differential transform method to solve the nonlinear fractional model
of tumor immune. The obtained results show that the solutions generated for the nonlinear model are
very accurate and simple.

The quality of any selected method to solve the linear regression model can be measured by Mean
Square Error (MSE) and/or Peak Signal to Noise Ratio (PSNR), these quality parameters can be
calculated using Eqs. (1) and (2) [8–12]:

MSE = 1
N

n−1∑

i=0

[S (i) − R(i)]2 , N = n (1)

S: experimental data

R: calculated data

PSNR = 10 ∗ log10

(MAXI)
2

MSE
(2)

The selected method is very accurate when the MSE value is very close to zero, or/and PSNR
value is close to infinite [13–16]. The process of solving a linear regression model can be implemented
as shown in Fig. 2 applying the following steps [17]:

Collect the experimental data of measurements.

Analyze the collected data and perform some filtering and normalization if needed.

Select a set of data samples to be used as a training dataset.

Select a method to solve the prediction problem.

Check MSE or PSNR, if they are acceptable then save the model solution to be used later in the
prediction process, otherwise, increase the training dataset size, or modify some model parameters and
retrain the model again.
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The process of predicting the value of non-independent variables depending on a set of values of
independent variables is a very important process due to its use in many applications and vital fields,
including educational, medical, and industrial. The results of the prediction process are used to build
future strategies and plans, and accordingly, the mathematical models used in the prediction process
must provide very high accuracy to reduce as much as possible the error ratio between the calculated
values and the expected values, and given the importance of the prediction process in decision-making,
we will in this research paper by analyzing some mathematical models whose structure remains to some
extent fixed even if the number of inputs and the number of outputs is changed.

All that matters to us in the research paper is the accuracy of the results and obtaining accurately
calculated values that are very close to the expected values, and accordingly, it was sufficient to use
MSE and/or PSNR.

2 Solving Regression Model

The Linear regression model can be solved in a simple way using arithmetic calculations (least
square fit method) [18,19], the solution of the model will find the regression coefficients as shown in
Fig. 2.

Figure 2: Solving prediction model [14]

Here, the process of linear regression solution using a simple example is being described; this
example will be solved using MATLAB. If we consider the following regression problem shown in
Fig. 3:

Figure 3: Linear regression example

To calculate the regression coefficients, we must apply the following steps:
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1. Generate a regression matrix that includes the independent variables values, the elements of the
first column of this matrix must equal to one as shown in Fig. 4:

Figure 4: Regression matrix

2. Use the backslash operator in MATLAB to divide the regression matrix by the output matrix,
for this example we will get the values of the following coefficients, as depicted in Fig. 5:

Figure 5: Coefficient values

3. Use the regression coefficients to construct the output equation according to Eq. (3):

y = a1 + a2x1 + a3x2 (3)

4. Now we can apply Eq. (3) to predict the value of y for any given values of x1 and x2.

Fig. 6 shows the experimental and predicted outputs for this example, the predicted values are
very close to the true values for all the samples. It is expected since the dataset is very small and the
least square fit works efficiently with such a dataset. However, this method usually gives high MSE
values, especially, when the size of experimental data is big, this will be discussed later in Section 4.

3 Artificial Neural Networks

An Artificial neural network (ANN) is a powerful computational model that consists of a set of
fully connected neurons organized in one or more layers [20–23]. Each neuron is a computational cell
that performs two main operations as shown in Fig. 7.

An activation function must be assigned for each layer and each neuron in this layer, the output
of the neuron will be calculated depending on the assigned activation function, for linear activation
function the neuron output will equal the summation, while for logsig and tansig activation functions
the output of the neuron will be calculated as shown in Fig. 8.
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Figure 6: Experimental and predicted outputs (example)

Figure 7: Neuron operation [12]

Figure 8: Neuron output calculation using logsig (Sigmoid) and tansig (TanH) activation functions

ANN can be easily used in many applications including solving linear regression models by directly
predicting the output values using the input variable values as an input for the ANN. ANN model can
be treated as a black box, with selected inputs and the outputs to be predicted. A set of samples from
the input data must be selected as training samples, these samples are used to train ANN, the results
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of training must give an acceptable value of MSE, so selecting the size of training samples and the
number of training cycles will affect ANN performance. Each training cycle computes the neuron
outputs starting from the ANN input layer, then the final calculated outputs are compared with target
outputs by computing MSE between them, if the MSE value is acceptable then the computation will
be stopped, otherwise, backpropagation calculations will be performed starting from the output to
find the errors and make a necessary weight updating as shown in Figs. 9 and 10.

Figure 9: Neuron outputs calculation

Figure 10: Error calculations and weights updating

The process of using ANN as a prediction tool can be summarized in the following steps:

Step 1: Data preparation from the collected data we must select several samples which include the
independent variables values and the measured outputs (true labels to be predicted), these values must
be organized in a matrix, one column for each sample value, the input data must be normalized to
avoid error in the results of logsig or tansig calculations (see Fig. 11).

Step 2: ANN creation and design in this step we must create an ANN architecture by selecting the
number of layers and the number of neurons in each layer, an activation function must be assigned
to each layer. The goal (acceptable MSE) and the number of training cycles must be determined (see
Fig. 12). ANN must be initialized and trained using the inputs and the target labels to be predicted.

After finishing each training cycle MSE will be computed and compared with the goal, if the
error is acceptable, we can save the net to be used as a prediction tool, otherwise, we must increase the
number of training cycles, or update ANN architecture and retrain it again.
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Figure 11: ANN presentation [16]

Figure 12: ANN design and testing [16]

Step 3: ANN testing A set of new samples is selected for testing purposes, the saved ANN model
is run and loaded with the test samples. MSE is calculated between the true values for the test samples
and the predicted labels by the ANN model. If the computed value of MSE is acceptable, then ANN
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can be used in the future to predict any values of the outputs given the necessary inputs, otherwise,
ANN must be modified and retrained again.

4 Implementation and Experimental Results

5000 samples of two independent variables and one dependent variable were selected. The linear
regression model was solved using MATLAB, the size of training samples dataset size was varied from
100 to 2000 samples. The regression coefficients were computed for each training set of samples, then
the predicted outputs were calculated using the associated regression equations, the expected MSE for
each case was calculated, Tab. 1 lists the obtained experimental results, MSE values are almost stable
regardless of the training set size.

Now we will use the same samples to train and test ANN, and here two types of ANN architectures
are selected, including Feed-Forward ANN (FFANN) and Cascade Feed-Forward ANN (CFFANN),
the differences between these two types of ANN are shown in Fig. 13 [24–26].

Table 1: Results of linear regression model solving

Number of
training samples

% Regression coefficients MSE

a1 a2 a3
100 2 0.48222990030979 0.09160883516492 −0.10098583843171 0.08512037752759
200 4 0.49313218626133 0.03022058291651 −0.00823585646141 0.08275987290414
300 6 0.48207833931416 0.03139486668346 0.02186898052262 0.08292294194020
400 8 0.47399158745277 0.00021552395572 0.05391690858483 0.08267666176479
800 16 0.51953213567373 –0.03379330890609 0.04009370852708 0.08293178275996
1000 20 0.50423674616608 –0.02512822633925 0.05799936344765 0.08304814230434
1200 24 0.51726336795241 –0.02052300563664 0.01887716182012 0.08259586884338
1400 28 0.52688452556663 –0.02594997796019 0.00055126469818 0.08243492361740
1600 32 0.51978900471528 –0.01990007053826 0.00513504346279 0.08242292203845
1800 36 0.52885212283390 –0.03082747520273 –0.00406026038385 0.08232609441321
2000 40 0.52462504484757 –0.02283309306290 –0.00976884666659 0.08229411816262

Figure 13: CFFANN and FFANN architectures

The optimal architecture of the selected ANN consists of one input layer with 2 neurons and 1
output layer with 1 neuron. CFFANN with the selected architecture was trained and tested; Tab. 2
lists the obtained results (for each training set ANN was run five times and the best case was selected).
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Table 2: Results obtained by CFFANN with 2 neurons input layer and 1 neuron output layer

Number of
training
samples

% 1st run 2nd run 3rd run 4th run 5th run Best case

100 2 4.84e-20 2.17e-23 1.19e-29 2.10e-24 6.27e-20 1.19e-29
200 4 5.68e-22 6.48e-21 2.82e-22 1.65e-23 2.01e-23 1.65e-23
300 6 2.11e-30 4.77e-24 5.63e-26 1.18e-20 1.76e-24 2.11e-30
400 8 2.09e-26 1.12e-25 4.39e-25 7.07e-25 2.71e-23 2.09e-26
800 16 4.25e-24 1.22e-22 8.95e-26 1.25e-25 1.25e-22 8.95e-26
1000 20 2.95e-26 1.45e-24 7.26e-27 2.70e-26 1.85e-24 7.26e-27
1200 24 1.79e-26 5.97e-25 4.67e-28 3.73e-29 4.80e-28 3.73e-29
1400 28 9.93e-25 1.16e-27 6.89e-29 1.60e-26 4.99e-26 6.89e-29
1600 32 5.27e-28 5.22e-27 2.65e-30 3.04e-29 1.70e-22 2.65e-30
1800 36 2.01e-30 3.85e-30 1.19e-25 2.25e-27 2.18e-30 2.01e-30
2000 40 3.17e-26 1.09e-28 2.91e-29 9.70e-30 5.07e-29 9.70e-30

The architecture of CFFANN was updated by expanding the number of neurons in the input
layer to 12, Tab. 3 lists the obtained results. The same experiment was repeated using CFFANN with
a hidden layer of 4 neurons, Tab. 4 lists the results for this ANN.

Table 3: Results obtained by CFFANN expanded to 10 neurons input layer and 1 neuron output layer

Number of
training
samples

% 1st run 2nd run 3rd run 4th run 5th run Best case

100 2 2.13e-26 4.55e-27 4.51e-24 4.17e-27 5.05e-27 4.17e-27
200 4 1.94e-25 1.99e-21 2.74e-19 1.76e-20 2.87e-20 1.94e-25
300 6 5.71e-30 7.83e-20 8.58e-22 4.03e-22 4.49e-21 5.71e-30
400 8 1.92e-21 7.75e-23 1.03e-22 1.11e-21 1.90e-22 7.75e-23
800 16 6.83e-22 1.92e-24 2.66e-21 1.57e-22 1.66e-23 1.92e-24
1000 20 5.91e-22 2.04e-22 3.84e-22 1.63e-22 5.89e-23 5.89e-23
1200 24 7.37e-26 1.59e-23 4.88e-29 1.31e-24 1.61e-26 4.88e-29
1400 28 2.77e-25 1.19e-27 1.78e-22 2.15e-23 4.95e-24 1.19e-27
1600 32 5.22e-24 4.05e-22 2.46e-23 1.18e-25 7.60e-24 1.18e-25
1800 36 1.67e-24 6.96e-26 1.77e-22 7.11e-24 1.52e-22 6.96e-26
2000 40 7.29e-23 1.39e-27 9.18e-25 1.87e-24 4.64e-26 1.39e-27
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Table 4: Results obtained by CFFANN expanded to 2 neurons input layer, 4 neurons hidden layer and
1 neuron output layer

Number of
training
samples

% 1st run 2nd run 3rd run 4th run 5th run Best case

100 2 4.05e-26 5.74e-31 1.73e-28 8.72e-26 2.40e-24 5.74e-31
200 4 1.11e-26 3.13e-17 1.98e-26 5.26e-18 1.54e-17 1.11e-26
300 6 4.51e-20 5.43e-28 1.54e-24 2.48e-30 1.66e-17 2.48e-30
400 8 5.34e-30 9.55e-22 1.35e-26 2.25e-31 7.26e-28 2.25e-31
800 16 2.72e-30 1.32e-27 9.25e-18 1.59e-17 2.82e-21 2.72e-30
1000 20 5.41e-31 4.59e-17 5.97e-17 5.80e-31 3.81e-31 3.81e-31
1200 24 4.15e-28 1.07e-25 3.91e-28 9.01e-23 7.69e-18 3.91e-28
1400 28 1.87e-27 3.01e-17 5.95e-17 9.61e-29 1.54e-17 9.61e-29
1600 32 5.71e-22 1.19e-27 9.52e-30 1.59e-30 8.82e-18 1.59e-30
1800 36 2.41e-22 2.23e-17 1.59e-30 2.91e-24 7.29e-18 1.59e-30
2000 40 2.61e-27 4.40e-28 2.29e-24 2.34e-19 6.03e-26 4.40e-28

In the previous experiments, the selected number of training cycles was equal to 3000 cycles,
FFANN with minimal architecture was trained and tested, and Tab. 5 lists the obtained results, while
Tab. 6 shows the required training cycles to achieve the goal for CFFANN with different architectures.

Table 5: Obtained results using FFANN with 2 neurons input layer and 1 neuron output layer

Number of
training samples

% MSE Training cycles Training time(s)

100 2 4.24e-11 3000 13.698976
200 4 1.41e-10 3000 13.924885
300 6 1.62e-10 3000 14.199333
400 8 2.53e-10 3000 14.539692
800 16 2.13e-10 3000 15.331518
1000 20 1.90e-10 3000 16.127896
1200 24 8.55e-11 3000 16.464491
1400 28 1.70e-10 3000 16.856646
1600 32 2.95e-11 3000 16.976967
1800 36 1.64e-10 3000 18.418196
2000 40 1.08e-10 3000 22.885144
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Table 6: Required cycles for CFFANN to achieve the goal

Number of
training
samples

% 2 x 1 10 x 1 2 x 4 x 1

Number of
cycles

Training
time(s)

Number of
cycles

Training
time(s)

Number of
cycles

Training
time(s)

100 2 3 0.633637 3 0.642822 20 0.763843
200 4 3 0.646360 3 0.663984 4 0.654955
300 6 3 0.646461 3 0.670313 21 0.788023
400 8 3 0.646471 3 0.671195 4 0.650599
800 16 3 0.647360 3 0.680141 34 0.926636
1000 20 3 0.648359 3 0.681662 5 0.680824
1200 24 3 0.651370 3 0.682597 4 0.688941
1400 28 3 0.666387 3 0.684643 4 0.666738
1600 32 3 0.676412 3 0.686139 4 0.680512
1800 36 3 0.693041 3 0.699071 5 0.675476
2000 40 3 0.693143 3 0.700356 5 0.687761

5 Results Analysis

Solving the regression model using the least square fit method shows very poor results, the
calculated MSE between the targets and the calculated outputs using regression coefficients was always
high regardless of the training sample size, as depicted in Figs. 14 and 15.

Figure 14: Experimental and predicted outputs using least square fit method

To overcome the disadvantages of the least square fit method, ANN is introduced as a prediction
tool in two different flavors, which are FFANN and CFFANN. Using FFANN architecture increases
the quality of the linear regression solving, but it requires many training cycles and training time (as
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listed in Tab. 5), expanding the number of neurons in the input layer or adding an extra hidden layer
does not improve the value of MSE (see Fig. 16).

Figure 15: Computed MSE using various training sets

Figure 16: Calculated MSE using FFANN

To improve the performance of the ANN model, it is better to use CFFANN. The main advantages
of using CFFANN compared to FFANN are that it needs a smaller number of training cycles, and it
can achieve the goal of minimal MSE value. Moreover, A small set of training samples can be used to
train CFFANN; this ANN can be saved and easily used to predict the output using any given inputs,
the output that is generated using CFFANN is much closer to the target with an MSE value closer to
zero as shown in Fig. 17.
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Figure 17: Calculated MSE using FFANN

6 Conclusion

Several methods were implemented to solve the linear regression model, the least square fit method
was used to find the regression coefficients, and these coefficients then were used to construct the
regression equation, which was used to calculate the predicted output. The least square method showed
the poorest results even if the set of training samples size was increased. To overcome the disadvantages
of the least square method, various models of ANN were proposed, which include: FFANN and
CFFANN. The obtained experimental results showed that CFFANN with any architecture and with
various sizes of the training set achieved the best performance by minimizing the number of training
cycles required to achieve the minimum MSE value. Thus, the CFFANN model is highly recommended
to solve the linear regression model.

Recommendation: The proposed procedure will still be stable even if we use another sample of data, a
simple modification of ANN architecture is required to match the number of inputs and the number
of targets to be calculated.
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